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School of Computer and Communication Sciences, EPFL, Switzerland

{deblina.bhattacharjee, tong.zhang, sabine.susstrunk, mathieu.salzmann}@epfl.ch

Abstract

We propose an end-to-end Multitask Learning
Transformer framework, named MulT, to simultane-
ously learn multiple high-level vision tasks, including depth
estimation, semantic segmentation, reshading, surface nor-
mal estimation, 2D keypoint detection, and edge detection.
Based on the Swin transformer model, our framework
encodes the input image into a shared representation and
makes predictions for each vision task using task-specific
transformer-based decoder heads. At the heart of our
approach is a shared attention mechanism modeling the
dependencies across the tasks. We evaluate our model
on several multitask benchmarks, showing that our MulT
framework outperforms both the state-of-the art multitask
convolutional neural network models and all the respective
single task transformer models. Our experiments further
highlight the benefits of sharing attention across all the
tasks, and demonstrate that our MulT model is robust and
generalizes well to new domains. Our project website is at
https://ivrl.github.io/MulT/.

1. Introduction
First proposed in [45], transformers have made great

strides in a wide range of domains. For instance, previ-
ous works [13, 25, 35–37, 52] have demonstrated that trans-
formers trained on large datasets learn strong representa-
tions for many downstream language tasks; and models
based on transformers have achieved promising results on
image classification, object detection, and panoptic segmen-
tation [5, 6, 14, 18, 34, 38, 44, 49, 58]. In contrast to these
works that focus on a single task, in this paper, we investi-
gate the use of transformers for multitask learning.

Although a few works have studied the use of transform-
ers to handle multiple input modalities, such as images and
text, they typically focus on a single task, e.g., visual ques-
tion answering [19, 20, 23, 28], with the exception of [19],
which tackles several language tasks but a single vision one.
By contrast, our goal is to connect multiple vision tasks cov-
ering the 2D, 3D, and semantic domains. To this end we

Figure 1. Motivation for MulT. Our MulT model, which is a
transformer-based encoder-decoder model with shared attention to
learn task inter-dependencies, produces better results than both the
dedicated 1-task transformer models (1-task Swin [26]) and the
state-of-the-art multitask CNN baseline [41].

address the following questions: Can a transformer model
trained jointly across tasks improve the performance in each
task relative to single-task transformers? Can one explicitly
encode dependencies across tasks in a transformer-based
framework? Can a multitask transformer generalize to un-
seen domains?

To the best of our knowledge, only [9, 30, 40] have
touched upon the problem of addressing multiple tasks with
transformers. However, none of these works aims to en-
code strong dependencies across the tasks beyond the use
of a shared backbone. Furthermore, IPT [9] handles solely
low-level vision tasks, such as denoising, super-resolution
and deraining, whereas [30] focuses uniquely on the tasks
of object detection and semantic segmentation and [40]
on scene recognition and importance score prediction in
videos. Here, we cover a much wider range of high-level
vision tasks and explicitly model their dependencies.

To this end, we introduce MulT, which consists of a
transformer-based encoder to transform the input image into
a latent representation shared by the tasks, and transformer
decoders with task-specific heads producing the final pre-
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dictions for each of the tasks. While the MulT encoder
mainly utilizes the self-attention mechanism [3, 33] to ex-
tract intrinsic features, as most transformers, we equip the
decoders with a shared attention mechanism across the dif-
ferent vision tasks, thus allowing the overall framework to
encode task dependencies. Thus, we leverage the query and
key vectors from the encoder along with the task-specific
values in the decoder to predict the task-specific outputs.
Our contributions can be summarized as follows:

• We propose an end-to-end multitask transformer archi-
tecture that handles multiple high-level vision tasks in
a single model.

• We introduce a shared attention between the trans-
former decoders of the multiple tasks. This shared at-
tention mechanism further improves the performance
of each vision task.

• Our framework lets us learn the inter-dependencies
across high-level vision tasks.

• We show that our model generalizes and adapts to new
domains with a lower average error on the different
vision tasks than the existing multitask convolutional
models [41, 53].

Our exhaustive experiments and analyses across a variety
of tasks show our MulT model not only improves the perfor-
mance over single-task architectures, but also outperforms
the state-of-the-art multitask CNN-based models (as shown
in Figure 1) on standard benchmarks, such as Taskon-
omy [54], Replica [42], NYU [31] and CocoDoom [29] .

