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Abstract

Generalization to novel domains is a fundamental chal-
lenge for computer vision. Near-perfect accuracy on bench-
marks is common, but these models do not work as expected
when deployed outside of the training distribution . To build
computer vision systems that truly solve real-world prob-
lems at global scale, we need benchmarks that fully capture
real-world complexity, including geographic domain shift,
long-tailed distributions, and data noise.

We propose urban forest monitoring as an ideal testbed
for studying and improving upon these computer vision
challenges, while working towards filling a crucial environ-
mental and societal need. Urban forests provide significant
benefits to urban societies. However, planning and main-
taining these forests is expensive. One particularly costly
aspect of urban forest management is monitoring the ex-
isting trees in a city: e.g., tracking tree locations, species,
and health. Monitoring efforts are currently based on tree
censuses built by human experts, costing cities millions of
dollars per census and thus collected infrequently.

Previous investigations into automating urban forest
monitoring focused on small datasets from single cities,
covering only common categories . To address these short-
comings, we introduce a new large-scale dataset that joins
public tree censuses from 23 cities with a large collection of
street level and aerial imagery. Our Auto Arborist dataset
contains over 2.5M trees and 344 genera and is >2 or-
ders of magnitude larger than the closest dataset in the
literature. We introduce baseline results on our dataset
across modalities as well as metrics for the detailed analy-
sis of generalization with respect to geographic distribution
shifts, vital for such a system to be deployed at-scale.

1. Introduction
Urban forests provide critical benefits to the over 4B

people living in urban areas worldwide [107]. They fil-
ter air and water, capture stormwater runoff, sequester
atmospheric carbon dioxide, limit erosion and drought,
and save energy in a variety of ways (e.g., by providing

Figure 1. The Auto Arborist dataset covers 23 cities across North Amer-
ica, and contains paired aerial and multiview ground-level imagery for
2.6M trees across 344 unique genera.

shade and thus reducing cooling costs and urban heat is-
lands [100, 120, 138, 141]). In the US alone, urban forests
cover 127M acres and produce ecosystem services valued
at >$18B [106]. These forests make up the foundations of
our urban ecosystems, and provide habitat for diverse urban
wildlife and insect populations [44]. Urban forest monitor-
ing, measuring the size, health and species distribution over
time, allows us to (1) quantify ecosystem services including
air quality improvement [20, 47], carbon sequestration [92,
106,121], and benefits to public health [28,47,125,125], (2)
track damage from extreme weather events [8, 67, 99], and
(3) target planting to improve robustness to climate change,
disease and infestation [24, 64, 114, 115]. Further, lack of
access to urban greenery is a key aspect of urban social
inequality [56, 93, 104], including socioeconomic inequal-
ity [52, 73, 86] and racial inequality [21, 129]. Urban forest
monitoring enables the quantification of this inequality and
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Dataset Ground-level images Aerial Images Sites Classes Forest Type
Registree [27] 46,321 28,678 1 40 Urban
Pasadena Re-ID [102] 6,141 (panoramas) 0 1 1 Urban
NEON Tree Evaluation [132] 0 25,949 (boxes) 22 1 Wilderness
IDTreeS Classification 2017 [98] 0 613 (boxes) 1 9 Wilderness
IDTreeS Classification 2020 [56] 0 452 (boxes) 2 34 Wilderness
Auto Arborist (Ours) 6,479,077 2,637,208 23 344 Urban

Table 1. Comparison of our dataset to previous tree detection and identification datasets. Note that for Pasadena Re-ID, there is only one class (“tree”) but
the task is re-identification as opposed to categorization.

the pursuit of its improvement [22, 118].
To enable automated urban forest monitoring, we focus

on the fundamental task of building a tree census (some-
times called a tree inventory). Due to their significant cost
(a recent tree census in Los Angeles cost $2M and took 18
months [2]), tree censuses are typically conducted only by
cities with the means and will to invest in these undertak-
ings, and even then they are conducted rarely (e.g., once
every 5-10 years). We seek to dramatically lower the cost
of a tree census by using computer vision to help find, label,
and monitor individual trees using a combination of street
level and aerial imagery. An automated system could de-
mocratize access to urban forest monitoring, providing this
valuable information to under-resourced cities that are al-
ready disproportionately affected by climate change [109].

