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Abstract

The principle of Maximal Coding Rate Reduction
(MCR2) has recently been proposed as a training objective
for learning discriminative low-dimensional structures in-
trinsic to high-dimensional data to allow for more robust
training than standard approaches, such as cross-entropy
minimization. However, despite the advantages that have
been shown for MCR2 training, MCR2 suffers from a sig-
nificant computational cost due to the need to evaluate and
differentiate a significant number of log-determinant terms
that grows linearly with the number of classes. By taking
advantage of variational forms of spectral functions of a
matrix, we reformulate the MCR2 objective to a form that
can scale significantly without compromising training accu-
racy. Experiments in image classification demonstrate that
our proposed formulation results in a significant speed up
over optimizing the original MCR2 objective directly and
often results in higher quality learned representations. Fur-
ther, our approach may be of independent interest in other
models that require computation of log-determinant forms,
such as in system identification or normalizing flow models.

1. Introduction
Given a classification task, deep networks aim to learn a

nonlinear mapping, consisting of a series of linear and non-
linear functions, that can map data to their correct labels.
The overall deep network can often be interpreted as a com-
position of a nonlinear “featurizer” f✓ and a linear classifier
g(z) = Wz for some matrix W . The hidden layers or

the featurizer is designated with learning a latent represen-
tation z✓ = f✓(x) 2 Rd that best facilitates the final layer
or classifier for the downstream task.

The canonical way to train a deep learning model for
a classification task is empirical risk minimization using
cross-entropy (CE) loss. While CE measures the difference
between the model’s prediction and the true labels, it does
not explicitly enforce any structure over the representation.
In fact, Papyan, Han, and Donoho [8, 17] show that this di-
rect label fitting implicitly leads to neural collapse in deep
networks. That is, as CE loss converges to 0, the represen-
tations of each class at the last hidden layer collapse to a
single point, suppressing within-class variability.

Beyond neural collapse and failing to represent within-
class variation, several works [1, 5, 19] have empirically
shown that training neural networks using stochastic gra-
dient descent (SGD) on CE loss often leads the network
to utilize the simplest, often spurious, feature in the image
for classification. This hypothesis is theoretically supported
by [2] which verified that when multiple explanations can
describe a class, models trained with CE often pick a subset
of features that can classify a majority of the points well and
then classifies the remaining points from noise in the data.

To alleviate this issue, Yu et al. [21] proposed a frame-
work for learning geometrically meaningful representa-
tions, via a featurizer f✓, by maximizing the coding rate
reduction (MCR2). In brief, the MCR2 objective encour-
ages the latent representation of the entire training set to
expand or occupy as much volume as possible, while si-
multaneously pushing each class to compress or occupy as
little space as possible. Empirically and theoretically, it is
shown that this objective drives the latent representations of
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each class to lie on a low dimensional linear subspace, with
the subspaces orthogonal to each other, which empirically
provides robustness against label noise, a notable advantage
of MCR2 compared to CE [21].

However, despite these inherent advantages, the MCR2

metric can be costly from a computational perspective. In
particular, the loss involves calculating the log det of the
Gram matrix of the representations of each class. Not only
does the number of log det terms grow linearly with the
number of classes, but computing (and back-propagating)
the log det of a d⇥ d matrix incurs a computational cost of
O(d3). For this reason, MCR2 methods to date have been
limited to datasets with a relatively small number of classes
such as MNIST and CIFAR-10, where the loss is computa-
tionally feasible. In order to make MCR2 scalable, there is
a significant need to improve the computational efficiency,
particularly as it pertains to computing log det terms, to al-
low for large numbers (hundreds or thousands) of classes in
high dimensional spaces.

Contributions. In this paper we make significant progress
towards this goal, with the following contributions:

1. We provide an alternative formulation of the MCR2

objective based on a variational form of the log det
function which scales much more gracefully with the
number of classes and the problem dimension.

2. We show experimentally that the alternative formu-
lation requires approximately the same number of
epochs to converge as the original MCR2 formulation,
but achieves a significant speedup in the training cost
per epoch, particularly as the number of classes in the
dataset grows.

3. As an additional benefit of our formulation, we also
observe empirically that training over our proposed
variational formulation often results in higher quality
learned latent representations and better test accuracy
than the original MCR2 objective.