2. Related Work
Multitasking. In its most conventional form, multi-task
learning predicts multiple outputs out of a shared en-
coder/representation for an input [55]. Prior works [24, 41,
43, 53, 54] follow this architecture to jointly learn multiple
vision tasks using a CNN. Leveraging this encoder-decoder
architecture, IPT [9] was the first transformer-based mul-
titask network aiming to solve low-level vision tasks af-
ter fine-tuning a large pre-trained network. This was fol-
lowed by [30], which jointly addressed the tasks of object
detection and semantic segmentation. Recently, [40] used a
similar architecture for scene and action understanding and
score prediction in videos. However, none of these works
connect such a wide range of vision tasks as we do, includ-
ing 2D, 3D, and semantic domains. Furthermore, they do
not explicitly model the dependencies between the tasks,
which we achieve via our shared attention mechanism.

Transformers. Transformers [45] were originally intro-
duced for language tasks, in particular for machine trans-
lation where they showed impressive improvements over

recurrent-based encoder-decoder architectures. Since then
they have been widely applied to a great range of prob-
lems, including speech recognition [16] and language mod-
eling [12,13]. In the vision domain, transformers have been
used to extract visual features, replacing CNNs for object
detection, image classification, segmentation and video rep-
resentation learning [2,5,6,14,18,34,58]. Recently, several
works, such as UniT [19] and VILBERT-MT [23], have
learned multiple tasks from multimodal domains, such as
vision and text. Here, however, we focus on a single input
modality: images.

Learning task inter-dependencies. Taskonomy [54]
studied the relationships between multiple visual tasks for
transfer learning and introduced a dataset with 4 million
images and corresponding labels for 26 tasks. Following
this, a number of recent works have further studied tasks
relationships for transfer learning [1, 15, 32, 46]. However,
these works differ from multitask learning, in the sense that
they analyze a network trained on a source task and applied
to a different target task, whereas we study the effect of
leveraging multiple tasks during training. In [41], Stand-
ley et al. found notable differences between transfer task
affinity and multi-task affinity and showed the benefits of
leveraging structural similarities between tasks at all lev-
els for multitask learning. In this work, we further study
the task inter-dependencies, but by designing a multitask
transformer model instead of a CNN one. Our MulT model
lets us learn the inter-dependencies across high-level vision
tasks and further improves the task inter-dependencies seen
in CNN-based models.

Attention mechanisms. While there have been a myriad
of attention mechanisms [8, 11, 47, 48, 50, 51] to exploit
long range dependencies using transformers, none of the
prior works utilize a cross-task shared attention for multi-
task learning. This is what we propose in this work to han-
dle multiple vision tasks.

3. MulT: A Multitask Transformer
Our model, MulT, follows the principle of a trans-

former encoder-decoder architecture [45]. It consists of
a transformer-based encoder to map the input image to
a latent representation shared by the tasks, followed by
transformer decoders with task-specific heads producing the
predictions for the respective tasks. Figure 2 shows an
overview of our MulT framework. For our transformer-
based encoder, we use a pyramidal backbone, named the
Swin Transformer [26] to embed the visual features into a
list of hidden states that incorporates global contextual in-
formation. We then apply the transformer decoders to pro-
gressively decode and upsample the tokenized maps from
the encoded image. Finally, the representation from the
transformer decoder is passed to a task-specific head, such
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Figure 2. Detailed overview of our MulT architecture. Our MulT model builds upon the Swin transformer [26] backbone and models the
dependencies between multiple vision tasks via a shared attention mechanism (shown in the bottom left), which we introduce in this work.
The encoder module (in green) embeds a shared representation of the input image, which is then decoded by the transformer decoders (in
blue) for the respective tasks. Note that the transformer decoders have the same architecture but different task heads. The overall model is
jointly trained in a supervised manner using a weighted loss [10] of all the tasks involved. For clarity, only three tasks are depicted here.

as a simple two layer classifier (in the case of segmentation),
which outputs the final predictions. Given the simplicity of
MulT, it can be extended easily to more tasks. We empiri-
cally show that our model can jointly learn 6 different tasks
and generalizes well to new domains. The following sec-
tions describe the details of each component in MulT.