While there have been prior works on urban tree species
recognition from aerial [4, 5, 63, 78, 124, 137, 139, 140] or
street level [95] imagery (or both, in a limited number of
cases [27,130]), a major limitation has been a lack of large-
scale labeled datasets. To our knowledge, all prior works
have focused on single or limited numbers of cities, and
have included only the most common categories. We in-
troduce the Auto Arborist dataset, a multiview urban tree
classification dataset which, at 2.6 million trees is two or-
ders of magnitude larger than those in prior work [27, 130]
and contains 344 genera (and many more species). To build
Auto Arborist, we draw on public tree censuses from 23
cities in the US and Canada and merge these public records
with street level and overhead RGB imagery. As the first
urban forest dataset to cover multiple cities, Auto Arborist
allows for previously-impossible detailed analysis of gener-
alization with respect to geographic distribution shifts, vital
to building systems that scale. We propose a set of metrics
to evaluate performance with respect to these geographic
distribution shifts and show the strengths and weaknesses
of typical deep learning models when applied to the Auto
Arborist dataset.

Going beyond its immediate application to sustainabil-
ity and conservation, Auto Arborist can serve as an impor-
tant challenge benchmark for computer vision. There has
been increasing interest in domain generalization, which is
ubiquitous in real-world applications [16, 51, 82, 97]. For
example, prior works have observed that a model for self-
driving cars that can drive safely in San Diego may not
work equally well in Seattle [50, 68, 69]. In terms of num-

ber of domains, objects, classes, and images, Auto Arborist
presents a scale not seen in previous real-world domain gen-
eralization benchmarks [13–17, 82]; it focuses on detailed
cross domain analysis, and incorporates multiple views and
modalities.

To summarize, our main contributions are as follows:

• We develop a pipeline for combining public tree census
data with street level and aerial imagery.

• We introduce the Auto Arborist dataset built using this
pipeline — the largest dataset of its kind covering >2.6M
trees, >9.1M images and 344 categories and first one of
its kind to cover multiple cities (23 cities).

• We show that for Auto Arborist, geographic domain shift
and the category imbalance are major factors in perfor-
mance of typical deep learning models.

• We show that diverse geographic coverage is important
for generalization to a novel city, and that both multiple
views and multiple data modalities are beneficial.

2. Related work
Tree detection, localization, and taxonomic identifica-

tion have been studied in multispectral aerial imagery [49,
78, 140], ground-level imagery [95, 101], and LIDAR [46,
70], with some recent approaches combining data across
modalities [6, 27]. Costly high-resolution data collected
from low-flying aircraft has been shown to improve perfor-
mance [18, 110], but this data is not available for much of
the world. Though past studies have considered tree detec-
tion and categorization, many of these have been limited by
perspective (aerial vs ground-level views), geospatial cov-
erage, and taxonomic coverage. Our work seeks to expand
upon all three, providing a testbed for urban forest monitor-
ing that is broad in scope and relies on datatypes which are
available across cities (aerial and street level RGB imagery)
to enable the development of general models and methods
which can be used off-the-shelf in novel cities.

Tree detection and localization from aerial data. There
have been successful, broad-scale studies of tree density,
canopy cover, and individual tree delineation from aerial
data [9, 25, 38, 40,46, 62, 66,77, 94, 108, 110,112, 122, 132],
including tree crown detection across sites from the US Na-
tional Ecological Observatory Network (NEON) [132,133],
tree canopy mapping in urban forests in cities across the US
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Region W (West) Region C (Central) Region E (East)
City Trees Genera City Trees Genera City Trees Genera
San Francisco, CA 154,698 195 Boulder City, CO 29,489 65 Washington, DC 152,983 71
San Jose, CA 225,655 201 Denver, CO 175,438 97 Charlottesville, VA 1571 56
Cupertino, CA 15,300 104 Calgary, AB 64,576 35 Pittsburgh, PA 23,382 79
Vancouver, BC 121,249 93 Sioux Falls, SD 13,277 37 Montreal, QC 208,097 61
Seattle, WA 150,983 142 Edmonton, AB 76,164 32 New York, NY 560,069 68
Surrey, BC 62,251 72 Buffalo, NY 29,527 74
Santa Monica, CA 25,381 126 Kitchener, ON 21,265 26
Los Angeles, CA 391,788 202 Cambridge, ON 14,757 57

Columbus, OH 114,536 81
Bloomington, IN 4,772 53

Total West 1,147,305 328 Total Central 358,944 104 Total East 1,130,959 102

Table 2. Cities by region. The holdout city for each region is in bold.