Finally, we note that our approach for optimization with
variational forms may be of independent interest for other
models which require computing log det terms, such as in
system identification [4] or normalizing flow models [9].

2. Preliminaries
Here we first describe the original MCR2 formulation as

well as introduce relevant background material.

2.1. MCR2 Objective
The original MCR2 objective [21] takes the fol-

lowing form: Given m training samples X =
[X1, . . . ,Xm] 2 RD⇥m belonging to k classes1, let Z✓ =

1Here we adopt the notation that an upper case letter X represents a
matrix and Xi denotes the ith column of a matrix.

[f✓(X1), ..., f✓(Xm)] 2 Rd⇥m be the latent representation
where recall f✓ is the featurizer parameterized by ✓, and let
⇧ 2 Rm⇥k define the class membership, where ⇧i,j de-
notes the probability2 that Xi is in class j. Then, MCR2

aims to learn a feature representation Z✓ that maximizes
the following coding rate reduction �R(Z✓):

max
✓

�R(Z✓) ⌘ R(Z✓)�Rc(Z✓,⇧) s.t. Z✓ 2 S, where

R(Z✓) =
1
2
log det

⇣
I + ↵Z✓Z

>
✓

⌘
, and

Rc(Z✓,⇧) =
kX

j=1

�j
2

log det
⇣
I + ↵jZ✓Diag(⇧j)Z

>
✓

⌘

(1)
where ⇧j denotes the jth column of ⇧, Diag(⇧j) denotes a
diagonal matrix with ⇧j along the diagonal, ↵ = d/(m✏2),
↵j = d/(h1,⇧ji✏2), �j = h1,⇧ji/m, S is the set of
all matrices whose columns all have unit `2 norm3 and
✏ > 0 is a prescribed precision error. Roughly speaking,
R(Z✓), known as the expansion term, captures the dimen-
sion (or the volume) of the space spanned by Z✓ while
Rc(Z✓,⇧), or the compression term, measures the sum of
the dimensions/volumes of the data from each class. From
an information-theoretic point of view, R(Z✓) estimates
the coding rate, or the number of binary bits required to
encode Z✓, through ✏-ball packing [13]. The terms are
called expansion and compression terms respectively, since
by maximizing �R, the first coding rate term is maximized,
which seeks to expand the overall volume of the embedded
features, while the second coding rate term is minimized,
which seeks to compress the volume of the embedded fea-
tures from each class.

By assessing the MCR2 objective (1), one can al-
ready observe a potential drawback of MCR2 for optimiza-
tion. In particular, note that each log det term requires
O(min{d3,m3}) operations to compute (and similarly to
back-propagate through). While d⌧ D can often be made
reasonably small for many high-dimensional datasets which
have an underlying low-dimensional structure, Rc(Z✓,⇧)
in particular is still often expensive to compute because it
requires k computations of log det. This severely limits
the application of MCR2 for datasets with even moderate
numbers, say hundreds, of classes as the objective becomes
computationally infeasible on common machines.

2.2. Variational Forms of Spectral Functions
To avoid this computational bottleneck, here we propose

instead a formulation which takes advantage of variational

2Note that if the labels are known exactly then the entries of ⇧ are
binary {0, 1} with each row of ⇧ summing to one. Notice that our notation
of ⇧ is slightly different from that adopted in [21]. Our choice is more
compact for optimization purposes.

3Note the constraint that Z✓ has unit norm columns is often achieved
by simply having the final operation of the network f✓ be a normalization.
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forms of spectral functions of a matrix. Specifically, for a
given positive semi-definite (PSD) matrix M and any scalar
c � 0, note that

log det(I + cM) =
rX

i=1

log(1 + c�i(M)), (2)

where r denotes the rank of M and �i(M) is the ith sin-
gular value of M . Here note that log(1 + c�) is a non-
decreasing, concave function of �, so we can exploit known
variational forms of spectral functions [6, 16]. In particular
note the following result in [16].

Theorem 2.1 (Adapted from [16]) For any matrix X , let
r denote the rank of X , let �i(X) denote the ith singular
value of X , and define

H(X) =
rX

i=1

h(�i(X)).

for some function h. If h is a concave, non-decreasing func-
tion on [0,1) with h(0) = 0, then the following holds

H(X) = min
U ,V :UV >=X

X

i

h
�
kU ik2 kV ik2

�
,

where (U i,V i) denotes the ith columns of (U ,V ). Note
also that (U ,V ) can have an arbitrary number of columns
(� r) provided UV > = X .