3.1. Encoder Module

For the encoder, we adopt Swin-L [26], which applies
stacked transformers to features of gradually decreasing res-
olution in a pyramidal manner, hence producing hierarchi-
cal multi-scale encoded features, as shown in Figure 2. In
particular, following the ResNet [17] structure and design
rules, four stages are defined in succession: each of them
contains a patch embedding step, which reduces the spa-
tial resolution and increases the channel dimension, and a
columnar sequence of transformer blocks. The initial ba-
sic patch embedding in the first stage is performed with
square patches of size pH = pW = 4 and with chan-
nel size C = 192, without the addition of the ‘class’ to-
ken; the patch merging in all three subsequent stages takes
the output tokens of the previous stage, reshapes them in
a 2D representation and aggregates neighboring tokens in
non-overlapping patches of size pH = pW = 2 through
channel-wise concatenation and a linear transformation that
halves the resulting number of channels (hence doubles the
number of channels with respect to the input tokens). This
approach halves the resolution and doubles the channel di-

mension at every intermediate stage, matching the behavior
of typical fully-convolutional backbones and producing a
feature pyramid (with output sizes of 1/4, 1/8, 1/16, 1/32
of the original resolution) compatible with most previous
architectures for vision tasks.

Following [17], most of the computation is concentrated
in the third stage: Out of a total of N = 24 transformer en-
coders, 2 blocks are in the first, second and fourth stage and
18 are in the third stage. In each block, the self-attention
is repeated according to the number of heads used and de-
pending on the stage of the encoding process. This is done
to match the increase in the channel dimensions, where the
dimensions M = {6, 12, 24, 48} in the first, second, third
and fourth stage, respectively. However, the high resolution
in the first two stages does not allow the use of global self-
attention, due to its quadratic complexity with respect to the
token sequence length. To solve this issue, in all stages, the
tokens, that are reshaped in a 2D representation, are divided
into non-overlapping square windows of size h = w = 7,
and the intra-window self-attention is independently com-
puted for each of them. This means that each token attends
to only the tokens in its own window, both as a query and as
a key/value. A possible downside of this approach could be
that the restriction to fixed local windows completely stops
any type of global or long-range interaction. The adopted
solution is to alternate regular window partitioning with an-
other non-overlapping partitioning in which the windows
are shifted by half their size, ⌊h/2⌋ = ⌊w/2⌋ = 3, both
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in the height and width dimensions. This has the effect of
gradually increasing the virtual receptive field of the subse-
quent attention computations.

3.2. Decoder Module

Inspired by the two CNN-based decoders proposed
in [56], we develop corresponding conceptually simi-
lar transformer-based versions. The general idea is to
replace convolutional layers with windowed transformer
blocks. Specifically, our decoder architecture consists of
four stages, each containing a sequence of 2 transformer
blocks for a total of 8. In each stage, the two sequential
transformer blocks allow us to leverage inter-window con-
nectivity by alternating regular and shifted window config-
urations as in the encoder. Between consecutive stages, we
use an upsampling layer to double the spatial resolution and
half the channel dimension; we therefore adjust the num-
ber of attention heads accordingly to 48, 24, 12, 6, in the
first, second, third and fourth stage, respectively. The spa-
tial/channel shape of the resulting feature maps matches the
outputs of the encoder stages, which are delivered to the cor-
responding decoder stages by skip connections. This yields
an hourglass structure with mirrored encoder-decoder com-
munication: the lower-resolution stages of the decoder are
guided by the higher-level deeper encoded features and the
higher-resolutions stages of the decoder are guided by the
lower-level shallower encoded features, allowing to gradu-
ally recover information in a coarse to fine manner and to
exploit the different semantic levels where they are more
relevant. Note that the first transformer block in each stage
of the decoder uses a regular window partitioning while the
second uses a shifted window partitioning; this can easily be
extended to using a longer sequence of transformer blocks,
as long as the length is a multiple of 2, which makes it pos-
sible to alternate between the two configurations.

To perform multitask prediction, we share the encoder
across all tasks and use task-specific decoders with the same
architecture but different parameter values. We then simply
append task-specific heads to the decoder. For instance, a
model jointly trained for semantic segmentation and depth
prediction will have two task-specific heads: one predicting
K channels followed by a softmax for semantic segmen-
tation and one predicting a single channel followed by a
sigmoid for depth estimation.

3.3. Shared Attention

To account for the task dependencies beyond sharing en-
coder parameters, we develop a shared attention mechanism
that integrates the information contained in the encoded fea-
tures into the decoding stream. Let us now describe how this
mechanism works for one particular decoder stage. Note
that we apply the same procedure for all decoder stages.

