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Abstract

Pansharpening aims to fuse a registered high-resolution
panchromatic image (PAN) with a low-resolution hyper-
spectral image (LR-HSI) to generate an enhanced HSI with
high spectral and spatial resolution. Existing pansharp-
ening approaches neglect using an attention mechanism
to transfer HR texture features from PAN to LR-HSI fea-
tures, resulting in spatial and spectral distortions. In this
paper, we present a novel attention mechanism for pan-
sharpening called HyperTransformer, in which features of
LR-HSI and PAN are formulated as queries and keys in
a transformer, respectively. HyperTransformer consists of
three main modules, namely two separate feature extrac-
tors for PAN and HSI, a multi-head feature soft-attention
module, and a spatial-spectral feature fusion module. Such
a network improves both spatial and spectral quality mea-
sures of the pansharpened HSI by learning cross-feature
space dependencies and long-range details of PAN and
LR-HSI. Furthermore, HyperTransformer can be utilized
across multiple spatial scales at the backbone for obtain-
ing improved performance. Extensive experiments con-
ducted on three widely used datasets demonstrate that Hy-
perTransformer achieves significant improvement over the
state-of-the-art methods on both spatial and spectral qual-
ity measures. Implementation code and pre-trained weights
can be accessed at https://github.com/wgcban/
HyperTransformer.

1. Introduction
Hyperspectral (HS) pansharpening aims to spatially en-

hance Low-Resolution Hyperspectral Images (LR-HSIs) by
transferring textural (spatial) details from better spatial res-
olution panchromatic (PAN) images, while preserving the
spectral characteristics of LR-HSIs [28, 48]. The recent
advancements in HS pansharpening greatly improve the
amount of spectral and textural details in HSIs, which is in-
deed a crucial pre-processing for many remote sensing ap-

Figure 1: How our HyperTransformer differs from exist-
ing pansharpening architectures. Traditional pansharpening
methods simply concatenate PAN (p) and LR-HSI (y) in (a)
image domain [58, 22] or (b) feature domain [14, 41, 45]
to learn the mapping function from LR-HSI to pansharp-
ened HSI (x). In contrast, (c) our HyperTransformer uti-
lizes feature representations of LR-HSI, PAN↓↑, and PAN
as Queries (Q), Keys (K), and Values (V) in an attention
mechanism to transfer most relevant HR textural features to
spectral features of LR-HSI from a backbone network. The
output of HyperTransformer is an enhanced version of the
feature representation of y. ↑ and ↓ denote bicubic upsam-
pling and down-sampling, respectively.

plications to accurately and rapidly identify the underlying
phenomena that would otherwise be difficult to see from
LR-HSIs. HS pansharpening can be beneficial in a broad
range of remote sensing tasks such as unmixing [8], change
detection [37, 5], object recognition [31], scene interpreta-
tion [21], and classification [26, 6].

The early research on HS pansharpening employed com-
ponent substitution (CS) [10, 17, 19], multi-resolution anal-
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ysis (MRA) [29, 9], Bayesian [4, 15], and variational
[32, 12, 50] methods to transform spatial details from PAN
image to LR-HSI. However, these traditional pansharpen-
ing approaches often result in spatial and spectral distor-
tions due to improper modeling of prior knowledge, inac-
cessibility of sensor characteristics, the mismatch between
prior assumptions with the problem [57] (such as linear
spectral mixture assumption [54] and the sparsity assump-
tion [60]), and reliance on hand-crafted features such as dic-
tionary [60, 61] with limited representation ability.

Recently, deep convolutional neural networks (Con-
vNets) have also been introduced for HS pansharpening
due to their excellent ability to learn proper image features.
However, state-of-the-art (SOTA) approaches often adopt
straightforward ways to transfer textural and spectral details
from PAN image to LR-HSI. For example, Lee et al. [23],
Zheng et al. [58] and Bandara et al. [7] adopted a network
shown in Figure 1-(a) as the backbone to learn the mapping
function from the concatenation of up-sampled LR-HSI and
PAN to the pansharpened HSI. However, we argue that the
concatenation of PAN image along with hundreds of LR
spectral bands makes textural and spectral feature fusion
difficult, and inefficient. In addition, it could result in high
spectral and spatial distortions in pansharpened HSI due to
the inappropriate mixing of textural-spectral details. In con-
trast to the image-domain concatenation, researchers have
also investigated feature-domain concatenation of PAN and
LR-HSI as shown in Figure 1-(b). In this approach, two sep-
arate ConvNets are utilized to extract HR textural patterns
from PAN, and spectral properties from LR-HSI [41, 14].
However, still the mixing process of textural and spectral
details is just the addition without any appropriate guid-
ance/attention over features. We argue that the above ap-
proaches do not effectively utilize the cross-feature space
dependency between LR-HSI and PAN, and the long-range
details of PAN during the textural-spectral mixing process.
Instead, they completely rely upon the succeeding convo-
lutional operations to propagate relevant textural-spectral
features through the network. Although the convolution
operation with sufficient depth is able to fuse the textural-
spectral features appropriately to some extent, it is not in-
tended to adjust each pixel value based on global (long-
range) spectral-spatial details of the feature maps, but to
adjust values of the small spatial regions together by em-
ploying the convolution kernel, which is not accurate and
appropriate specially in HS pansharpening.