3. Proposed Formulation
Having introduced the above background material, we

now describe our proposed approach. In particular, note
that Theorem 2.1 immediately gives the following result as
a proposition.

Proposition 3.1 Let M be any real positive semi-definite
matrix and let c � 0 be any non-negative scalar. Then the
following holds:

� log det(I + cM) = max
U : UU>=M

�
X

i

log
�
1 + c kU ik22

�
.

(3)
Further, if ŪSŪ

>
= M is a SVD of M then U⇤ =

ŪS1/2 is a solution to the above problem.

Proof. First recall the basic fact that for any function  (x)
one has �minx  (x) = maxx� (x). Additionally, recall
(2) and note that the function h(x) = log(1 + cx) satisfies
the conditions required for h in Theorem 2.1. These facts
give the following:

� log det(I + cM) =

max
U ,V :UV >=M

�
X

i

log(1 + c kU ik2 kV ik2).
(4)

Further, note (4) implies that � log det(I + cM) �
�
P

i log(1 + c kU ik22) for all U such that UU> = M
since we have simply added the constraint U = V . The re-
sult is completed by noting that for the choice of U = U⇤

the maximum can be attained since log(1 + c kU⇤
i k

2
2) =

log(1 + c�i(M)), 8i 2 [r].

3.1. Variational Formulation of MCR2

Using Proposition 3.1, we develop our formulation by re-
placing the � log det terms in Rc of (1) by the above vari-
ational form. In particular, note that for each class j we
can eliminate the associated � log det term in Rc of (1) by
introducing an additional matrix U (j) subject to the con-
straint that Z✓Diag(⇧j)Z

>
✓ = U (j)(U (j))>. Further, due

to the fact that each row of ⇧ sums to one, we also havePk
j=1 Z✓Diag(⇧j)Z

T
✓ = Z✓Z

>
✓ . As such, the variational

form in Proposition 3.1 gives that the original MCR2 objec-
tive in (1) is equivalent to the following constrained varia-
tional form:

max
✓

�R(Z✓) =

max
✓,{U(j)}k

j=1

1

2
log det

0

@I + ↵
kX

j=1

U (j)(U (j))>

1

A

�
kX

j=1

�j
2

X

i

log

✓
1 + ↵j

���U (j)
i

���
2

2

◆

s.t. 8j,U (j)(U (j))> = Z✓Diag(⇧j)Z
>
✓ and Z✓ 2 S.

(5)
From this form, we now reparameterize the U (j) matri-
ces as U (j) = �Diag(Aj)1/2 where � 2 Rd⇥q \ S is
a dictionary with unit norm columns, and Aj 2 Rq

+ is a
(non-negative) encoding vector. Now let A 2 Rq⇥k

+ =
[A1, . . . ,Ak] be a matrix of the concatenated encoding
vectors and note that we trivially have �Diag(Aj)�> =

U (j)(U j)> and kU (j)
i k22 = Ai,j , which gives another

equivalent formulation for the MCR2 objective, provided
the number of dictionary elements q is sufficiently large so
that each optimal U (j) matrix in (5) can be encoded by �
(i.e., each column of U (j) must be a column of � within a
scaling factor):

max
✓

�R(Z✓) =

max
✓,�2Rd⇥q\S,A2Rq⇥k

+

1

2
log det

0

@I + ↵
kX

j=1

�Diag(Aj)�
>

1

A

�
kX

j=1

�j
2

qX

l=1

log (1 + ↵jAl,j)

s.t. 8j,�Diag(Aj)�
> = Z✓Diag(⇧j)Z

>
✓ and Z✓ 2 S.