Formally, for one task t and one particular decoder stage,

let xt denote the upsampled output of the previous stage,
and xsa the output of the encoding stage operating at the
same resolution. As illustrated in Figure 3, the decoder
stage takes both xt and xsa as input. The standard way
to compute self-attention for task t would be to obtain the
key, query and value vectors from its own decoder output
xt only. By contrast, for our shared attention, we use only
one of the task streams to calculate the attention. That is,
we compute a query qrsa and a key krsa from xsa (coming
from the encoder) by using the linear layers, shown in Fig-
ure 3, of the decoder of one particular reference task r. To
nonetheless reflect the fact that the output of the decoder for
task t should be related to this particular task, we compute
the values vt using the previous stage output xt for task t.
Thus, we compute attention values from the reference task
r as

Ar
sa = softmax

qrsa.k
r
sa

T√
Cr

qkv

+Br

 , (1)

where Cr is the number of channels and Br is the bias.
For any task t, we then compute x̃t = Ar

sav
t. This x̃t is

then used by the self-attention head headti(., .) to compute
headti(x̃

t
i,W

t
i ) = x̃t

i · W t
i , where W t

i is the learnt atten-
tion weight for task t and x̃t

i is the ith channel, respectively.
Note that this formulation represents the ith instance of the
self-attention, which is repeated M times to obtain a multi-
head attention as MHAt(., .) for task t. Following which,
we compute xt

linear by linearly projecting the output of
MHAt(., .). Finally, we obtain yt as follows:

MHAt(x̃t,W ) = Concat(headt1, · · · , headtM )W ,

xt
linear = MHAt(., .) ,

yt = xt + xt
linear ,

(2)

where W indicates the multi-head attention weight. Em-
pirically, we have found that the attention from the surface
normal task stream benefits our 6-task MulT model, and we
thus take this task as reference task r, whose attention is
shared across the tasks. As shown in Figure 3, xr is the
upsampled output of the previous stage of a particular de-
coder for the reference task, taken here as surface normal
prediction.

Note that our shared attention differs from the co-
attention introduced in prior works [7], where the value and
key are passed via a skip connection from the encoder lay-
ers. Figure 4 shows the effect of adding our shared atten-
tion mechanism across the tasks, where our MulT with the
shared attention mechanism improves the results across all
the tasks in comparison with our MulT model without the
shared attention.

Task Heads and Loss. The feature maps from the trans-
former decoder modules are input to different task-specific
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Figure 3. Overview of our shared attention mechanism.

Figure 4. Motivation of the shared attention mechanism on
our MulT model. The shared attention mechanism learns the task
inter-dependencies and improves the prediction for each task. For
instance, the yellow circled region shows how our MulT model
with shared attention across tasks improves the semantic segmen-
tation performance, where the chair mask is correctly classified
in our predictions as in the ground truth. However in the MulT
model without the shared attention, the chair is predicted as a
couch mask. Best viewed on screen and when zoomed in.

heads to make subsequent predictions. Each class head in-
cludes a single linear layer to output a H × W × 1 map,
where H , W are the input image dimensions. We employ a
weighted sum [10] based task-specific losses to jointly train
the network, where the losses are calculated between the
ground truth and final predictions for each task. In particu-
lar, we use cross-entropy for segmentation, rotate loss [54]
for depth, and L1 loss for surface normals, 2D keypoints,
2D edges and reshading, respectively. Note that we em-
ploy these losses to maintain consistency with the base-
lines [41, 53, 54].

4. Experiments and Results

To provide a thorough analysis of MulT and also com-
pare it with well-established prior work, we experiment

with jointly learning prominent, high-level vision tasks.

4.1. Datasets

We evaluate MulT using the following datasets:
Taskonomy [54] is used as our main training dataset.
It comprises 4 million real images of indoor scenes with
multi-task annotations for each image. The experiments
were performed using the following 6 tasks: semantic seg-
mentation (S), depth (zbuffer) (D), surface normals (N ),
2D keypoints (K), 2D (Sobel) texture edges (E) and reshad-
ing (R). The tasks were selected to cover 2D, 3D, and
semantic domains and have sensor-based/semantic ground
truth. We report results on the Taskonomy test set.
Replica [42] comprises high-resolution 3D ground truth
and enables more reliable evaluations of fine-grained de-
tails. We test all the networks on 1227 images from Replica
(with and without fine-tuning).
NYU [31] comprises 1449 images from 464 different in-
door scenes. We test all the networks on NYU (with and
without fine-tuning).
CocoDoom [29] contains synthetic images from the
Doom video game. We use it as an out-of-training-
distribution dataset.