Motivated by a recent work on image super-
resolution [47], we propose a novel textural-spectral
feature fusion transformer called HyperTransformer for HS
pansharpening that addresses the aforementioned issues
of conventional pansharpening approaches as depicted in
Figure 1-(c). In contrast to conventional pansharpening
approaches, our HyperTransformer utilizes an attention

mechanism to extract cross-feature space dependency
between PAN and LR-HSI features, and finds texturally
advanced and more spectrally similar features for LR-HSI
before fusion, which greatly helps to obtain pansharpened
HSI with simultaneously high spectral and spatial qual-
ities. Formally, our HyperTransformer consists of four
interconnected modules, namely two feature extraction
modules for PAN and LR-HSI called FE-PAN and FE-HSI,
the attention mechanism, and textural-spectral feature
fusion module (TSFF). Our HyperTransformer begins by
transforming PAN and LR-HSI to their respective feature
space by employing FE-PAN and FE-HSI, respectively.
We then utilize LR-HSI, PAN↓↑, and PAN features as
queries (Q), keys (K), and values (V) in an attention
mechanism to compute texturally advanced and spectrally
similar feature representations for LR-HSI features. The
computed texturally advanced feature maps are then mixed
with LR-HSI features from a backbone network which
constitutes the pansharpened HSI. Furthermore, to obtain
visually appealing pansharpened HSIs, we also introduce
two new loss terms to the HS pansharpening, namely
perceptual loss and transfer-perceptual loss in addition to
the widely adopted L1 loss. In summary, this paper makes
the following contributions:

• We propose a novel transformer network called Hy-
perTransformer for HS pansharpening which achieves
significant improvements over SOTA approaches. To
the best of our knowledge, we are one of the first to
introduce fusion transformer architecture for HS pan-
sharpening.

• We propose a novel multi-scale feature fusion strategy
for HS pansharpening which enables our network to
effectively capture multi-scale long-range details and
cross-feature space dependencies of PAN and LR-HSI
by employing HyperTransformers at different scales of
the backbone network.

• We also introduce two novel loss functions for HS pan-
sharpening, namely synthesized perceptual loss and
transfer perceptual loss which enables our Hyper-
Transformer to learn more powerful feature represen-
tations of PAN and LR-HSI.

2. Related Work
Classical approaches. Classical pansharpening ap-
proaches can be divided into four categories: component
substitution (CS) [10, 17, 19], multi-resolution analysis
(MRA) [29, 9], hybrid [25], and Bayesian methods [4, 15].
CS-based methods first decompose LR-HSI into spectral
and spatial components. Subsequently, the spatial compo-
nent is substituted with the PAN image and transformed
back to the original space by employing the inverse
transformation. The widely employed algorithms such
as Gram–Schmidt (GS) [3], GS-adaptive (GSA)[20], and
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principal component analysis (PCA) [18, 39] are examples
of CS. The MRA-based pansharpening methods inject
spatial features to LR-HSI by employing a spatial filter.
The smoothing filter-based intensity modulation (SFIM)
[27], MTF-GLP (MG) [1], MTF-GLP with high-pass
modulation (MGH) [2] are examples of MRA. Considering
the limitations of the CS and MRA, hybrid methods have
been proposed, such as guided filter PCA (GFPCA) [25].
Bayesian methods formulate the fusion problem in a
Bayesian inference framework. Examples of these include
Bayesian Fusion (BF) [43], sparse BF (BSF) [42], and
coupled non-negative matrix factorization (CNMF).
ConvNet-based approaches. ConvNet-based pansharpen-
ing approaches have recently shown significant progress in
pansharpening due to their strong capability to learn high-
level features from input data. Among those methods, Masi
et al. [30] are the first to present a three-layer ConvNet ar-
chitecture taking the up-sampled LR-HSI staked with PAN
as input. Inspired by the wide adaptation of ResNet [13]
in image super-resolution tasks, a deep residual pansharp-
ening network (DRPNN) was proposed in [44] to learn the
residual image between reference HSI and up-sampled HSI.
Motivated by the 3-D characteristics of HSI data, Palsson et
al. [33] proposed a 3d-ConvNet which has shown promis-
ing results when LR-HSI is corrupted by additive noise.
Later, Dian et al. [11] proposed a deep pansharpening ap-
proach called DHSIS, which integrates priors learned by a
ConvNet into the fusion of LR-HSI and PAN features. In
order to improve the spectral prediction capability of HS
pansharpening networks, two spectrally predictive ConvNet
models called HyperPNN1 and HyperPNN2 were designed
in [14]. More recently, attention mechanisms [58, 51, 59]
(i.e., spectral and spatial attention) have been introduced to
HS pansharpening to capture long-range details present in
PAN and LR-HSI. In [58] (DHP-DARN), spectral and spa-
tial attention residual blocks are utilized to map the residual
image between the reference HR-HSI and the upsampled
HSI, and has achieved better fusion performance compared
to other SOTA methods. However, none of these attention-
based methods mentioned above have explored attention for
textural-spectral feature fusion process of pansharpening by
utilizing feature representations of LR-HSI, PAN↓↑, and
PAN as queries, keys, and values - which we will explore
in this study.