[93], and counting individual trees in Sub-Saharan Africa
[25]. These methods rely on a diverse set of aerial data
modalities, from low-resolution RGB or hyperspectral sat-
telite data to high-resolution RGB, hyperspectral, and LI-
DAR data collected from low-flying aircraft and UAVs [18].
However, there are still open challenges in maintaining per-
formance of methods in novel regions [98, 131, 134], and
methods must be well-validated and possibly adapted for
any novel region before use. Tree crown delineation in
dense forests remains a challenge, leading to several stud-
ies (e.g., in sub-Saharan Africa [25]) focusing on low-tree-
density regions or trees outside forests [43, 117]. Further,
there is only so much that can be understood from an aerial
view alone. A large amount of the woody vegetation in a
forest is hidden under the tree canopy. Understory trees
have been mapped with very-high-resolution UAV-collected
data [32, 60, 61, 87], but this data is rarely available. Our
combined approach allows us to use available ground level
imagery to see under the canopy.

Tree taxonomic identification from aerial data. Auto-
mated tree identification in aerial data from satellite or low-
flying aircraft, including RGB, hyperspectral, LIDAR, or
some combination thereof, is well-studied in the remote
sensing community. [49] is a thorough review of species
classification from remote sensing data which notes the lack
of studies considering large spatial extents. Many studies
focus on predicting species occurrence, presence/absence,
or abundance for a limited set of species [3, 23, 29–31, 33,
34,41]. Detecting and categorizing individual trees presents
further complexity [4, 26, 35, 36, 41, 42, 48, 48, 53, 55, 59,
65, 70–72, 74, 75, 80, 81, 83, 111, 113, 116, 128], and re-
cently deep learning approaches have been shown to out-
perform more traditional methods on this task [39, 57, 63,
90, 114, 127, 142]. Generalization to novel regions is a
known challenge with many of the proposed methods [110].
The IDTrees challenges [56, 98] were the first to propose a
public benchmark for cross-site individual tree categoriza-
tion, but provided limited labeled data (<1000 labeled trees
from <=34 tree categories at 3 NEON wilderness forest
plots). Further challenge arises when predicting species in

an urban environment, where human intervention leads to a
much higher diversity of tree species, with a much longer
tail, than is seen in the wild [135]. For this reason, many
studies of urban tree categorization focus only on common
species [4, 5, 10, 11, 63, 78, 124, 137, 139, 140].

Tree detection and localization in the urban forest from
ground-level data. Ground-level data, (e.g., from Google
Street View [7], Mapillary [96], and iNaturalist [1]), have
been identified as an important source of information for
urban monitoring applications [19]. Automated measures
of urban “greenness” and tree cover mapping from ground-
level data have been proposed, with implications in social
justice and public health [45, 88, 89, 119, 123]. Datasets
such as Mapillary Vistas [105] and Cityscapes [37] facili-
tate semantic segmentation of urban categories, including
vegetation, but do not provide instance-level information or
fine-grained taxonomic labels. Similarly, most current com-
puter vision studies of the urban forest focus on species-
agnostic individual tree detection [76, 126] and localiza-
tion [84, 95, 101–103] across multiple ground-level views
of the same tree.