4.2. Training Details

We jointly train MulT on multiple tasks, including, se-
mantic segmentation, depth estimation, 2D keypoint de-
tection, 2D edge detection, surface normal estimation and
reshading. In our implementation, we train with a batch
size of 32 on 32 Nvidia V100-SXM2-32GB GPUs in a dis-
tributed fashion, using PyTorch. We use the weighted Adam
optimizer [27] with a learning rate of 5e-5 and the warm-up
cosine learning rate schedule (using 2000 warm-up itera-
tions). The optimizer updates the model parameters based
on gradients from the task losses.

4.3. Baselines

We compare our MulT model with the following state-
of-the-art baselines.
Baseline UNet (for single-task or independent learning)
constitutes our CNN-based baseline. We use it as a refer-
ence for all the multitask models.
Baseline Swin transformer [26] (for single-task or inde-
pendent learning) constitutes the single task transformer
baseline. It is almost identical to our MulT model, except
for not including shared attention and for being trained with
only one dedicated task. We use it to evaluate the benefits
of our multitask learning strategy
Multi-task learning [22] (MTL) comprises a network
with one shared encoder and multiple decoders each ded-
icated to a task. This baseline further identifies if tasks are
inter-dependent, such that a shared representation can give
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comparable performance across multiple tasks, without ex-
plicitly adding task constraints.
Taskonomy [54] studies the relationships between multi-
ple visual tasks for transfer learning.
Taskgrouping [41] studies task compatibility in multi-
task learning, thus providing a framework for determining
which tasks should be trained jointly and which tasks should
be trained separately.
Cross-task consistency [53] presents a general and data-
driven framework for augmenting standard supervised
learning with cross-task consistency. It is inspired from
Taskonomy [54] but adds a consistency constraint to learn
multiple tasks jointly.

Note that we do not compare our method with the con-
temporary work [19] as it focuses on bimodal multitask
learning for vision- and language-related tasks. By con-
trast, in this work, we tackle unimodal multitask learn-
ing for high-level vision tasks. All the multitask base-
lines were trained using their best model configurations as
in [22, 41, 53, 54], respectively.

Relative Performance On
S D N K E R

S - +3.83% -1.42% -1.33% +33.9% -0.80%
D +4.83% - +2.77% -1.92% +35.2% +3.93%
N +11.3% +8.35% - +91.2% +77.1% +9.09%
K +5.11% +0.57% -6.88% - +70.1% +0.21%
E +6.09% +4.33% -0.73% +4.75% - +5.11%
R +8.61% +4.45% +5.91% +1.95% +33.9% -

Table 1. Quantitative comparison of our MulT model with
a single-task dedicated Swin transformer baseline [26]. Our
MulT model is jointly trained in a pairwise manner on the Taskon-
omy benchmark [54]. For instance, in the first row, second col-
umn, we show the results of our MulT model trained with seman-
tic segmentation and depth in a pairwise manner, and tested on
the task of depth estimation. The relative performance percentage
for each task is evaluated by taking the percentage increase or de-
crease w.r.t. the single-task baseline. The results here are reported
on the Taskonomy test set. The columns show the task tested on,
and the rows show the other task used for training.

4.4. Quantitative Results

The results in Table 1 show the relative performance of
our MulT model when trained on pairs of tasks and tested on
one of the two tasks. We observe that, out of the pairwise-
trained multitask models, surface normals help the other vi-
sion tasks. However, the performance of normals tends to
decrease w.r.t. its single task dedicated model, except when
used in conjunction with either depth predition or reshading.
Note that the trends we observe are similar to those shown
in [41] for the CNN case. This suggests that transformers
follow a similar behavior to that of CNNs in the presence of
multiple tasks.

In cases of more than two tasks, we observe, as in [41],
that effectively leveraging between 3 and 6 tasks required

increasing the size of the decoder modules. Altogether, re-
porting results for all possible task combinations requires
training (26−1) models. Here, we focus on the 6-task case,
but provide 3-task, 4-task, and 5-task results in the supple-
mentary material. The results of our 6-task MulT model
and of the baselines are reported in Table 2 and Table 3
for the Taskonomy test set [54], and the Replica [42] and
NYU [31] dataset, respectively. Our MulT model outper-
forms the multitask CNN baselines as well as the 1-task
CNN and Swin ones. Furthermore, as can be verified from
the results in the supplementary material, increasing the
number of tasks improves the results of our MulT model,
e.g., a 6-task network outperforms a 5-task one, which in
turn outperforms a 4-task network.