3. Methodology
The overall structure of our HyperTransformer is shown

in Figure 2, where p, p ↓↑, and y ↑ represent the PAN
image, the sequentially 4× down-sampled and 4× up-
sampled PAN image, and 4× upsampled LR-HSI, respec-
tively. We use bicubic interpolation for upsampling/down-
sampling due to its experimentally proven less spatial
and spectral distortions for HSIs [28]. The sequential
down-sampling and up-sampling operations make p ↓↑ to

Figure 2: Overall structure of the proposed HyperTrans-
former for textural-spectral feature fusion.

domain-consistent with y ↑: which is essential for smooth
and reliable operation of the attention mechanism. Hyper-
Transformer takes p, p ↓↑, y ↑, and the LR-HSI features
(F) produced by the backbone as the inputs, and outputs
texturally advanced and spectrally similar feature represen-
tations of F (denoted as F̃), which will be further used to
generate the pansharpened HSI by the backbone network.
The proposed transformer has four main modules: two sep-
arate feature extractors for PAN and HSIs (FE-PAN and
FE-HSI), a feature attention module, and a textural-spectral
feature fusion module. Next, we will discuss each of the
modules in detail.
3.1. Feature Extractors for PAN and LR-HSI

We design two separate Feature Extractors (FE) to obtain
HR textural and spectral features from PAN and LR-HSI,
respectively. We employ VGG-like network architecture for
the FEs (see Figure 3). The VGG-like design encourages
the learning of precise mutual spectral and textural infor-
mation in the LR-HSI and PAN image. The outputs from
the FEs define the Query (Q), Key (K), and Value (V ) fea-
tures, which are the three basic elements of the attention
mechanism inside the HyperTransformer. Formally, Q, K,
and V are obtained as follows:

Q = fFE-HSI(y ↑), (1)
K = fFE-PAN(p ↓↑), (2)
V = fFE-PAN(p), (3)

where fFE-HSI(·) and fFE-PAN(·) are the parametric represen-
tations of FE-HSI and FE-PAN, respectively.
3.2. HR Texture Transfer through Multi-Head Fea-

ture Soft-Attention (MHFSA)
Feature attention aims to identify spectrally similar and

texturally superior feature representations for LR-HSI fea-
tures, which will be further used to produce pansharpened
HSI by the backbone network. For this purpose, we uti-
lize a multi-head feature soft-attention (MHFSA) mecha-
nism instead of a single-head feature-attention due to exper-
imentally recognized better spatial and spectral properties
of pansharpened HSI. To facilitate MHFSA, we first derive
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a set of N global descriptors for each feature in Q, K, and
V by utilizing N fully-connected layers. Next, we compute
feature soft-attention for each descriptor in parallel. Finally,
we concatenate the output feature descriptors from feature
soft-attention and employ linear layers to convert them back
to the original feature space. The proposed MHFSA mech-
anism greatly assists the network in extracting cross-feature
space dependencies between PAN and LR-HSI and long-
range details of PAN.

Obtaining a set of N global feature descriptors. We
first reshape queries Q ∈ Rfq×w×h, keys K ∈ Rfk×w×h,
and values V ∈ Rfv×w×h into 2D tensors q ∈ Rfq×wh,
k ∈ Rfk×wh, and v ∈ Rfv×wh. Note that we discard the
batch dimension from our notations for simplicity. The fq ,
fk, and fv represent the number of feature maps in Q, K,
and V , and w and h represent the width and height of a
feature map, respectively. Next, we utilize a set of N lin-
ear (fully-connected) layers to transform each feature map
in q, k, and v into a set of N global descriptors (heads) to
facilitate multi-head feature soft-attention. The resulting N
global descriptors for each feature map of q, k, and v rep-
resent 3-D tensors q ∈ Rfq,N,βwh, k ∈ Rfq,N,βwh, and
v ∈ Rfq,N,βwh, where β denotes the dimensionality reduc-
tion ratio. Formally, we can define the above process as:

q(j, i, :) = f i
linear-q(q(j, :)), (4)

k(j, i, :) = f i
linear-k(k(j, :)), (5)

v(j, i, :) = f i
linear-v(v(j, :)), (6)

where f i
linear-q(·), f i

linear-k(·), and f i
linear-v(·) are the paramet-

ric representation of the i-th linear-layer associated with
query, key, and value, q(j, :), k(j, :), and v(j, :) are the 1-D
representation of the j-th feature map of q, k, and v, and
q(j, i, :), k(j, i, :), and v(j, i, :) are the i-th global descrip-
tor of the j-th feature map of q, k, and v, respectively.

Feature Cross-Correlation Embedding (FCCE). We
compute the feature cross-correlation matrices between
query (q) and key (k) for all N descriptors separately, and
represent them in a 3-D matrix C ∈ RN×fq×fk . In or-
der to efficiently compute feature cross-correlation for all
the N descriptors in parallel using matrix multiplication
(i.e., without any “for” loops), we first permute the first
two dimensions (dim 0 and 1) of q, k, and v. The result-
ing permuted matrices are denoted as q′ ∈ RN×fq×βwh,
k′ ∈ RN×fk×βwh, and v′ ∈ RN×fv×βwh. We then com-
pute the feature cross-correlation for N descriptors at once
as follows:
C = MatMul((q′ −mean(q′)), (k′ −mean(k′))T ), (7)

where T denotes the matrix transpose operation, MatMul
denotes the batch matrix multiplication on dim-1 and 2,
and mean(·) denotes the mean value. The rows of cross-
correlation matrix for the j-th descriptor (i.e., C(j, :, :)) tells
us how a given query descriptor (i.e., an LR-HSI feature)

correlates with all the key descriptors. In other words,
it extracts the cross-feature space dependencies between
LR-HSI features and PAN features (note that the queries
and values are the feature representations of LR-HSI and
PAN↓↑, respectively). We then utilize a Softmax layer
along the rows of each correlation matrix in C to get the
row-normalized cross-correlation matrices. Formally, we
can define this process as follows:

C̃ = Softmax(C, dim = 1), (8)
where C̃ contained row normalized (sums to 1) feature
cross-correlation matrices of N descriptors.
Multi-Head Feature Soft-Attention (MHFSA). We
then compute feature soft-attention on the N descriptors at
once using matrix multiplication as follows:

t = MatMul(C̃,v′) (9)
where t ∈ RN,fq,βhw is the output of the MHFSA. Next,
we permute the dimensions of t to its original format
(RN,fq,βhw → Rfq,N,βhw) and apply a linear layer fol-
lowed by reshaping to obtain texturally advanced feature
representation T ∈ Rfq,×h×w from HyperTransformer as
follows:

T ∈ Rft×hw = Linear(t), (10)

T ∈ Rft×h×w ← Reshape(T ), (11)
where ft is the number of features in T . Note that to comply
with matrix multiplications and additions we set fq = fk =
fv = ft.

3.3. Textural-Spectral Feature Fusion (TSFF)
The texturally advanced and spectrally similar feature

representation T of LR-HSI features Q that we obtain
through MHFSA are further concatenated with spectral fea-
tures F from the backbone network as shown in Figure 2.
Next, we employ a 3 × 3 convolution followed by a Batch
Normalization (BN) layer to fuse textural-spectral details
together and generate the residual component required for
the backbone network which will be further used to gen-
erate the pansharpened HSI. Formally, the process inside
TSFF can be define as follows:

F̃ = BatchNorm(Conv(Cat(T, F ))), (12)
where F̃ is the output of HyperTransformer which will be
further used by the backbone network to generate pansharp-
ened HSI, and Cat denotes concatenation operation.

3.4. Multi-Scale Feature Fusion (MSFF)
Unlike the conventional pansharpening methods that

fuse textural features from PAN only at the HR scale, we
inject textural details from our HyperTransformer to the
backbone network at multiple spatial scales, as depicted
in Figure 3. In particular, we inject HR-textural details at
three spatial scales: (1) LR-HSI spatial scale (denoted by
×1 ↑), (2) two times upsample LR-HSI spatial scale (de-
noted by ×2 ↑), and (3) desired HR spatial scale (denoted
by ×4 ↑). Accordingly, we denote the inputs and outputs
of HyperTransformer as X×s↑ in general where X could be
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Figure 3: The complete pansharperning network. Note that we apply HyperTransformer at three scales: ×1 ↑, ×2 ↑, and
×4 ↑. RBs denotes the residual blocks.

Q,K, V, F or F̃ , and s represents the spatial-scale: 1, 2, or
4 (see Figure 3). Injecting HR-textural knowledge at mul-
tiple spatial scales helps the network to capture multi-scale
long-range details and multi-scale cross-feature space de-
pendencies of PAN and LR-HSI, resulting in better spatial
and spectral quality of pansharpened HSI.

3.5. Loss Functions
We utilize a combination of three loss functions to train

our network.

Reconstruction loss. We use L1 loss as the reconstruc-
tion loss:

Lrec =
1

CWH
∥xref − x∥1 , (13)

where xref is the target HR-HSI, x is the predicted HR-HSI,
and (C,H,W ) is the size of the HR-HSI. We utilize L1 loss
which has been demonstrated to perform better compared to
L2 loss for HS pansharpening [28].

VGG perceptual loss. The VGG perceptual loss has been
originally demonstrated useful for RGB super-resolution
tasks to enhance the visual quality of images [16]. The un-
derlying idea of the perceptual loss is to enhance the simi-
larity in the feature space between the predicted image and
the target image. The feature maps of predicted and target
image are obtained from a pre-trained VGG network which
is trained on RGB images. In order to evaluate VGG loss for
HSI images, we first synthesize RGB image for a given HSI
by defining Gaussian approximated spectral response curve
for R, G, and B bands. Next, we evaluate the perceptual loss
as:
Lvgg-per =

1

CiWiHi

∥∥∥f vgg
i (xrgb

ref )− f vgg
i (xrgb)

∥∥∥
2
, (14)

where f vgg
i (·) denotes the i-th layer’s feature map of VGG-

19 [36], and (Ci, Hi,Wi) represents the shape of the feature
map at that layer. xrgb

ref and xrgb are the synthesized RGB im-
ages of the target HSI xref and predicted HSI x, respectively.

Transfer perceptual loss. The transfer perceptual loss
constraints the predicted HSI image x to have similar tex-
ture features to the transferred texture features T from Hy-
perTransformer, which makes our HR texture transfer pro-
cess more effective. The transfer perceptual loss is calcu-
lated as follows:

Lt-per =
1

CsWsHs
∥fFE-HSI(x)

s − T s∥2 , (15)

where T s denotes the transferred feature map at the s-th
spatial scale (i.e., 1, 2, or 4), fFE-HSI(x)

s is the feature map
at the s-th spatial scale from the HSI feature extractor, and
(Cs,Ws, Hs) represents the size of the feature map at that
scale, respectively.