(6)

502



Finally, we relax the strict equality constraints
�Diag(Aj)�> = Z✓Diag(⇧j)Z

>
✓ with `2 penalties

1
�j
kZ✓Diag(⇧j)Z

>
✓ � �Diag(Aj)�>k2F to arrive at our

final proposed formulation, which we call V-MCR2:

max
✓,�2Rd⇥q\S,A2Rq⇥k

+

Rv(�,A)�Rv
c (A)� µ

2m
M(Z✓,�,A)

where Rv(�,A) =
1
2
log det

 
I + ↵

kX

j=1

�Diag(Aj)�
>

!
,

Rv
c (A) =

kX

j=1

�j
2

qX

l=1

log (1 + ↵jAl,j) ,

M(Z✓,�,A) =
kX

j=1

1
�j

���Z✓Diag(⇧j)Z
>
✓ ��Diag(Aj)�

>
���
2

F
,

(7)
such that Z✓ 2 S . Regularization parameter µ > 0
weights how strictly the equality constraints should be ap-
proximated, and the 1

�j
terms roughly ensure class bal-

ance (recall, �j = h1,⇧ji/m). From this reformulation,
we have significantly reduced the complexity of evaluat-
ing the objective function. The log det terms in Rc which
take O(kmin{d3,m3}) time to evaluate is now replaced by
O(qk) for the sum of the log(1 + ↵jAl,j) terms along with
the cost of computing the M term which scales as O(kd2).

3.2. Interpretation of the Variational Form
Besides the above computational advantages, we also

discuss a few additional aspects of our formulation below.

Sparsifying dictionary learning interpretation. Notice
that the above variational reformulation takes on a natural
interpretation as learning a sparsifying dictionary: it es-
sentially “parameterizes” the subspaces spanned by each
class with a common shared dictionary �. Every class then
selects a “sparse” number of eigenbases, with Aj , from
this dictionary and forms its estimate of the sample co-
variance within the subspace. Notice that the scalar log
terms in Rv

c (A) are precisely nonconvex sparsity promot-
ing measures adopted in early studies of sparse representa-
tion [14,15]. The sparsity in the (spectral) bases in terms of
Aj precisely corresponds to the subspace spanned by each
class being low-dimensional or low-rank.

Penalty function method and other options. Notice that
in our formulation (7), the equality constraint in (6) is en-
forced through a penalty function M . As the penalty weight
µ increases to infinity and the dictionary � is sufficiently
large4, the formulation becomes exactly equivalent to the
original formulations (6) and (1). Of course, to deal with
the equality constraint in (6) more precisely, one may also

4In the worst case the model become equivalent when � is large
enough to contain a concatenation of the singular vectors of each class
Z✓Diag(⇧j)Z>

✓ .

consider adopting more advanced methods such as the aug-
mented Lagrangian multiplier method to incorporate the
equality constraint [7, 18], which we leave for future work.
However, as we discuss next, by relaxing the strict equal-
ity constraint we also gain a potential advantage when the
latent representation contains noise.

Low-rank LASSO interpretation. Notice that the
sparse/low-rank promoting term Rv

c (A) and the quadratic
penalty term M together resemble the classic LASSO
method for recovering a sparse solution from noisy mea-
surements [20]. The only difference here is that we are
seeking a sparse solution in the spectrum of a covariance
matrix – hence seeking a low-rank solution for the co-
variance. So to some extent, one may consider the varia-
tional form as a “low-rank LASSO.” We have noticed a nice
side benefit of this LASSO-type formulation: empirically
it seems to lead to better solutions than solving the origi-
nal MCR2 objective (see experimental results in Section 5).
Part of the reason is likely because the LASSO type relax-
ation introduced by the variational form finds a solution that
is more stable to small noise in the data or deviation from
an ideal low-dimensional linear subspace.

3.3. Optimization Strategy

3.3.1 Alternating Maximization

To optimize (7), we adopt an alternating maximization strat-
egy [3] between the variation parameters (�,A) and the net-
work parameters (✓). At each iteration, we first optimize �
and A by taking one step of a proximal gradient ascent up-
date which consists of taking a gradient ascent step on the
relevant part of variational loss �Rv � µ

2mM(Z✓,�,A),
followed by normalizing the columns of � to have unit `2
norm and thresholding the negative entries of the updated
A matrix to 0 (i.e., applying the ReLU function). To ensure
stability of the gradient-based method, we inversely scale
the learning rate of � and A by upper-bounds of the Lip-
schitz constants of the gradients, 1

L�
and 1

LA
, respectively.

(See Appendix for our derivation for the bounds.) Next, the
matrix approximation term M(Z✓,�,A) is recomputed us-
ing the updated � and A, and we then update the network
parameters, ✓, by taking a gradient step on the relevant part
of the variation loss,r✓M(Z✓,�,A).