Tree taxonomic identification from combined aerial and
ground-level data. Previous large-scale datasets that com-
bine aerial and ground-level data, such as CVUSA [136],
were designed for alternative tasks such as image geolo-
calization. Several methods exist for combining aerial +
ground-level data, with tree identification as a key applica-
tion [85, 117]. Here, ground-level data can include RGB
imagery, LIDAR, and even physical measurements such as
tree diameter or hyperspectral signature [54]. [130] and [27]
proposed a system for identifying street trees using paired
aerial and ground-level RGB imagery for urban forests and
released a dataset of paired imagery for Pasadena. [6] pro-
posed a class-agnostic tree detection method from aerial im-
agery and ground-level LIDAR. Recently, [79] used GNNs
to map individual trees across aerial and ground-level com-
munity science imagery in forests. All of these prior works
trained on a single city and could benefit from a much larger
dataset such as ours.
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Figure 2. Distribution of genera in train and test, with frequent, common,
and rare classes delineated.

3. The Auto Arborist Dataset
We have generated the largest, and most geographically

diverse, computer-vision-ready multi-view dataset of urban
trees to date. The Auto Arborist dataset contains 2,637,208
trees across 23 cities. Each tree is represented by a 512 ×
512 pixel aerial image where each pixel is 5cm × 5cm, as
well as up to three 768×1152 pixel street level images [7] of
the tree (for a total of 9,116,285 images in the dataset).1. To
avoid taxonomic complexity arising from hybrid and sub-
species when developing methods, we have chosen to focus
on genus prediction (instead of species-level prediction) as
our primary task and have confirmed with ecologists and
city planners that a genus-level map would be highly useful
as a first step. Our dataset includes 344 unique genera, with
a real-world long-tailed class imbalance and unique class
distribution for each city on the dataset (Figure 2).

3.1. Dataset curation

To curate Auto Arborist, we started from existing tree
censuses which are provided by many cities online. For
each tree census considered, we verified that the data con-
tained GPS locations and genus/species labels, and was
available for public use. This resulted in data from 23 cities
which we then parsed into a common format, fixing com-
mon data entry errors (such as flipped latitude/longitude)
and mapping groundtruth genus names (and their common
misspellings) to a universal label map consisting of 344 cat-
egories. We also removed records with invalid genus names,
such as “unidentified”. Aggregated into a single dataset,
this process yielded localized records for ∼5M trees.

Figure 1 shows a map of the 23 selected cities as well
as example imagery from the dataset. We partition the
cities into three separate regions for evaluation purposes
(discussed further in Section 4). Table 2 summarizes the
contribution from each of the cities to the Auto Arborist

1We are publishing all tree records (after curation/merging c.f. 3.1) and
a subset of the imagery (verified to obtain consistent results to the full
dataset) with personally identifiable information removed. For more infor-
mation please visit https://google.github.io/auto-arborist

Figure 3. Noise in the Auto Arborist dataset includes trees that have died
since the tree census was taken (top), aerial data quality, including failures
causing black squares (middle), and temporal variation in deciduous trees
(bottom — aerial image has leaves, but street level images are bare), which
affects northern cities more than southern ones.

dataset organized by these regions. For this “v1” version of
Auto Arborist, we restrict our focus to the US and Canada,
with a single genus prediction task. There is room for Auto
Arborist to grow in tasks and geographic area: many pub-
lic tree censuses contain additional metadata (e.g. tree age,
health, and trunk diameter), and there are many more cities
we might include both in the US and Canada, and globally.
We place our dataset in context with previously published
tree classification datasets in Table 1, and emphasize the
significantly enhanced scope in number of images across
modalities, number of regions, and number of categories.

Extracting street level and aerial imagery. For each city,
starting from the parsed tree census, we associate each tree
census record to both street level and aerial images. For
each tree in our dataset, we sample a 15m×15m, 300×300
pixel RGB aerial image centered on the tree’s latitude and
longitude. We consider all street level images taken within
2-10 meters of the record’s latitude and longitude, filtering
out any images which do not meet all of the following cri-
teria:
• Taken on or after Jan 1, 2018.
• Contains the base of the tree near the horizontal center

of the image based on the projection of the tree’s lati-
tude/longitude onto the image, based on estimated cam-
era pose generated by the API.

• Contains a significant number of “tree” pixels based on
a semantic segmentation model (to avoid cases when the
tree has died or been removed, when possible) and does
not contain any “person” or “bike rider” pixels based on
a semantic segmentation model (to remove personally
identifiable information).