The overall loss function we use to train our network is
defined as follows:
Loverall = λrecLrec + λvgg-perLvgg-per + λt-perLt-per, (16)

where λrec, λvgg-per and λt-per are regularization constants.
We set λrec = 1.0, λvgg-per = 0.1 and λt-per = 0.05.

4. Experiments
4.1. Datasets and Performance Metrics

We use three publicly available and widely used HSI
datasets for our experiments, namely Pavia Center [34],
Botswana [38], and Chikusei [52]. Following the experi-
mental and data preparation procedure outlined in [7] and
[58], we create cubic patches of size 102 × 160 × 160,
145 × 120 × 120, and 128 × 256 × 256 as the reference
HSIs (xref) for the Pavia Center, Botswana, and Chiku-
sei datasets, respectively. We then utilize Wald’s proto-
col [40, 56] to generate PAN and LR-HSI from the refer-
ence HSIs. As part of the Wald’s protocol, we use 8 × 8
Gaussian filter followed by down-sampling operator with
scaling factor of 4 to generate LR-HSI images for all the
three datasets. We randomly select ∼ 80% of cubic patches
to form the training set for each dataset and the rest of the
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cubic patches are used to form the testing set. We use 10-th,
10-th, and 12-th spectral bands as the blue-band, 30-th, 35-
th, and 20-th spectral bands as the green-band, and 60-th,
61-th, and 29-th spectral bands as the red-band when syn-
thesizing the RGB image for Pavia Center, Botswana, and
Chikusei datasets, respectively.

To evaluate the quality of the proposed pansharpen-
ing method, we use different spatial and spectral qual-
ity measures. Following [28, 58, 7], we use Cross-
Correlation (CC), Spectral Angle Mapping (SAM), Root
Mean Square Error (RMSE), Reconstruction Signal to
Noise Ratio (RSNR), Errur Relative Globale Adimension-
nelle Desynthese (ERGAS), and Peak Signal to Noise Ratio
(PSNR). These measures have been widely used in the HSI
processing community and are appropriate for evaluating
fusion in spectral and spatial resolutions.

4.2. Results and Discussion
To demonstrate the effectiveness of HyperTransformer,

we compare our model with both classical and ConvNet-
based SOTA methods. The classical methods include
PCA[18], GFPCA[25], BF[43], BFS[42], SFIM[27],
GS[3], GSA[20], MGH[2], CNMF[55], MG[1], and
HySure[35], among which HySure has achieved the SOTA
performance on CC, SAM, RMSE, ERGAS, and PSNR
in recent years. As for the ConvNet-based methods, Hy-
perPNN [14], PanNet [49], DHP-DARN (abbreviated as
DARN) [58], DIP-HyperKite (abbreviated as HyperKite)
[7], SIPSA [22], and GPPNN [46] are six recent SOTA
methods which significantly outperform previous ConvNet-
based methods.
Quantitative results. Table 1 shows the quantitative eval-
uation results. As shown in the table, our HyperTransformer
significantly outperforms both classical and ConvNet-
based SOTA methods on all three datasets. The per-
centage improvement in CC/SAM/RMSE/ERGAS/PSNR
performance measures for Pavia Center, Botswana,
and Chikusei datasets are ∼0.9/26.9/32.6/29.4/13.3%,
∼0.3/19.2/11.9/14.0/3.2%, and ∼0.6/12.7/13.6/13.8/4.1%,
respectively. These quantitative comparison results demon-
strate the superiority of HyperTransformer over the SOTA
approaches.
Qualitative results. Figure 2 shows the visual evaluation
results where we randomly select one image from the test-
ing set of each dataset and present the synthesized RGB im-
ages of HSIs along with the corresponding mean absolute
error (MAE) images between the reconstructed HSIs and
the reference HSI. Though the difference in the synthesized
RGB images is minute, we can observe the difference be-
tween each method from the MAE images. As can be seen
from the MAE images, our HyperTransformer achieves sig-
nificantly lower MAE than all the other methods. These vi-
sual results further demonstrate the excellent ability of Hy-
perTransformer to extract fine details more effectively.

Figure 4: The visual results for the ablation study to demon-
strate the effect of HyperTransformer for HS pansharpening
on the Pavia Center dataset.

Figure 5: The visual results for the ablation study on the
number of heads (N ) in our HyperTransformer.

