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Abstract

Due to the limited utilization of temporal relations in
video re-id, the frame-level attention regions of mainstream
methods are partial and highly similar. To address this
problem, we propose a Salient-to-Broad Module (SBM)
to enlarge the attention regions gradually. Specifically,
in SBM, while the previous frames have focused on the
most salient regions, the later frames tend to focus on
broader regions. In this way, the additional information
in broad regions can supplement salient regions, incurring
more powerful video-level representations. To further im-
prove SBM, an Integration-and-Distribution Module (IDM)
is introduced to enhance frame-level representations. IDM
first integrates features from the entire feature space and
then distributes the integrated features to each spatial lo-
cation. SBM and IDM are mutually beneficial since they
enhance the representations from video-level and frame-
level, respectively. Extensive experiments on four preva-
lent benchmarks demonstrate the effectiveness and supe-
riority of our method. The source code is available at
https://github.com/baist/SINet.

1. Introduction

In the past few years, video person re-identification (re-
id) has achieved favorable progress [33,39] with the help of
CNNs [ 11, 19]. However, further development of video re-
id remains hindered because it is challenging to effectively
utilize the rich temporal information among video frames,
as pointed out in [26].

Recently, some approaches [41, 42, 44] try to exploit
the temporal relations for a mutual enhancement between
frames. To realize such enhancement, these methods mainly
adopt self-attention mechanism [38] or Graph Convolution
Networks (GCNs) [5, 8] to encourage the information flow
among video frames. In this way, the final frame-level fea-
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Figure 1. Comparison of existing methods and our method (SBM)
with respect to Class Activation Maps (CAM) [32]. There is a
clear salient-to-broad transition of activation maps (attention re-
gions) in our method. Warmer color represents a higher value.

tures will be more rich and recognizable. Although these
methods have achieved encouraging performances in video
re-id, they still have several intrinsic drawbacks.

First, for each frame, the concentration of these meth-
ods is usually confined in a salient but partial region. In
fact, when a model has focused on a partial region that can
recognize a pedestrian, it will not pay attention to other re-
gions, which results in representations with limited power.
Obviously, this property should be avoided for a robust re-
id model since it is desirable to use the complete charac-
teristics of a given pedestrian. As shown in Figure 1(b),
these methods pay almost all the attention to the upper
clothes while ignoring the A-line skirt and other human
parts. Maybe the black skirt is not as discriminative as the
upper clothes in this particular example, but it is still a vital
clue, especially when other pedestrians, if any, wear similar
upper clothes. Therefore, enlarging the attention regions is
of central importance to further enhance the robustness and
discriminative ability of video embeddings.

Second, the utilization of temporal relations, i.e., mu-
tual enhancement between frames, is limited. Specifically,
these methods regard the temporal relations as mutual en-
hancement or homogeneous information flow across all
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frames. In this way, the frame-level embeddings will be
richer since they contain mutually enhanced information
from other frames. However, such enhancement will also
mix the frame-level embeddings, making them more similar
to each other, even redundant. As illustrated in Figure 1(b),
all four frames focus on nearly identical regions, indicat-
ing that their embeddings are highly similar. The similar-
ity or redundancy sacrifices the differences across frames,
which limits further improvement in the final temporal fu-
sion stage. Therefore, to make better use of temporal rela-
tions, it is desirable to leverage temporal cues from another
perspective and encourage the differences between frames.

In this paper, we propose a Salient-to-Broad Module
(SBM), which achieves the above two goals in a unified
framework. SBM innovatively leverages the temporal re-
lations to amplify the differences of frames, i.e., gradu-
ally enlarges the attention regions of consecutive frames.
Specifically, we expect the pedestrians’ representations to
be more informative and powerful, so they should contain
as much foreground information as possible. While the pre-
vious frames have focused on a salient but partial region,
we require SBM to pay attention to a broader region for
the later frame. In practice, SBM leverages temporal rela-
tions via difference amplification, which is implemented by
properly broadening regions to be attended in later frames.
In summary, SBM realizes the salient-to-broad transition as
shown in Figure 1(c). As a result, SBM makes frame-level
features more complete and diverse, thus produces more in-
formative video-level features after temporal fusion.