In addition, note that from the variational form in Propo-
sition 3.1 we know that the optimal variational parameters
(�,A) should be closely related to the singular values and
vectors of Z✓Diag(⇧j)Z

>
✓ for each class j (the relation-

ship becomes exact for large values of µ). We exploit this
fact to initialize the variational parameters and to make peri-
odic ‘approximately closed-form’ updates to the variational
parameters. We call this procedure latching, which we de-
scribe in more detail in the next Section 3.3.2. We summa-
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rize our overall training process in Algorithm 1.5

Algorithm 1 Variational MCR2 Training

1: Input: data X , labels Y , featurizer f✓(·),
latch-freq, step sizes (⌫✓, ⌫�, ⌫A)

2: Initialize A,� latching(X,Y , f✓)
3: for iter = 0, 1, ..., n� 1 do
4: Get Z✓ = f✓(X) and membership matrices ⇧
5: Get `V-MCR2(Z✓,�,A) = (7)
6: Compute LA, L� (see Appendix)
7: � �+ ⌫�

L�
r�`V-MCR2(Z✓,�,A)

8: A A+ ⌫A
LA
rA`V-MCR2(Z✓,�,A)

9: Project A ReLU(A)
10: Project �l  1

k�lk2
�l 8l 2 [q]

11: Recompute M(Z✓,�,A)
12: ✓  ✓ � ⌫✓r✓(M(Z✓,�,A))
13: if itermodlatch-freq = 0 then
14: A,� latching(X,Y , f✓)
15: end if
16: end for
17: return f✓

Algorithm 2 Latching

Input: data X , labels Y , featurizer f✓(·)
Get Z✓ = f✓(X) 2 Rd⇥m and membership ⇧ 2 Rm⇥k

A 0 2 Rq⇥k (assume q is divisible by k)
� 0 2 Rd⇥q

for j = 1, ..., k do
Get UDiag(�)V > = SVD(Z✓Diag(⇧j)Z

>
✓ )

s q/k
�[:, (j�1)⇤s : j⇤s] = U [:, 0 : s] % python indexing
A[(j� 1) ⇤ s : j ⇤ s, j] = �[0 : s] % python indexing

end for
return A,�

3.3.2 Latching

In order to optimize the variational MCR2 objective,
the dictionary � and A must maximize �R(Z✓) =
Rv(�,A) � Rv

c (A) whilst minimizing the `2 regulariza-
tion term M(Z✓,�,A). This trade-off is controlled by the
regularization constant µ. In practice, when µ is too large,
each gradient step does not allow for �Diag(Aj)�> to stray
too far away from Z✓Diag(⇧j)Z

>, which can result in
slow convergence. We observe that the following proce-
dure improves convergence in practice. Note that the varia-

5Note that for clarity we describe the full procedure for gradient ascent,
but in our experiments stochastic gradient ascent is implemented.

tional form is maximized6 when � and A are derived from
the SVDs of Z✓Diag(⇧j)Z

>
✓ , as given in Proposition 3.1.

This gives a means to periodically reinitialize the variational
parameters (�,A) based on the SVDs of Z✓Diag(⇧j)Z

>
✓ ,

which we refer to as latching as described in detail in Al-
gorithm 2. This latching step can be viewed as taking
an (approximate) full-maximization step w.r.t. the varia-
tional parameters (as opposed to a proximal gradient de-
scent step) based on the closed-form solution provided in
Proposition 3.1. This will be an exact maximization step
as µ becomes large. In short, given a dictionary with q
columns, we initialize the dictionary as the concatenation
of the top q/k singular vectors of Z✓Diag(⇧j)Z

>
✓ for each

class j 2 [k]. Similarly, the columns of A are initial-
ized as the corresponding singular values. Though latching
is in itself an expensive procedure, requiring one to com-
pute the SVD of a matrix k times, it is optional (though we
notice a benefit in practice) and can be done relatively in-
frequently throughout training with a proper choice of the
hyper-parameter latch-freq. As a result, the amortized
cost of latching becomes insignificant.

4. Experimental Setup
We compare �R, wall-clock time, and accuracy of

models trained with the original MCR2 objective and the
variational MCR2 objective on MNIST [12], CIFAR-10
[10], CIFAR-100 [10], and Tiny ImageNet [11] (with 200
classes) datasets. We also compare the performance to
cross-entropy (CE) training as a benchmark of the correct-
ness of the learned representations (for classification). The
high-level goal of these experiments is to show that 1) the
variational MCR2 objective is feasible for datasets where
the original MCR2 objective is computationally expensive
(or impossible) to train (such as CIFAR-100 and Tiny Im-
ageNet), 2) show that training on the variational MCR2

maximizes the true �R objective and obtains the desired
subspace-like representations.