After filtering, we have 2.6M tree records, each of which is
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associated with one aerial image and 1-3 street level images,
along with a date and GPS location.

3.2. Challenging aspects of the Auto Arborist data

By matching street level images from existing pub-
lic records rather than collecting groundtruth labels from
scratch, we have been able to achieve a scale much larger
than any previous datasets. As we show, scale is important
for generalizing to novel cities (which is the ultimate goal).
But using public records to generate data across cities also
introduces a number of challenges.

Sources of noise and ambiguity. First, we address several
known sources of noise and ambiguity in our dataset. See
Figure 3 for examples illustrating the following points.
• Label noise: There is a known discrepancy between la-

bel accuracy of volunteer citizen scientists vs. experts
(e.g. with a PhD in Ecology) [12], and there is also
no ecologically-agreed-upon definition of tree vs. bush.
Cities differ in their labeling protocol.

• Presence noise: Tree records in censuses can often be
outdated. Specifically, depending on the amount of time
since the data was originally collected, there is increasing
possibility that trees will have been removed or have died,
and new trees planted.

• Location noise: Different cities use different data collec-
tion protocols and different sensors, leading to discrep-
ancy in the accuracy of the position readings (e.g. by
GPS). We estimate visually that they are usually accurate
within ∼3 meters.

• Image quality: Quality of aerial imagery varies for dif-
ferent cities. The primary tree in a street level image can
sometimes be occluded — though we try to guard against
this by removing images that are too far from the tree,
sometimes vehicles block the tree from view. Qualita-
tively, access to multiple views frequently helps mitigate
occlusion issues. Finally, deciduous trees vary in appear-
ance across seasons, with leaves turning color and then
dropping in the winter.

• Unlabeled visible trees: Trees on private property (e.g.
yards) are not labeled in public censuses, but are visible
in the background. While the tree of interest is often the
most prominent, the presence of trees of other genera can
create classification confusion.

Distribution shift and the long tail. One of our primary
challenges is to be able to do well on novel cities that were
not part of the training set, but in order for a model to do
so, it will have to contend with distribution shift, where the
training distribution of cities differs from the novel test dis-
tribution on some new city. We remark that there are two
kinds of shift that we observe in our data — what we might
call “label shift”, and “appearance shift”. Label shift refers
to when the marginal distribution P (y) of labels (genera)
differs from city to city even if the appearance distribution

Figure 4. (Top) The distance between the distributions of training and
test data for each training split and each test city (red lines represent re-
gional boundaries). We use the L1 distance between the normalized per-
class count vectors for each set as our measure of distributional distance.
Because the class distribution is long-tailed and our test sets are split ge-
ographically within each city to prevent data poisoning, the train and test
distribution are not identical within each city (the diagonal is non-uniform,
and the matrix is not symmetric). (Bottom) Pairwise train/test accuracy
from street level baselines.

.

of image x conditioned on a particular label P (x|y) does
not change (e.g., [91]). In our setting this simply can mean
that species distributions vary geographically (e.g. we tend
to see Palm trees in Southern California and less in Canada)
but can also come from cities having different sizes (for ex-
ample, Los Angeles is much larger than Santa Monica and
thus contains many more species).

Figure 4 visualizes the distribution shift between every
pair of cities (using L1 distance between normalized genus
distributions). In some cases we can see little overlap be-
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tween genera from two cities, and for cities with similar
location, i.e. Denver and Boulder, we tend to see high over-
lap in genus distribution. However even when two cities are
very similar both in size and location, it is still generally the
case that one city will contain a number of genera not found
in the other due to the long tailed genus distribution. In the
extreme setting of “train on one city, test on one city” we
thus always have many test genera for which there are no
training examples. And even in the regime of training on
many cities and testing on a single holdout city we still typ-
ically have classes for which there are no training examples,
implying value in expanding the dataset in future.

Beyond label shift, we also see “appearance shift” —
the images of a particular genus can look different depend-
ing on the city. This is partly due to different backgrounds
(which can in principle be handled by masking out the back-
ground pixels, but is out of scope for this work), but it can
also be due to other external factors such as weather condi-
tions (for example, we are likely to see more leafless trees
from images in Edmonton than we are to see them in LA)
or even “terroir” related factors like soil composition.