Moreover, we introduce an Integration-and-Distribution
Module (IDM) to assist our SBM. SBM increases the rep-
resentation capability of video-level features by enhancing
differences across frames. But the performance of SBM
also depends on the richness of frame-level information. To
this end, IDM will integrate and distribute the informative
global features, enabling message passing across all frames.
The propagation is input-agnostic and is constructed with
all information from input data. By doing this, IDM is re-
ciprocal to SBM: IDM consolidates the frame-level repre-
sentations, and SBM will enrich the video-level representa-
tions. Thus, the combination of SBM and IDM will incur
more powerful representations for video re-id.

SBM and IDM can be inserted into the backbone net-
work together to form SINet. We carry out extensive exper-
iments on four benchmarks to demonstrate the effectiveness
of our method. Notably, SINet achieves 91.0% and 87.4%
rank-1 accuracy on MARS and LS-VID, respectively, sur-
passing the existing state-of-the-art models.

2. Related Work

Recently, video re-id has drawn more and more attention
from both academic and industrial researchers. Compared
with image data, the additional temporal relations in video

effectively alleviate many issues such as occlusion and mo-
tion blurs. There are tremendous methods that are designed
to capture such temporal relations in different ways.

Temporal Weighted. One major stream [9, 34, 46, 49]
adopts temporal attention to determine the importance of
each frame, aiming to drop the low-quality frames. But
these methods ignore the dependencies between frames,
which hinders their further improvements.

Mutual Enhancement. Mainstream state-of-the-arts
[23,41,42] adopt self-attention or GCNs to model tempo-
ral relations. For example, Liu et al. [26] use non-local
block [38] to capture long-range dependencies and make
each feature perceive the entire spatial-temporal space. All
these methods use temporal relations for mutual enhance-
ment. Different form these methods, we leverage the tem-
poral relations from the perspective of difference amplifica-
tion, and thus our method obtains more comprehensive and
informative representations.

Others. Other methods exploit the temporal relations in
many aspects including optical flow [3,27], RNNs [30,43],
3D CNNs [10,24], recovery [ 18], and coherence constrain
[4]. However, they all suffer different drawbacks such as
non-global temporal modeling [10,24], high computational
cost [3, 18,27], high-level modeling [4,30,43]

The recent work that is most similar to ours is TSE [17],
which erases the salient features in later frames, albeit with
several key fundamental differences. First, transition of
attention regions in our method is salient-to-broad imple-
mented by suppression, while TSE is one-to-another by
erasing. So TSE drops the salient features in the later frames
and may deteriorate the representation capability of the final
embeddings. Second, the erasing region of TSE is fixed and
partial, while our method can flexibly determine the sup-
pressed region.

Moreover, capturing complete and richer visual patterns
with image erasing is widely explored, especially in weakly
supervised object localization [29, 40]. For example, be-
sides the traditional localization branch, EIL [29] uses an-
other branch that inputs the erased feature maps, and cap-
tures less discriminative regions. However, these meth-
ods are all erasing-based rather than suppression-based, i.e.,
one-to-another, and cannot model the interactions of the
entire object. Moreover, compared with video data, these
methods need to maintain another stream as EIL and thus
incur more memory requirement.

3. Methodology

In this section, we will first describe SBM that makes the
attention regions transit from salient towards broader ones.
Then, we will elaborate IDM, which encourages informa-
tion flow between consecutive frames. Finally, we will give
an overview of our SINet, which is the hierarchical archi-
tecture of SBM and IDM.
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Figure 2. The detailed architecture of the Salient-to-Broad Module. For better visualization, we only describe the case when the video
contains three frames. In this case, SBM takes middle-level feature maps Xo,1,2 as input.

3.1. Salient-to-Broad Module

In this paper, we propose SBM to realize the salient-to-
broad transition of attention regions for consecutive frames.
The transition is achieved with the difference amplification
in the temporal dimension, i.e., suppressing the salient fea-
tures that have been activated before. As illustrated in Fig-
ure 2, when passing through SBM, the later frames concen-
trate on broader regions. As a result, their frame-level em-
beddings will be more complete and informative, leading to
powerful characteristics of pedestrians.