4.1. Hyperparameters
For fair comparison across training objectives (original

MCR2, variational MCR2), we use a learning rate of 10�3

for the network optimizer and the same batch size. For
CE, we use the same batch size, but a larger learning rate
of 10�2. The batch size is 1000 for MNIST and CIFAR-
10, and 2000 for CIFAR-100 and Tiny ImageNet. The net-
work is optimized using stochastic gradient descent for all
objectives. For the precision error ✏ of the MCR2 objec-
tives, we use ✏2 = 0.5 for all datasets. ✏ and batch size
are consistent with the experimental settings in the original
MCR2 work [21] for MNIST and CIFAR-10. For Varia-
tional MCR2, the regularization constant µ = 1 and initial

6The maximization is exact as µ becomes large, but a good approxima-
tion otherwise.
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learning rates ⌫� = 5, ⌫A = 5 across all experiments. We
perform latching every 50 epochs for all experiments. See
Appendix for precise details. The dictionary size q and fea-
ture dimension d varies across the datasets. For MNIST and
CIFAR-10 we use d = 128 and q = 20 · k, and for CIFAR-
100 and Tiny ImageNet we use d = 500 and q = 10 · k.

4.2. Nearest Subspace Classifier
MCR2 is a loss over the featurizer f✓. To classify

the test data, we use the nearest-subspace classifier simi-
lar to the original MCR2 work [21]. As shown by [21],
at the global optima of MCR2, the representations of each
class lie on low-dimensional subspaces that are orthogo-
nal to each other. Yu, et al. [21] also empirically observe
this property for networks trained by SGD. Assuming that
the learned representations satisfy this property, given a
test datapoint, we can simply identify the closest subspace
for the final classification. Formally, given a test sample
ztest = f✓(xtest), the predicted label is given as

y = argmin
j21,...,k

���(I � V (j)(V (j))>)ztest

���
2

2
, (8)

where V (j) is a matrix of the top b dk c principal components
of Z✓Diag(⇧j)Z

>
✓ with Z✓ = f✓(X) being the embed-

ding of the training data X .

5. Experimental Results
We discuss the performance of variational MCR2 below.

Performance is measured by 1) training speed, 2) the true
�R value the model reaches over the training data, and 3)
the classification accuracy over the test set. Note that we are
more interested in comparing the accuracy and training ef-
ficiency between MCR2 and V-MCR2, over trying to reach
state of the art results in this paper.

5.1. Computational Efficiency
Across datasets, we compare the wall-clock time to train

one epoch using the MCR2 (1) and V-MCR2 (7) formula-
tions. The batch size is set to be the same for both mod-
els, and all our experiments are performed using PyTorch
1.9.0 and Python 3.8.11 on Nvidia A100-SXM4 GPUs with
40GB of CUDA memory for fair comparison. As shown
in Table 1, V-MCR2 training completes approximately 5⇥
faster on CIFAR-100 and 12⇥ faster on Tiny ImageNet.
Even for datasets containing a small number of classes, i.e.,
MNIST and CIFAR-10, we observe a 1.5 � 2⇥ speedup.
Note that the overhead for the original MCR2 model es-
calates significantly as the number of classes increases, so
we expect even greater improvements in training efficiency
with datasets with more classes. Even for Tiny ImageNet,
training until convergence using MCR2 becomes nearly im-
practical, while it is easily handled by V-MCR2.

Dataset MCR2 V-MCR2

MNIST 11.56 6.29
CIFAR-10 33.06 20.71

CIFAR-100 157.45 31.14
Tiny ImageNet 527.85 44.23

Table 1. Wall-Clock Time per Epoch (in seconds). We compare
the wall-clock time to complete one epoch of training. MNIST
and CIFAR-10 use a batch size of 1000. For CIFAR-100 and Tiny
ImageNet, we use a batch size of 2000.