4.5. Qualitative Results

We qualitatively compare the results of our MulT model
with different CNN-based multitask baselines [22, 41, 53,
54], as well as with the single task dedicated Swin trans-
former [26]. The results in Figure 5 show the performance
of the different networks on all six vision tasks. All the
multitasking models are jointly trained on the six tasks on
the Taskonomy benchmark, and the single task dedicated
Swin models are trained on the respective tasks. Our MulT
model yields higher-quality predictions than both the single
task Swin baselines and the multitask CNN baselines. We
provide additional qualitative results in the supplementary
material.

4.6. Generalization to New Domains

In this section, we demonstrate how well MulT general-
izes to new domains without any fine-tuning, and how ef-
ficiently MulT can adapt to a new domain by fine-tuning
on a small set of training examples from the new domain.
To this end, we compare our MulT model and the two
baselines of Taskgrouping (TG) [41] and Cross-task con-
sistency (CT) [53] on two new domains, namely, Gaussian-
blurred images from Taskonomy [21] and images from the
Cocodoom [29] dataset. Note that all the networks were
trained on the vanilla Taskonomy dataset [54]. When fine-
tuning the networks, we use either 16 or 128 images from
the new domain. The original training data (Taskonomy)
is retained during fine-tuning to prevent the networks from
forgetting the original domain.

The results in Table 4 and Figure 6 show that our MulT
model yields better generalization and adaptation to new
domains, both with and without fine-tuning. These find-
ings confirm the observations made in [4] for the single-
task scenario. The cross-task consistency [53] model shows
improved performance in comparison to the Taskgroup-
ing [41] baseline because of its explicitly enforced consis-
tency constraint, whereas the Taskgrouping model [41] suf-
fers due to the joint task pairings and the lack of an attention
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Relative Performance On
Taskonomy Test Set [54]

S D N K E R
MTL [22] vs 1-task CNN [39] +2.05% +3.11% +4.38% -1.29 % +45.22% +2.99%
Taskonomy [54] vs 1-task CNN [39] +2.63% -3.82 % +2.95% +10.13 % +59.05% +4.52%
Taskgrouping [41] vs 1-task CNN [39] +6.24% +3.36% +4.23% +21.77% +73.6 % +5.79%
Cross-task [53] vs 1-task CNN [39] +9.01% +6.77% +5.61% +23.20% +75.8 % +11.1%
MulT vs 1-task Swin [26] +19.7% +10.2% +8.72% +94.75% +88.8% +16.4%
MulT vs 1-task CNN [39] +21.6% +11.5% +9.71% +97.04% +92.9% +21.0%

Table 2. Quantitative comparison of our MulT model with baselines when jointly trained for six tasks on the Taskonomy bench-
mark [54]. Our six-task MulT model consistently outperforms all the baselines, including the multitasking CNN baselines and the single-
task CNN and Swin baselines. The relative performance percentage for each task is evaluated by taking the percentage increase or decrease
w.r.t. the single-task baseline. The results here are reported on the Taskonomy test set. Bold and underlined values show the best and
second-best results, respectively.

Relative Performance On
Replica Dataset [42] NYU Dataset [31]

D N R S D
MTL [22] vs 1-task CNN [39] +2.53% +3.03% +1.87% +1.13% +2.72%
Taskonomy [54] vs 1-task CNN [39] -4.55% +1.99% +3.33% +2.05% -4.07%
Taskgrouping [41] vs 1-task CNN [39] +2.75% +4.09% +5.47% +6.01% +2.91%
Cross-task [53] vs 1-task CNN [39] +5.10% +4.33% +9.55% +8.10% +5.71%
MulT vs 1-task Swin [26] +8.33% +7.05% +14.2% +13.3% +8.54%
MulT vs 1-task CNN [39] +10.1% +8.59% +19.6% +15.7% +10.4%

Table 3. Quantitative comparison of our MulT model with baselines on the Replica benchmark and the NYU benchmark. We apply
our MulT model, jointly trained on 6 tasks on the Taskonomy dataset, to test the depth, normals and reshading prediction performances
on the Replica dataset [42], and the segmentation and depth prediction performance on the NYU dataset [31]. Our six-task MulT model
consistently outperforms all the baselines, including the multitasking CNN baselines and the single-task CNN and Swin baselines. The
relative performance percentage for each task is evaluated by taking the percentage increase or decrease w.r.t. the single-task baseline.
Bold and underlined values show the best and second-best results, respectively.

mechanism or an additional constraint. Nevertheless, our
MulT model outperforms both these baselines and shows
better generalization.