Notably, the additional information in the broad regions
can supplement the salient ones. We argue that the salient
features contain the most discriminative and unusual char-
acteristics of pedestrians, which are useful to distinguish
from most other identities. However, for pedestrians who
also have such characteristics, the broad features are more
helpful as they cover the entire foreground information.
Besides, since the salient features will be activated in all
frames, they still dominate discriminations while the broad
features assist. Examples are illustrated in Figure 6 and 7.

The details of our SBM are elaborated as follows.

Input. The input of SBM has two terms: feature maps
and split position. For feature maps, SBM adopts middle-
level feature maps that have both semantic and detailed in-
formation. Specifically, givenaclipI = {[i}f;é containing
t frames, we use a backbone model to obtain the middle-
lever feature maps {Xl}f;é Here X; € R®*"*w  and
¢, h, w are the channel size, height, and width, respectively.

As for split position s, it determines the split of former
frames and latter frames, i.e., which frames need to be sup-
pressed. In detail, SBM will suppress the salient features
in later frames X . ¢—1, which have been captured in ear-
lier frames X .. s—1. Figure 2 shows the pipeline of SBM,
where t = 3 and s = 1 for conciseness.

Channel Attention Layer (CAL). The first procedure
of SBM is CAL, which aims to filter out misguided and
meaningless channels. Due to the zero-padding of models,
some channels may focus on the periphery and tend to select
the background as salient features. This may misguide the
later suppression since the salient pedestrians are usually in
the center of the input frames. To this end, we generate the
channel weights as:

w. _{ 1. GAP(X) < GAP (X0 paa) "
70 0, otherwise

where X € ReXt*h*w jg the concatenation of {Xi}z;é, and
Xopad € RO (h=2)x(w=2) i5 the subarea of X without
the first and last rows/columns. GAP is global average pool-
ing. Here, w.;, € R€ is an estimation of the centrality of
each channel, i.e., it will give 1 to channels that concern on
the central foreground and O to others.

CAL also adopts a standard Squeeze-and-Excitation
(SE) block [19] to selectively emphasize informative chan-
nels. The result is a ¢ dimension vector wg, € (0, 1), indi-
cating the weight of each channel.

By applying w.;, and wg. to the input feature maps,
CAL will return more centralized and meaningful feature
maps. For clearness, we rename the returned feature maps
as {P;}:~) and {Q; }!_! based on the split position s.

Pi:Wctr'Wse'Xi7 iZO,...,S—l

2
S, ..t —1. @

Qi = Wetr * Wge * Xi7 {

Kernel Generation Module (KGM). After CAL, we
need to extract the salient features of the former frames
{P; f;ol. The extracted features will be used to suppress
the salient features in the subsequent suppression proce-
dure. Inspired by [31], SBM leverages KGM to generate
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a k x k (k: kernel size) convolution kernel in order to in-
clude as many salient features of {P;}_; as possible.

The overall architecture of KGM is shown in Figure 2.
Specifically, the input tensor P € REXs*XhXw of KGM
is the concatenation of {P;}-!. Then KGM adopts a
multi-head spatial attention mechanism to weigh the im-
portance of each position, and returns k2 attention maps
A, € Rk’2><s><h><w.

To further increase the diversity and information richness
of attention maps, KGM needs to avoid the collapse [25] of
A, and make these k% maps concentrate on different re-
gions. To this end, we adopt L1-Normalization sequentially
on the k2 dimension and the s x h x w dimension. After that,
KGM will produce the k& x k kernels K € Rexk? by ma-
trix multiplication of the feature maps and attention maps:
K = PAZ?. Here, P and A, are temporarily reshaped to

ReXu and Rk xu (u = s X h x w) for conciseness.

Suppress Operation (SO). In this step, SBM leverages
the above generated kernel to suppress the salient regions
in {Q; f;i which have been activated in P. Then the later
frames can pay attention to broader regions and obtain more
complete representations.