Additionally, we compare the true �R(Z✓) (i.e., com-
puting the original MCR2 objective with the iterates of the
V-MCR2 model) over training epochs and observe that both
models 1) take approximately the same number of training
epochs to converge and 2) reach approximately the same
final �R(Z✓) objective value at convergence. Thus, V-
MCR2 does not require additional epochs to obtain a good
solution which might offset the increased efficiency per
epoch. As shown in Figure 1, on MNIST and CIFAR-
10, V-MCR2 and MCR2 follow a similar training loss tra-
jectory across epochs. For CIFAR-100, we observe that
the convergence rate depends on the dimension of the fea-
tures/representations, d. For a feature dimension of d = 100
for CIFAR-100, we observed similar number of epochs to
convergence for MCR2 and V-MCR2. With a feature di-
mension of d = 500, we observe across 5 seeds that train-
ing with the original MCR2 leads to a rapid convergence
to a poor local optima where the expansion term R(Z) in-
creases rapidly but the compression term Rc(Z) remains
the same. On the other hand, although V-MCR2 requires
more epochs to converge, we observe the standard expected
behavior where R(Z) increases and Rc(Z) decreases and
the final solution is of much higher quality (see 5.2). Exper-
iments on Tiny ImageNet show similar behaviors.

5.2. V-MCR2 Obtains Better Representations
There are two properties of the representation that we

aim to attain by optimizing the MCR2 objective. We say
that a representation of the training data is of ‘high quality’
if points from different classes lie on separate, orthogonal
subspaces, and the union of these subspaces span as many
dimensions as possible. In particular, the orthogonal prop-
erty is important in order to classify the points using the
nearest subspace algorithm in Section 4.2. To check the or-
thogonality of subspaces learned by f✓, we report the inner
product between every pair of training points as a heatmap
in Figure 2. Namely, we sort the columns of Z✓ by class
and compute |Z>

✓ Z✓|. Ideally, we want |Z>
✓ Z✓| to have

a block diagonal structure, with (Z✓)>i (Z✓)j ⇡ 0 for i, j
notating points from different classes.

Figure 2 shows heatmaps for MNIST, CIFAR-10, and
CIFAR-100 after 2000 training epochs, when �R has con-
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(a) MNIST

(b) CIFAR-100 d = 100 (top), d = 500 (bottom)

(c) CIFAR-10

(d) Tiny ImageNet d = 200 (top), d = 500 (bottom)

Figure 1. Convergence of training �R. We compare the �R(Z✓) of the training data over epochs for V-MCR2 and MCR2. For both
V-MCR2 and MCR2, the network is optimized by stochastic gradient descent with a learning rate of 10�3. All training runs are 2000
epochs, excluding the MCR2 runs for Tiny ImageNet, which we stop at 500 and 200 for d = 200 and d = 500 respectively, due to
significant computational cost from the high number of classes. Also, note that for V-MCR2, we often observe small undulations in the
training loss due to the regular reinitialization by latching.

verged for both MCR2 and V-MCR2 (Figure 1). For MNIST
and CIFAR-10, note that both MCR2 and V-MCR2 obtain
a block diagonal structure. However, on CIFAR-100 and
Tiny Imagenet, we observe no block diagonal structure af-
ter MCR2 training, whereas we see a clear block diagonal
structure for V-MCR2. These findings suggest that V-MCR2

training is more robust to avoiding poor local minima than
training on the original MCR2 model, particularly as the
number of classes increase. We leave a rigorous study of
these phenomena for a future work.

5.3. Performance on Classification Tasks

In Table 2, we present test accuracies on the four afore-
mentioned datasets when trained under original MCR2 and
V-MCR2 objectives. In addition, we also train a separate
model for each dataset by using CE loss as a reference clas-
sifier and report its test accuracy. Notice that the goal of our
study here is not about achieving the best possible classifi-
cation accuracy on these datasets – the training procedure
and architectures used here are not optimal for that pur-

pose7. Instead, we make fair comparison of all methods on
the same networks and datasets to justify the computational
efficiency and effectiveness of the proposed method. To
ensure fairness, we initialize this reference model with the
same architecture along with other hyperparameters8 as in
V-MCR2 experiments and attach a final linear classifier with
output dimension corresponding to the number of classes.