4.3. Ablation Studies
HyperTransformer. To further demonstrate the effec-
tiveness of HyperTransformer on HS pansharpening, we
conduct an ablation study, and results are presented in Ta-
ble 3 and Figure 4. In this study, we consider the base-
line results (B/L) as the results from our proposed pan-
sharpening network without feature attention mechanism
(i.e., we bypass the MHFSA and consider transferred tex-
ture features (T ) as PAN features (V )). The proposed Hy-
perTransformer significantly improves the baseline results
in CC/SAM/RMSE/ERGAS/PSNR by ∼1.5/21/35/29/13%
when N = 16, respectively. In addition, Figure 4 de-
picts the synthesized RGB images, MAE plots, and vari-
ation of average MAE with spectral bands for a randomly
selected region (marked by blue color) for with and with-
out MHFSA. From these plots also we can clearly observe
the reduction in MAE over the spectral bands (specially in
infrared region) when we utilize HyperTransformer. All of
these qualitative and quantitative comparisons empirically
show the effectiveness of our HyperTransformer which cap-
tures long-range and cross-feature space dependencies of
PAN and LR-HSI for HS pansharpening.
Number of global descriptors N . Table 3 and Figure 5
present the results when we increase the number of global
descriptors in our HyperTransformer from 1 to 64. We can
see that increasing the number of global descriptors results
in significant improvement over spatial and spectral perfor-
mance measures. However, after N = 16, the performance
metrics start getting saturated or start degrading. Therefore,
we set N = 16 as the optimal value. We can further ver-
ify these quantitative results by observing the qualitative re-
sults shown in Figure 5 in which we observe overall low
MAE across all spectral bands when N = 16. Therefore,
this study clarifies the reason for selecting N = 16.
Multi-scale feature fusion. As we discussed previously,
the conventional pansharpening algorithms usually fuse
PAN and LR-HSI features only at a single spatial-scale
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Table 1: The average quantitative pansharpening results on the Pavia Center [34], Botswana [38], and Chikusei dataset [53].∗

Method
Pavia Center Dataset [34] Botswana Dataset [38] Chikusei Dataset [53]

CC SAM RMSE ERGAS PSNR CC SAM RMSE ERGAS PSNR CC SAM RMSE ERGAS PSNR
×10−2 ×10−2 ×10−2

PCA [18] PERS-2014 0.845 8.92 3.45 6.64 31.26 0.943 2.38 1.98 2.22 40.03 0.887 6.99 2.47 7.71 30.98
GFPCA [25] DataFusion-2014 0.902 8.31 3.98 7.44 29.09 0.901 2.66 2.45 2.75 37.83 0.883 4.76 1.98 7.00 30.96
BF [43] JSTSP-2015 0.918 9.60 3.44 6.63 30.22 0.931 2.47 1.88 2.34 40.01 0.903 5.15 1.94 6.62 37.89
BFS [42] TGRS-2015 0.925 8.10 3.05 6.00 31.09 0.932 2.39 1.85 2.32 40.15 0.917 4.69 1.72 6.39 37.99
SFIM [27] IJRS-2000 0.946 6.76 2.55 5.43 32.61 0.932 3.44 2.81 2.25 39.58 0.928 3.79 1.43 6.43 39.55
GS [3] TGRS-2007 0.961 6.62 2.55 4.95 32.93 0.946 2.34 1.93 2.17 40.14 0.733 5.64 2.96 8.17 35.13
GSA [20] US Pat.-2000 0.950 7.15 2.34 4.70 33.52 0.955 2.04 1.59 1.85 41.89 0.943 3.52 1.42 4.30 41.38
MGH [2] PERS-2006 0.955 6.81 2.25 4.77 33.97 0.960 2.07 1.54 1.69 42.43 0.929 3.82 1.45 6.40 39.85
CNMF [55] TGRS-2011 0.960 6.64 2.20 4.39 34.14 0.942 2.61 1.73 2.10 40.98 0.900 4.72 1.91 5.75 39.65
MG [1] TGRS-2002 0.956 6.55 2.20 4.45 34.12 0.960 2.02 1.51 1.68 42.47 0.938 3.81 1.52 4.41 41.05
HySure [35] TGRS-2014 0.966 6.13 1.80 3.77 35.91 0.956 2.15 1.46 1.77 42.30 0.960 2.98 1.13 3.69 43.14
HyperPNN [14] JST-RS-2019 0.967 6.09 1.67 3.82 36.70 0.970 1.67 1.15 1.44 44.45 0.946 3.97 1.11 4.77 41.57
PanNet [49] ICCV-2017 0.968 6.36 1.83 3.89 35.61 0.926 2.17 1.53 2.82 40.41 0.956 3.79 0.88 5.32 41.90
DARN [58] TGRS-2020 0.969 6.43 1.56 3.95 37.30 0.973 1.58 1.09 1.35 44.42 0.953 3.60 1.05 4.44 42.24
HyperKite [7] TGRS-2021 0.980 5.61 1.29 2.85 38.65 0.979 1.46 1.01 1.21 45.53 0.974 2.85 1.03 3.62 43.53
SIPSA [24] CVPR-2021 0.948 5.27 2.38 4.52 33.65 0.901 2.34 2.20 2.54 38.55 0.947 2.87 1.06 5.09 41.02
GPPNN [46] CVPR-2021 0.963 6.52 1.91 4.05 35.36 0.962 1.90 1.36 1.65 43.01 0.970 2.75 0.66 4.24 44.07
Ours 0.989 3.85 0.87 2.01 43.80 0.982 1.18 0.89 1.04 46.97 0.980 2.40 0.57 3.12 45.87
∗Higher values of CC and PSNR, and lower values of SAM, RMSE, and ERGAS indicate good pansharpening performance. The ideal values of CC, SAM, RMSE,
ERGAS, and PSNR are 1, 0, 0, 0, and ∞, respectively. Color convention: best, 2nd-best, and 3rd-best.