4. Evaluation Protocol
Since distribution shift is such a big factor in perfor-

mance, we have chosen to set up our evaluation protocol
to explicitly evaluate distribution shift based on 3 unique
types of train/test splits, defined hierarchically:
1. Per-city splits: At the first level, we are interested in

how well a city generalizes to itself. Here, each city has
a defined training region and a defined test region, split
geographically (usually based on latitude or longitude)
to avoid overfitting on background characteristics. The
test sets for each city are never used for training.

2. Regional splits: Next, we are interested in generaliza-
tion within and across larger regions (e.g., how would
we fare in cities on the East coast if we trained on West
coast trees?) — for this level of evaluation, we split
the cities into three regions, Region W (West), Region
C (Central), and Region E (East) (Table 2). We build
our regional training sets from the per-city training sets
for that region. We hold out one city from each region
(which we call “holdout cities”) to capture performance
on an in-region novel city, and also show results on all
out-of-region cities.

3. Full dataset: For the final and largest split, we combine
training data across the three regions. We maintain the
same holdout cities as the regional splits for training, and
test on the test sets of all cities (including the holdouts).

Evaluation metrics. Due to the long-tailed distribution of
the data across genera, a pure accuracy measure is insuffi-
cient to capture performance, as it is highly biased towards
frequent species. Thus, we report accuracy alongside class-
averaged recall (AR), calculated as average over all classes

of the proportion of correct predictions for the set of ex-
amples of that class (this is sometimes also called class-
averaged accuracy). To capture performance in a more nu-
anced way, we also introduce an LVIS [58]-inspired break-
down of class-averaged recall for frequent (n ≥ 20, 000
examples), common (100 ≤ n < 20, 000 examples) and
rare (n < 100 examples) subsets of our data. This results
in 29 frequent, 150 common, and 165 rare genera, and we
denote these metrics as FAR, CAR, and RAR respectively.

5. Experiments
We now demonstrate the benefits of having a multi-city,

multiview dataset by training models on Auto Arborist. In
this section we train separate aerial and street level baseline
ResNet 101 models for each training split described in Sec-
tion 4, including the training sets for each individual city,
the regional splits, and the full dataset. Training details can
be found in the supplementary.

Single city vs. regional vs. full dataset training. We begin
by experimenting with single-view street level models (as
the street level modality gives the most accurate results in
isolation). In Figure 5, we compare performance on a city’s
test set when training on that city’s training set (city), the
aggregation of training sets from that city’s region (region),
and all available training data (full). Unsurprisingly, we find
that more data is better — we see an average improvement
of 21.3% AR across cities when going from training on a
single city to the full dataset. However we note that training
on a region also gives strong performance gains over train-
ing on a city itself (average improvement of 18.3% AR),
and for some test cities regional training can be on par with
(or even slightly better than) training on the full set.

Cross-city generalization. Next we examine cross-city
generalization, where we are interested in how effective it
would be to train on a certain city A if we are interested
in testing on B. For this analysis, we first perform all pos-
sible cross training combinations, training on every train
split (including per-city, regional and full) and testing each
model on the test set for each city. Results for these pair-
wise combinations are visualized in Figure 4 (bottom). Here
we see regional “blocks” of strong generalization, reflecting
that cities generalize well to cities in the same geographical
area. For example, we tend to get good performance train-
ing on one of the Pacific Northwest cities (Seattle, Vancou-
ver, Surrey) and testing on another.

We can also see that some cities tend to generalize quite
well to other cities on average whereas some cities tend to
generalize poorly to other cities. Figure 6 shows this effect
in more detail — here we use a given city as a training set
and report the spread of performance when applied to other
cities’ test sets. In this plot, a larger gap between “self-test”
(red stars) and the box implies less generalizeability. Here,
to remove confounding factors due to test genera not seen or
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Figure 5. Performance growth when adding regional and continental di-
versity. For each city, we show test performance from a model trained on
that city, trained on the respective region for that city, and trained on the
full dataset. Note that performance improves on our holdout cities as well,
despite the regional and full training sets not including data from those
cities. Average performance from models trained on per-city, regional, and
full are shown as horizontal lines.

rarely seen during training, we restrict computation of AR
for train city A and test city B to only the “frequent” genera
seen in the train split of A and the test split of B.