As shown in Table 2, when trained on datasets with a
small number of classes, all three training objectives can
reach competitive classification performance. We can ob-
serve that both MCR2 and V-MCR2 objectives are compa-
rable to CE in these small-scale datasets. Again on CIFAR-
100 we observe that the poor local minima obtained by
training the original MCR2 objective results in a poor test
accuracy, while the V-MCR2 model achieves comparable
performance to training the same network with CE. Due to

7We use simple training practices (e.g. input data downsampling, min-
imal data augmentation and training from scratch), leading to about 15%
and 30% difference in performance on CIFAR-100 and Tiny ImageNet as
reported in [22] from much more carefully engineered training recipes.

8For experiments using CE, we use a higher learning rate of 10�2 to
improve convergence for CE training.
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(a) MNIST

(b) CIFAR-10

(c) CIFAR-100

(d) Tiny ImageNet

Figure 2. Inner product of representations. We plot the heatmap
of |Z>

✓ Z✓| where Z✓ are the representations of the training data,
ordered by the class they belong to. For CIFAR-100 and Tiny
ImageNet, 10 classes are randomly chosen. If the classes lie on
low-dimensional orthogonal subspaces, we expect to see a block
diagonal structure.

limited resources and heavy computational requirements of
MCR2 training with a large number of classes, we can only
report the result on Tiny ImageNet by optimizing MCR2 af-
ter 200 epochs while the other two objectives complete the
full training session of 2000 epochs.

6. Conclusion
Building on Yu et al. [21], we propose an alternative

cost-efficient formulation of the MCR2 objective that is
scalable to datasets with a large number of classes. Namely,
for CIFAR-100 and Tiny ImageNet, we observed a 5⇥ and
12⇥ speedup per training epoch, respectively. The gain
would be even more significant as the number of classes
increases. Additionally, we show that we do not make any
compromises when it comes to performance by using this
approximate, variational formulation. In fact, in all datasets
we tested, not only does V-MCR2 reach similar �R values
as MCR2, the learned representations of V-MCR2 were just

Dataset Objective Training �R Test Accuracy
MCR2 44.6429 0.9785

MNIST V-MCR2 44.2117 0.9788
CE - 0.9738

MCR2 49.40 0.8956
CIFAR-10 V-MCR2 48.43 0.8997

CE - 0.8665
MCR2 226.0519 0.2421

CIFAR-100 V-MCR2 218.0185 0.5872
CE - 0.5840

Tiny MCR2 227.6468 0.1319
ImageNet V-MCR2 231.1538 0.2665

200 CE - 0.1907

Table 2. Comparison of classification performance. We evaluate
the training �R and test accuracy of CE, MCR2, and V-MCR2

after 2000 training epochs for MNIST, CIFAR-10, and CIFAR-
100. For Tiny ImageNet, we report the results after 200 epochs for
MCR2 due to very slow training, though note that �R had already
converged (Fig. 1d). For V-MCR2 and CE, results are after 2000
epochs. For CIFAR-100 and Tiny ImageNet, we report results for
d = 500. See Appendix for results for other choices of d.

as good, oftentimes better, than those learned by MCR2 for
the same number of training epochs. On a related note, we
observe an interesting phenomenon that directly optimiz-
ing the MCR2 objective is not only slow, but often com-
pletely fails to learn the desired orthogonal subspace struc-
tures when the number of classes increases even after �R
has successfully converged. In our experiments, we found
that V-MCR2 is surprisingly not prone to this problem, sug-
gesting that V-MCR2 allows for better control over learning
the desired representations. By these means, we find that
V-MCR2 is a very promising adaptation of MCR2 and we
leave a rigorous comparison of the representations learned
by MCR2 and V-MCR2 for future work.
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[6] Paris Giampouras, René Vidal, Athanasios Rontogian-
nis, and Benjamin Haeffele. A novel variational form
of the schatten-p quasi-norm. Advances in Neural In-
formation Processing Systems, 33, 2020. 3

[7] Magnus R Hestenes. Multiplier and gradient meth-
ods. Journal of optimization theory and applications,
4(5):303–320, 1969. 4

[8] Like Hui, Mikhail Belkin, and Preetum Nakki-
ran. Limitations of neural collapse for understand-
ing generalization in deep learning. arXiv preprint
arXiv:2202.08384, 2022. 1

[9] Ivan Kobyzev, Simon Prince, and Marcus Brubaker.
Normalizing flows: An introduction and review of cur-
rent methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020. 2

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.
5

[11] Ya Le and Xuan Yang. Tiny imagenet visual recogni-
tion challenge. Stanford cs231, 2015. 5
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