Generalization to New Domains
No. of Error (w/ Fine-tuning)↓ Error (w/o Fine-tuning)↓

Domains images MulT CT [53] TG [41] MulT CT [53] TG [41]
Blur [21] 128 12.6 17.4 21.9 27.0 46.2 55.1
(Taskonomy) 16 17.5 22.2 26.3
CocoDoom 128 13.3 18.5 25.3 39.3 54.3 67.7[29] 16 20.9 27.1 39.9

Table 4. Domain generalization on Taskonomy blur data [21]
and CocoDoom [29]. Our MulT model shows better abilities to
generalize and adapt to new domains, both with and without fine-
tuning. Bold and underlined values show the best and second-best
results, respectively.
Supplementary Material. We defer additional discus-
sions and experiments, particularly analyzing the effect of
the shared attention in our MulT model and the effect of
the network size for different task combinations, as well as
additional qualitative results to the supplementary material.
We also analyze the number of parameters required by each
model and the environmental impact of training such mod-
els in the supplementary material.

5. Conclusion and Limitations
In this work, we have shown that the transformer frame-

work can be applied to jointly handle multiple tasks within

a single end-to-end encoder-decoder framework. Our MulT
model simultaneously addresses 6 different vision tasks,
learning them in a single training step and outperforming an
independent single task model on each task with a compact
set of shared parameters. This allows us to use a single net-
work to handle multiple vision tasks instead of multiple sin-
gle task networks, thereby reducing the computational cost,
for both training and inference. Furthermore, our MulT
model outperforms the state-of-the-art CNN-based multi-
tasking models, in terms of both performance in the original
domain and generalization/adaptation to new domains.

Our current framework nonetheless suffers from some
limitations:
Data dependency. Although we validated our findings
using various architectures and benchmarks, the results of
our approach, as any deep learning one, are in principle data
specific. In particular, MulT is a data intensive architecture,
and thus when trained on a limited amount of data, it may
not achieve the same performance as reported in this work.
Note, however, that this is also the case for both single task
transformers and the CNN-based multitask baselines.
Unpaired Data. Our current framework, as the CNN-
based multitask baselines, requires paired training data. Ex-
tending our approach to unlabeled/unpaired data, as in [57],
appears feasible and remains open for future work.
Modeling efficient attention. Our current framework
makes use of shared attention across the visual tasks. Ex-
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Figure 5. Qualitative comparison on the six vision tasks of the Taskonomy benchmark [54]. From top to bottom, we show qualitative
results using MTL [22], Taskonomy [54], Taskgrouping [41], Cross-task consistency [53], the single-task dedicated Swin transformer [26]
and our six-task MulT model. We show, from left to right, the input image, the semantic segmentation results, the depth predictions, the
surface normal estimations, the 2D keypoint detections, the 2D edge detections and the reshading results for all the models. All models
are jointly trained on the six vision tasks, except for the Swin transformer baseline, which is trained on the independent single tasks. Our
MulT model outperforms both the single task Swin baselines and the multitask CNN based baselines. Best seen on screen and zoomed
within the yellow circled regions.

Figure 6. Generalization to new domains. Our MulT model generalizes better to new domains than the Cross-task [53] baseline,
both when fine-tuned and not fine-tuned, across the tasks of surface normal prediction and reshading. This shows the benefits of our
shared attention module. We test the models on two target domains, Gaussian blur applied to the Taskonomy images [54] and the out-of-
distribution CocoDoom dataset [29]. Best viewed on screen and when zoomed in the yellow circled regions.

tending this concept to incorporate local versus global at-
tention, as in [51], appears feasible and remains open for
future work.

Besides addressing these limitations, in the future, we
plan to extend our methodology to learning different types
of tasks like edge occlusions, principal curvatures and unsu-
pervised segmentation, and doing zero-shot learning on new

tasks. In addition, it would be worthwhile to explore the ro-
bustness of large-scale multitask transformers to adversarial
tasks, which could become increasingly problematic as the
number and variety of tasks grow.
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