Table 2: Visual results generated by different pansharpening algorithms (left to right: MGH [2], CNMF [55], MG [1],
HySure [35], HyperPNN [14], PanNet [49], DARN [58], HyperKite [7], SIPSA [22], GPPNN [46], HyperTransformer (ours),
and Ground Truth (GT)) for (a) Pavia Center [34] (20-th patch), (b) Botswana [38] (12-th patch), (c) Chikusei datasets [53]
(32-nd patch). MAE denotes the (normalized) Mean Absolute Error across all spectral bands.
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Table 3: Ablation study on the number of heads (N ) in Hy-
perTransformer for the Pavia Center dataset.

N CC SAM RMSE ERGAS PSNR
B/L 0.981 4.88 0.0133 2.84 38.71

1 0.975 4.32 0.0103 2.31 40.59
2 0.976 4.19 0.0095 2.18 42.52
8 0.987 4.06 0.0092 2.13 43.20
16 0.989 3.85 0.0087 2.01 43.80
32 0.988 4.02 0.0090 2.10 43.47
64 0.987 4.04 0.0091 2.12 43.19

Table 4: Ablation study on utilizing HyperTransformer at
multiple scales for the Pavia Center dataset.

×1 ×2 ×4 CC SAM RMSE ERGAS PSNR
B/L 0.956 4.86 0.0204 3.90 35.81

✓ ✗ ✗ 0.975 4.76 0.0149 3.00 38.42
✗ ✓ ✗ 0.985 4.29 0.0108 2.40 40.80
✓ ✓ ✗ 0.985 4.41 0.0109 2.38 41.02
✗ ✗ ✓ 0.986 4.01 0.0098 2.21 42.88
✓ ✗ ✓ 0.988 3.96 0.0092 2.20 43.58
✗ ✓ ✓ 0.988 3.85 0.0089 2.09 43.60
✓ ✓ ✓ 0.989 3.85 0.0087 2.01 43.80

Figure 6: The visual results for the ablation study on the
effect of HyperTransformer at multiple scales on the Pavia
Center dataset.

(i.e., ×4). Instead, our proposed pansharpening network
injects textural features from PAN at three different scales,
namely ×1, ×2, and ×4 of spatial resolution of LR-HSI.
To demonstrate the reason for utilizing HyperTransform-
ers at multiple spatial-scales, we conduct an ablation study,
and the results are presented in Table 4 and Figure 6. In
Table 4, B/L corresponds to the case where no PAN fea-
tures are injected to the backbone at any spatial-scale (i.e.,
sharpening without PAN image). As can be seen from Ta-
ble 4, when we inject PAN features to the backbone, the
quality of pansharpened HSI improves, and a significant
improvement can be noticed when we inject PAN features
to the backbone at HR scale (i.e., ×4). Furthermore, as
can be seen from the final row of Table 4, the best pan-
sharpening performance is observed when we utilize Hyper-
Transformers across all the three spatial-scales. Concretely,
we observe an improvement of ∼ 0.3/3.7/11.2/9.0/2.1%
in CC/SAM/RMSE/ERGAS/PSNR when we utilize Hyper-
Transformers at all scales compared to HyperTransformer
only at the ×4 spatial-scale. In addition to the quantita-
tive results, we also present synthesized RGB images, MAE

Table 5: Ablation study on different loss functions.

L1 Lvgg-per Lt-per CC SAM RMSE ERGAS PSNR
✓ ✗ ✗ 0.987 4.07 0.0091 2.12 43.00
✓ ✓ ✗ 0.988 4.01 0.0090 2.09 43.60
✓ ✓ ✓ 0.989 3.85 0.0087 2.01 43.80

plots, and the variation of MAE with spectral bands for a
randomly selected region in Figure 6. All the above ob-
servations verify that the multi-scale feature fusion is bet-
ter than the conventional single-scale feature fusion for HS
pansharpening.
VGG perceptual loss and Transfer perceptual loss.
Table 5 shows how each loss function improves the
quality of the pansharpened HSI. Combining the
synthesized perceptual loss Lvgg-per with L1 loss im-
proves CC/SAM/RMSE/ERGAS/PSNR metrics by
∼ 0.1/1.5/1.1/1.4/1.4%, respectively. It is further
improved by the transferred perceptual loss Lt-per in
CC/SAM/RMSE/ERGAS/PSNR by ∼ 0.1/4.0/3.3/3.8/0.5
%, respectively. Note that the significant improve-
ment of PSNR by Lvgg-per, and improvement of
SAM/RMSE/ERGAS metrics by Lt-per.

More experimental results and analysis of the proposed
method can be found in the supplementary document.

5. Limitations and Future Work
From the MAE figures, a relatively high MAE can be

observed around UV (∼ bands 1-10) and IR (∼ bands 90-
104) regions. This could be due to the lack of UV and IR
features in the PAN image. Additional research must be
conducted to improve the performance in these regions.

6. Conclusion
In this paper, we proposed a novel textural-spectral fea-

ture fusion network for HS pansharpening called Hyper-
Transformer, which transfers HR textural features from
PAN image to spectral features from LR-HSI through a
multi-head feature soft-attention mechanism. The proposed
HyperTransformer consists of two separate feature extrac-
tors to extract PAN and LR-HSI features, a multi-head fea-
ture soft-attention network to capture the long-range and
cross feature-space dependencies between PAN and LR-
HSI, and a textural-spectral feature fusion module to fuse
HR texture features and spectral features effectively. Fur-
thermore, the proposed HyperTransformer can be utilized
in multiple spatial scales to learn more powerful texture
representations. Extensive experiments conducted on three
widely used HSI datasets demonstrate the superiority of
our HyperTransformer over the SOTA approaches on both
quantitative and qualitative evaluations.
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[42] Qi Wei, José Bioucas-Dias, Nicolas Dobigeon, and Jean-
Yves Tourneret. Hyperspectral and multispectral image fu-
sion based on a sparse representation. IEEE Transactions on
Geoscience and Remote Sensing, 53(7):3658–3668, 2015.