In particular, a convolution operation is performed on the
input feature map Q; and the reshaped kernel K with size
cxkxk:

R; = softmax (Q; xK), i=s,....,t — 1. 3)

Here, * is convolution operation. Softmax operation is con-
ducted on h x w dimension for normalization. The output
{R; f;i € R " is an affinity matrix, which presents high
values for features captured in previous frames P. Further-
more, to suppress the salient features with high similarities
in R,;, we inverse the affinity matrix. SO achieves this by a
dedicated transformation, which transforms the affinity map
R; to the suppression matrix S;:

Sizeﬁ{ﬁr{i_l]*, 1=35,...

,t—1. 4
Here, [a] - = min{a,0}. The output matrix S; € R">w
lies between 0 and 1. [ is a hyperparameter to control the
variance of the transformed distribution. A higher 3 repre-
sents heavier suppression, i.e., giving lower weights to the
salient features.

Then, SO multiplies S; with X; to generate the final sup-
pressed feature maps: Y; = S; - X;. In this process, the
salient region will be suppressed by the multiplication with
low weights in S;. Notably, convolution in Equation 3 actu-
ally measures the patch-wise affinities instead of point-wise
ones. So the results S; and R; will be more continuous and
smooth. Therefore, the multiplication will not incur the dis-
continuities in Y;, which may complicate the local relation
modeling for later convolutions.

Overall, for the later frames, SBM decreases the
saliency/attention of the salient region, and thus focuses on
a broader region. Therefore, the attention regions of con-
secutive frames transit from salient to broader ones.

Cross Propagation Module (CPM). Salient features
that are suppressed (or dropped) in SO are harmful for the
later frames because they hinder the mining of less salient
regions. However, for the entire video, the lost salient infor-
mation is still ID-related and thus helpful. So, we use CPM
to preserve them by transiting them to the unsuppressed
frames {X;}$~ (i.e., the red dashed lines in Figure 2). Hy-
perparameter « (0.1 by default) will control the transition’s
degree. The procedure is formulated as:

t—1
Zj :XZ+QZGAP(XJ —Yj)7i20,...,5—1. (5)

Jj=s

Meanwhile, the information loss may also deteriorate the
representations of frames {X; f;; since the most salient
features are suppressed. To increase representation capabil-
ity, we also encourage the information flow from {X;}{_;
to {Y;}IZ! (the green dashed lines in Figure 2) as:

s—1
Zi=Yi+a) GAPXX;), i=s,..t—1 (6)
j=0

3.2. Integration and Distribution Module (IDM)

We also propose IDM to assist SBM. SBM is dedicated
to enhancing the representational ability of video-level fea-
tures. But the performance of SBM also depends heavily on
the information richness of each frame’s attention region.
To be specific, the more informative these regions of every
frame are, the more powerful the final video-level represen-
tations in SBM will be.

To enrich frame-level representations, recent methods
[26,41,44] mainly adopt self-attention mechanisms, which
enrich a position as a similarity-based aggregation with fea-
tures of all positions. However, as pointed out in [38], the
non-local behavior is much more crucial than the similarity-
based aggregation strategy.

Inspired by this, IDM adopts an integration and distribu-
tion structure to approximate input-agnostic affinity maps
and thus maintains the non-local behavior. In this way, IDM
enables the message to pass across all frames and thus en-
riches the representations of frames.

Figure 3 gives an overview of our IDM. In detail, IDM
will integrate key features/channels and then distribute them
via a fixed mode. We firstly reshape the middle-level feature
maps X € ROXXhXW (o B € REX™ (m, =t x h x w). Then
a series of linear transformations will be applied on F to
enable the information flow between positions. Formally,

F' = GPG'F (L'LP +1) (7)
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Figure 3. The framework of IDM. Matrix multiplication in thick
arrow transforms the feature maps. The width of thin arrow indi-
cates the aggregation weight.

where G and L represent the linear transformation per-
formed on the ¢ (channel) and m (spatial-temporal) dimen-
sions, respectively. Superscripts | and D denote the integra-
tion and distribution, respectively. In detail, GP ¢ RCXC/,
G' € R, L € R™*™ LP € R™*™ and m/ < m,
¢’ < cin general. Identity matrix I € R™*™ denotes resid-
ual connection. The calculation order is shown in Figure 3,
i.e., the integration and distribution on m dimension are in
the middle of the ¢ dimension. The overall procedure of
IDM is like an encoder-decoder, where integration oper-
ation extracts the key features, and distribution operation
tries to recover the original feature maps with these key fea-
tures. For easy combination with the backbone, the output
of IDM has a residual connection [11]: Foyipys = F/ + F.