We observe that cities that are poor “training cities” (on
the left side of Fig. 6) tend to be smaller and have poor per-
formance overall, though this is not universally true (con-
sider San Francisco). On the other hand, large cities (e.g.
NYC) tend to generalize well on average. But we also
see that there are no cities which generalize optimally to
all others, and optimal generalization performance is only
reached by training on the full dataset. Even restricting our
attention to frequent, shared classes, we find that general-
ization ability continues to be highly correlated with label
distribution similarity. In Figure 7, we compare AR across
these shared, frequent genera with the L1 distribution dis-
tance for three cities and show they are negatively correlated
— increased label distribution distance implies worse per-
formance, even on frequently-seen classes shared between
train and test cities.

Value-add of multiple views. Finally, in Table 3, we show
that the multiview aspects of our dataset bring value. Over-
all, our street level models perform much better than the
aerial models, generally with a difference of >20% AR and
we see that using multiple views of a tree outperforms a
single view. We have experimented with several techniques
to combine information across street level views and aerial
imagery, and find that while most of the predictive value
comes from the street level imagery, there is benefit in in-
corporating aerial information. We combine the modalities
via a simple method: average pooling the logits from multi-
ple street level images and then combining with aerial logits
via a Mixture of Experts (MoE) model:

f(xSL, xA) = xSL · sigmoid(w) + xA · (1− sigmoid(w)). (1)

Figure 6. For each training set, we show the distribution of AR across
the test cities, and highlight the “self test” case where a city is tested on
its own test set. A larger gap between “self test” and the box implies less
generalizability. Here, to remove confounding factors due to test genera
not seen or rarely seen during training, we compute AR for train city A
and test city B to be the average per-genus recall across the ‘frequent”
genera seen in both train(A) and test(B).

Figure 7. Digging further into the generalizability of a given training set,
we visualize the generalization gap between AR on shared, frequent genera
testing on that same city (“self-test”, in red) vs other cities, and plot against
the L1 distance between the genus distribution of train vs. test, as seen in
Fig. 4. We see that frequently these are anti-correlated, but training sets
for some cities (like Buffalo) struggle to perform well across the board.

where xSL and xA are street level and aerial logits, w ∈ Rn

are learned parameters, and n is the number of classes.
Combining modalities in this way yields an average ∼

1% boost for each regional model, compared to average-
pooling logits across multiple street level views, and a 3-
5% boost over predicting from a single street level image.
For the full training set, we find that preserving the regional
variations in learned MoE weights (w) is important — thus
our best model (which achieves 49.96% AR) uses street
level and aerial models trained on the full dataset but MoE
weights specialized for the region to which a city belongs.
We conjecture that this regional dependence is due primar-
ily to regional variations in aerial image quality/availability.
In Fig. 8 we visualize the per-genus weights learned by the
MoE per region. Looking more closely at the MoE weights,
we find that our models only assigns nonzero weights to
aerial data for classes that have ≥400 training examples.
Moreover, we see that we are able to rely on aerial images
more in Region W compared to the other two regions.

We show results from our best model in Table 4, report-
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Train Set Aerial 1 SL 3 SL A+SL
Region W 20.63 41.53 45.12 46.07
Region C 18.8 44.77 46.91 47.12
Region E 17.54 43.25 45.13 46.21
Full 18.7 46.13 49.0 49.23
Full w/ Regional MoE 49.96

Table 3. City-averaged percent AR for different regions and ensembling
strategies. Street level imagery is much more informative than aerial, and
combining multiple street level images gives a further boost. However,
even though aerial performance on its own is quite low, we see benefit in
adding the aerial imagery when making predictions. We find that while
the features from the full model are more discriminative, we see best per-
formance using full model features paired with region-specific Mixture of
Experts to combine aerial and street level predictions.