[43] Qi Wei, Nicolas Dobigeon, and Jean-Yves Tourneret.
Bayesian fusion of multi-band images. IEEE Journal of Se-
lected Topics in Signal Processing, 9(6):1117–1127, 2015.

[44] Yancong Wei, Qiangqiang Yuan, Huanfeng Shen, and Liang-
pei Zhang. Boosting the accuracy of multispectral image
pansharpening by learning a deep residual network. IEEE
Geoscience and Remote Sensing Letters, 14(10):1795–1799,
2017.

[45] Xiao Wu, Ting-Zhu Huang, Liang-Jian Deng, and Tian-Jing
Zhang. Dynamic cross feature fusion for remote sensing pan-
sharpening. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14687–14696, 2021.

[46] Shuang Xu, Jiangshe Zhang, Zixiang Zhao, Kai Sun, Junmin
Liu, and Chunxia Zhang. Deep gradient projection networks
for pan-sharpening. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1366–1375, 2021.

[47] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-
ing Guo. Learning texture transformer network for image
super-resolution. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
5791–5800, 2020.

[48] Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao
Ding, and John Paisley. Pannet: A deep network architecture
for pan-sharpening. In Proceedings of the IEEE international
conference on computer vision, pages 5449–5457, 2017.

[49] Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao
Ding, and John Paisley. Pannet: A deep network architecture
for pan-sharpening. In Proceedings of the IEEE international
conference on computer vision, pages 5449–5457, 2017.

[50] Jing Yao, Danfeng Hong, Jocelyn Chanussot, Deyu Meng,
Xiaoxiang Zhu, and Zongben Xu. Cross-attention in cou-
pled unmixing nets for unsupervised hyperspectral super-
resolution. In European Conference on Computer Vision,
pages 208–224. Springer, 2020.

[51] Jing Yao, Danfeng Hong, Jocelyn Chanussot, Deyu Meng,
Xiaoxiang Zhu, and Zongben Xu. Cross-attention in cou-
pled unmixing nets for unsupervised hyperspectral super-
resolution. In European Conference on Computer Vision,
pages 208–224. Springer, 2020.

[52] Naoto Yokoya and Akira Iwasaki. Airborne hyperspectral
data over chikusei. Space Appl. Lab., Univ. Tokyo, Tokyo,
Japan, Tech. Rep. SAL-2016-05-27, 2016.

[53] Naoto Yokoya and Akira Iwasaki. Airborne hyperspectral
data over chikusei. Space Appl. Lab., Univ. Tokyo, Tokyo,
Japan, Tech. Rep. SAL-2016-05-27, 2016.

1776



[54] Naoto Yokoya, Takehisa Yairi, and Akira Iwasaki. Coupled
nonnegative matrix factorization unmixing for hyperspectral
and multispectral data fusion. IEEE Transactions on Geo-
science and Remote Sensing, 50(2):528–537, 2011.

[55] Naoto Yokoya, Takehisa Yairi, and Akira Iwasaki. Coupled
nonnegative matrix factorization unmixing for hyperspectral
and multispectral data fusion. IEEE Transactions on Geo-
science and Remote Sensing, 50(2):528–537, 2011.

[56] Yongnian Zeng, Wei Huang, Maoguo Liu, Honghui Zhang,
and Bin Zou. Fusion of satellite images in urban area: As-
sessing the quality of resulting images. In 2010 18th Inter-
national Conference on Geoinformatics, pages 1–4. IEEE,
2010.

[57] Lei Zhang, Jiangtao Nie, Wei Wei, Yanning Zhang, Shengcai
Liao, and Ling Shao. Unsupervised adaptation learning for
hyperspectral imagery super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3073–3082, 2020.

[58] Yuxuan Zheng, Jiaojiao Li, Yunsong Li, Jie Guo, Xianyun
Wu, and Jocelyn Chanussot. Hyperspectral pansharpen-
ing using deep prior and dual attention residual network.
IEEE Transactions on Geoscience and Remote Sensing,
58(11):8059–8076, 2020.

[59] Man Zhou, Xueyang Fu, Jie Huang, Feng Zhao, Aiping Liu,
and Rujing Wang. Effective pan-sharpening with transformer
and invertible neural network. IEEE Transactions on Geo-
science and Remote Sensing, 60:1–15, 2022.

[60] Xiao Xiang Zhu and Richard Bamler. A sparse image fusion
algorithm with application to pan-sharpening. IEEE transac-
tions on geoscience and remote sensing, 51(5):2827–2836,
2012.

[61] Xiao Xiang Zhu, Claas Grohnfeldt, and Richard Bamler. Ex-
ploiting joint sparsity for pansharpening: The j-sparsefi algo-
rithm. IEEE Transactions on Geoscience and Remote Sens-
ing, 54(5):2664–2681, 2015.

1777