IDM can also be reviewed from the perspective of “affin-
ity map”. In fact, the matrix L'LP in Equation 7 is a low-
rank decomposition of L € R™*™  an affinity map mea-
suring the similarities of any two positions. Thus, L re-
alizes the message passing between any two positions in
the spatial-temporal dimension, so dose G for the channel
dimension. In this way, IDM establishes the connections
of arbitrary two positions in different frames or even dif-
ferent channels, and incurs powerful mutual enhancement
between frames.

Our IDM shares several desirable advantages compared
with previous self-attention methods [26, 38, 44]. First, the
affinity map L (or G) is learnable. Therefore, IDM can au-
tomatically discover useful patterns from the training dis-
tribution, such as the foreground and silhouette. Second,
L (or G) endows our IDM with the ability to subtract fea-
tures (not only weighted addition) and increases the flexi-
bility in composing features [35]. Third, IDM is more effi-
cient as it optimizes the order of matrix chain multiplication
compared with [38]. To be specific, the complexity reduces
from O(m?2c’) to O(mm/c’).

IDM is reciprocal to SBM as they enhance the informa-
tion richness of frames and diversities between frames, re-
spectively. Notably, the salient-to-broad transition of SBM
also enriches the information for later frames by broaden-
ing attention regions. However, the information gains are
caused by the enlargement of the attention region, while the
gains of IDM are incurred by the homogeneous message

il —>
A=
4=
I

7" Video input
Figure 4. The architecture of our SINet. TAP denotes temporal
average pooling. In SBM, the green and yellow blocks indicate
the front and later frames. The later (yellow) frames will be sup-
pressed with the guidance of the front (green) frames.

Video-level features

passing across frames without size variation.

Relations to GCNet. GCNet [2] with avg-pooling can
be regarded as a special case of our IDM. Formally, GC-
Net replaces the (L'LP + I) in Equation 7 with all 1°s ma-
trix. Therefore, IDM has more complex modeling ability
and better generality.

3.3. SINet for Video Person Re-ID

Network. Figure 4 shows the overview of our proposed
SINet, which is a hierarchical combination of SBM and
IDM. The backbone of SINet is ResNet-50 [ 1 1] pre-trained
on ImageNet [6]. ResNet-50 has four layers and each layer
is composed of several residual blocks. We insert two
IDMs into the second layer after the middle and last resid-
ual blocks, respectively. Three SBMs are plugged evenly
into the third layer and form a hierarchical structure to re-
alize the salient-to-broad transition. In detail, the first SBM
uses the first frame to suppress the remaining frames, while
the second (third) SBM uses the first two (three) frames to
extract salient features and performs suppression.

Finally, a temporal average pooling is used to gener-
ate the final video-level embeddings, which will be used
in training or retrieval. We also adopt a batch normaliza-
tion [20] to refine the embeddings as in [17].

Objective Function. Same as [47], we employ Cross-
Entropy Loss L..,¢ and Batch Hard Triplet Loss [13] Ly
to jointly guide the training procedure. Moreover, to main-
tain the diversities between frames, inspired by the [15,21],
we leverage mutual information loss £,,,; to minimize the
mutual information of different frames’ embeddings. More
details about L,,,; are in Supplementary Material.

The overall objective function of our SINet is a combi-
nation of the above three terms:

Eall = ﬁcent + )\lﬁtri + )\2£m2 (8)

where A\; and A, are hyperparameters to control the influ-
ence of each loss function.

4. Experiments
4.1. Datasets and Evaluation Metrics

We perform comprehensive empirical studies on mul-
tiple video re-id datasets, i.e., MARS [48], LS-VID [23],
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Table 1. Performance (%) comparison with state-of-the-arts on MARS, LS-VID, iLiDS-VID, and PRID-2011 datasets. We separate these
methods into several categories based on their utilizations of temporal relation. TW means Temporal Weighting, 3D means 3D CNNs, ME

means Mutual Enhancement, and DA means Difference Amplification.