Figure 8. Each regional MoE learns to use aerial information only for
genera with more than ∼400 training examples. Notably, the distribution
of the three is quite different, and there are certain genera that are more
“aerially distinctive” (we have highlighted one for each region).

ing accuracy and AR for the full dataset, and broken down
by frequent and common genera. Notably, many cities have
>80% accuracy, and Vancouver and Sioux Falls see >90%.
There is still significant room to improve on AR across the
board. Rare class performance was 0.0 for every city, un-
surprising given most rare classes have <10 examples. This
points to potential gain from low-shot and long-tail learn-
ing methods such as logit-adjustment, but we find that such
methods struggle to perform well under such a high degree
of imbalance (see Supplementary).

6. Limitations and future work
We have presented a baseline modeling approach meant

to highlight the performance of a typical CNN and present
simple methods for combining signals from multiple views
— there is much room for improvement, particularly on rare
classes. In future, to predict on cities with no past census,
we would need to first localize and geocode the trees to be
classified. We also hope to expand our dataset to include
more cities, both in North America and worldwide, and in-
clude species level predictions and additional features such
as tree size and health.

Auto Arborist represents an important first step towards
global-scale urban forest monitoring. This has implications
for environmental justice: given that marginalized commu-
nities have less access to urban greenery, systems trained
on Auto Arborist could help equitize access to urban forests
by empowering quantifiable analysis and targeted replant-
ing. However we must be responsible with our technology

City Acc AR FAR CAR
Vancouver, BC 93.28 67.51 82.76 63.35
Surrey, BC 82.35 58.96 75.82 48.80
Seattle, WA 79.68 46.55 74.65 43.08
San Francisco, CA 58.71 26.39 37.87 31.37
San Jose, CA 77.71 40.07 63.35 41.13
Cupertino, CA 74.14 56.86 65.28 55.40
Santa Monica, CA 56.26 43.29 64.93 44.09
Los Angeles, CA 76.24 32.62 52.56 35.80
Boulder City, CO 73.23 42.23 58.61 32.88
Denver, CO 76.46 29.72 57.16 22.02
Sioux Falls, SD 93.78 76.76 81.52 62.50
Calgary, AB 88.81 62.18 70.92 52.32
Edmonton, AB 87.55 56.67 62.58 43.99
Washington, DC 77.44 44.49 67.31 30.05
Charlottesville, VA 73.52 57.77 73.38 42.16
Pittsburgh, PA 78.84 54.93 71.83 43.97
Montreal, QC 85.51 49.49 64.99 39.08
New York, NY 82.54 42.77 66.38 28.16
Buffalo, NY 86.03 54.01 71.92 43.41
Kitchener, ON 33.96 17.94 21.31 4.49
Cambridge, ON 72.16 47.69 65.84 34.38
Columbus, OH 69.28 55.71 68.29 47.32
Bloomington, IN 85.50 73.52 79.82 64.46

Table 4. Per-city performance (%) with our best model trained on the
full dataset combining aerial and multiview street level modalities. AR
is class-averaged recall for each city, averaged over the test classes for
that city. FAR is “Frequent” AR, CAR is “Common” AR, which serve to
further disentangle the commonality of a species in the training data with
its per-city performance. Holdout cities in bold.

— to this end, we protect the privacy of residents of these
urban and suburban areas by explicitly filtering out any im-
agery containing humans, and blur vehicle plates. Secondly
we will need efficient human-in-the-loop validation proto-
cols before such a system could be trusted, to ensure science
policy is not based on poorly-generalized ML predictions.

7. Seeing the forest for the trees (Conclusions)
Climate change and loss of ecological diversity are

among the most pressing issues of our time. Monitoring is a
first crucial step to understanding and mitigating the effects
of global warming on urban forests, but many cities cannot
afford regular tree censuses. Towards the goal of broad, ac-
cessible, and affordable urban forest monitoring, we have
introduced the Auto Arborist dataset. This dataset is the
first of its kind to expand beyond a single city and common
categories: Auto Arborist contains 2.6 million trees across
23 cities, covering 344 unique genera. This dataset will en-
able the computer vision community to tackle urban forest
monitoring at scale, and our evaluation protocols help us
measure performance without data poisoning, and to evalu-
ate generalization to novel cities.
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