Methods MARS LS-VID iLiDS-VID | PRID-2011
mAP  rank-1 | mAP  rank-1 rank-1 rank-1
SeeForest [49] CVPR 17 50.7 70.6 - - 55.2 79.4
™ Snippet [3] CVPR 18 | 76.1 86.3 - - 85.4 93.0
STA [9] AAAI19 | 80.8 86.3 - - - -
M3D [24] AAAI 19 74.1 84.4 40.1 57.7 74.0 94.4
3D AP3D [10] ECCV 20 | 85.1 90.1 73.2 84.5 88.7 -
STRF [1] ICCV 21 86.1 90.3 - - 89.3 -
GLTR [23] ICCV 19 | 785 87.0 443 63.1 86.0 95.5
ME STGCN [42] CVPR20 | 83.7 90.0 - - - -
MGH [41] CVPR20 | 85.8 90.0 - - 85.6 94.8
MG-RAFA [44] CVPR20 | 859 88.8 - - 88.6 95.9
GRL [28] CVPR 21 84.8 91.0 - - 90.4 96.2
DenselL [12] ICCV 21 | 87.0 90.8 - - 92.0 -
VRSTC [18] CVPR 19 82.3 88.5 - - 83.4 -
Others AFA [4] ECCV 20 | 829 90.2 - - 88.5 -
TCLNet [17] ECCV 20 | 85.1 89.8 70.3 81.5 86.6 -
BiCnet-TKS [16] | CVPR 21 86.0 90.2 75.1 84.6 - -
STMN [7] ICCV 21 | 845 90.5 69.2 82.1 91.5 -
DA SINet(ours) - | 862 91.0 79.6 87.4 92.5 96.5
iLiDS-VID [37], and PRID-2011 [14]. Similar to existing on MARS. This proves the superiority of mutual enhance-

works [44,45], we adopt the Cumulated Matching Charac-
teristics (CMC) curve and mean Average Precision (mAP)
as evaluation metrics.

4.2. Implementation Details

Sparse temporal sampling strategy [36] is used to gen-
erate a clip containing 4 frames. Frames are resized to
256x128. Every mini-batch has 32 clips corresponding to 8
identities (each identity has 4 clips). We use the Adam op-
timizer [22] with weight decay 0.0005. The initial learning
rate is set to 0.0003 and decays by 0.1 at every 40 epochs.
The training stage ends at the 160-th epoch. We also use
random flipping and random erasing with a probability 0.5
for data augmentation. In SBM, kernel size k is set to 3, and
[ is set to 5 in default. A\; and A5 in Equation 8 are set to 1
and 0.01, respectively. In the test stage, we use all frames in
units of 4-frame clips and obtain the final video feature by
averaging all those clip-level representations. Cosine simi-
larity is used for retrieval.

4.3. Comparison with State-of-the-art Methods

Table 1 shows comparison results of our method and
state-of-the-art methods on four prevalent datasets. Re-
sults demonstrate the superiority of our method over exist-
ing methods. Furthermore, we make a detailed comparing
analysis and draw several conclusions.

First, our method is obviously stronger than TW-based
methods [9,34]: 4.7% rank-1 and 5.4% mAP improvement

ment and difference amplification over temporal weight-
ing in the utilization of temporal relations. In other words,
merely using temporal cues to re-weight each frame or re-
gion does not make full use of rich temporal information.

Second, our SINet also suppresses 3D-based methods
[1,10,24]. The superiority may be caused by the fact that
both SBM and IDM in SINet can utilize the rich temporal
relations between any two frames’ feature maps. However,
AP3D can only model local temporal relations and M3D
performs enrichment in the final frame-level embeddings.

Third, SINet achieves superior or comparable perfor-
mance with those methods based on ME [12, 23, 28, 41,

,44]. In fact, our SINet can enhance both video-level
and frame-level representations with SBM and IDM, re-
spectively. This complementarity incurs more powerful and
informative video features. Our SINet performs slightly
worse than DensellL [12] on mAP. We attribute the inferior-
ity to that DenselL selects 8 frames for each video sequence
in training, while we use only 4 frames due to the limitation
of GPU memory.

Fourth, SINet also exceeds other methods, including
recover-based [18], coherent-based [4] and erase-based
[17]. Notably, TCLNet [!7] can also be categorized in
DA, as it aims to focus on the divergent attention regions
in the later frames. However, TCLNet is inferior to our
SINet since it erases the salient features in the later frames.
This erasing operation deteriorates the representation ca-
pability of the final frames’ embeddings. Conversely, our
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Table 2. Performance (%) comparison for whether SBM or IDM
is added to the baseline on MARS and LS-VID.

MARS LS-VID
Methods mAP rank-1 mAP rank-1
base. 83.2 88.6 73.3 82.8

+SBM 85.7 90.2 77.1 85.1
+IDM 85.9 90.5 78.0 86.2
SINet 86.2 91.0 79.6 874

SINet merely suppresses the salient features and maintains
the completeness of representations.

In summary, SINet outperforms or is on a par with all
those methods on four video re-id datasets, showing the
generalization capability of our SINet on different scenes
in terms of dataset scale, tracklet length, and resolution.

4.4. Ablation Study

For fair comparison, we build the baseline as the de-
graded SINet without SBM and IDM. We denote baseline
as ‘base.” for simplification.

Effectiveness of SBM and IDM. Table 2 illustrates the
effectiveness of SBM and IDM. SBM brings 1.6% rank-1
and 2.5% mAP gains over the strong baseline on MARS.
This shows the effectiveness of the salient-to-broad transi-
tion. IDM achieves comparable or even better improvement
than SBM. The improvement proves that it is helpful to
encourage message passing across arbitrary two positions.
Our SINet, the combination of SBM and IDM, can further
boost the rank-1 from 90.5% to 91.0% on MARS. The result
validates the complementarity between SBM and IDM.

Component Analysis of SBM. Table 3 shows the effec-
tiveness of the components in SBM. Specifically, both CAL
and CPM have indispensible importance for the overall per-
formance. This demonstrates the usefulness of channel se-
lection in CAL and information propagation in CPM.

To evaluate the organization of SBMs, we insert three
SBMs into the same position. As shown in Table 3, the
result of ‘Same Pos.” is clearly inferior to our SBM. We
attribute the inferiority to that the hierarchical organization
can leverage the semantic information at different levels.

We also evaluate the influence of kernel size k£ in KGM.
As shown in Figure 5(a), in the beginning, the performance
increased as the kernel size becomes larger, and reaches the
peak when & = 3. We argue that a large kernel is more ro-
bust to filter the striking background. However, the perfor-
mance decreases when £ > 3. Actually, too large k£ may de-
grade performance because the corresponding kernel tends
to smooth the response of salient and non-salient features,
thus misguiding the selection of salient regions.

Component Analysis of IDM. Here we validate the in-
fluence of different numbers of IDMs. As shown in Table 3,
adding more IDMs can improve performance from 89.8% to

Influence of Kernel Size k in SBM Influence of Reduction in IDM

mrank-1 mAP W rank-1 mAP

4 8 16

Figure 5. Results (%) on MARS illustrating the influences of dif-
ferent hyperparameters. (a) influence of kernel size k£ in SBM; (b)
influence of reduction in IDM.
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Table 3. Component analysis (%) of our SINet on MARS.

Methods mAP  rank-1
base. 83.2 88.6
base. + Non-local [38] 85.1 89.7
base. + Non-local (1) 85.1 90.0
base. + Non-local (inverse) 85.0 89.7
base. + GC block [2] 85.0 89.8
base. + SBM w/o CAL 85.1 89.9
base. + SBM w/o CPM 85.4 90.0
base. + SBM (Same Pos.) 85.3 89.5
base. + SBM 85.7 90.2
base. + 1 IDM 85.7 89.8
base. + 2 IDM (Default) 85.8 90.5
base. + 3 IDM 85.8 90.5
SINet (base. + SBM + IDM) | 86.2 91.0

90.5% in rank-1 accuracy. We believe that multiple IDMs
can also conduct multi-hop communication as in [38].

The relation between ¢ (m) and ¢’ (m) is a vital factor to
influence the performance of IDM. Figure 5(b) gives several
comparisons, where numbers in x-axis denote the reduction
¢/c and m/m’. We can observe that ‘4’ achieves the best
accuracy on both rank-1 and mAP. In fact, a large reduction
will decrease the information richness after the integration
operation, and a small reduction tends to overfit the training
set as it has more parameters.

4.5. Comparison with Related Methods

In this section, we will compare our method with Non-
Local(NL) block [38] and GC block [2]. We use the same
configurations and compare them in three aspects:

Performance. Table 3 gives the performance compar-
isons of the above three methods. As we can see, SBM
outperforms the NL block, validating the superiority of dif-
ference amplification over traditional mutual enhancement
in utilizing temporal relations.

Table 3 also shows the performance of NL with several
similarity-based aggregation strategies. Whether we inverse
the affine matrix or fill the matrix with 1, the performances
are similar, i.e., the aggregation strategies are useless and
dispensable. This further shows the superiority and ratio-
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Video Tracklet

Non-Local Block

Figure 6. Attention regions of Non-Local and our SBM.

nality of our input-agnostic IDM.

GC block also achieves a favorable result without simi-
larity calculation but is still inferior to our IDM. This veri-
fies the effectiveness of IDM in using a more sophisticated
and learnable matrix to model spatial-temporal relations.

Computational Complexity. Our IDM increases 1.081
GFlops computation cost over baseline, while NL incurs
2.216 GFlops. The cost is reduced by half due to the op-
timization of matrix chain multiplication. Notably, SBM
increases negligible cost, i.e., 0.014 GFlops, that mainly
caused by the convolution and SE block.

Visualization. In Figure 6, we use CAM to visualize the
attention regions of NL and SBM. Clearly, NL is prone to
focus on some partial and identical regions across different
frames, such as the upper clothes. Although these local fea-
tures are usually salient, the overlook of other potential cues
leads to limited and one-sided representations of pedestri-
ans. Conversely, the attention regions of our SBM transit
from salient towards broader ones. While the front frames
have activated some salient regions as in NL, SBM will en-
courage the later frames to capture broader areas and mine
other helpful cues. Overall, our SBM covers nearly the en-
tire foreground, resulting in more complete and distinguish-
able embeddings. Notably, with our delicate SBM, the later
frames always activate the foreground and will not intro-
duce background noise. Meanwhile, the salient features are
still salient as they are captured in all frames.

4.6. Visualization for Retrieval Results

To better understand the necessity of broad attention re-
gions, Figure 7 shows some retrieval results on MARS. As
can be observed, it is hard for the baseline to distinguish
pedestrians that share similar salient regions, e.g., the red
shirt of the first person and the white shirt of the other two.
In these cases, overdependence of salient regions may mis-
guide the retrieval procedure.

Conversely, the salient-to-broad transition of SINet en-

Base.

SINet

Base.

SINet

Base.

SINet

Query Retrieval results (rank-1 to rank-3)

Figure 7. Visualization of retrieval results for the baseline and our
SINet on MARS. The green and red backgrounds represent the
correct and incorrect matches, respectively.

larges the attention regions. So, our SINet can success-
fully identify these pedestrians via other lesser salient but
broader cues, e.g., the existence of black socks, the dif-
ference between backpacks/lower clothes for three pedes-
trians, respectively. The incorporation of both salient and
broad cues leads to diverse and integral characteristics of
the given pedestrian and can rectify the false decisions made
by only salient regions.

5. Conclusion

This paper aims to pursue a better representational capa-
bility for video person re-id. We present SBM to enlarge
the attention regions for consecutive frames gradually. To
further improve our SBM, we introduce IDM to consoli-
date frame-level representations. IDM and SBM are com-
plementary and can be combined to form SINet. Extensive
experiments show the effectiveness of our method.

Broader impacts. The proposed method boosts the perfor-
mance of video re-id, making it more practicable in security,
autonomous driving, and other security issues. Meanwhile,
the higher accuracy and more used security cameras may
raise the risk of privacy leaking and other security issues,
which may put everyone under monitoring.
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