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Abstract

Humans can perceive multiple expressions, each one
with varying intensity, in the picture of a face. We propose a
methodology for collecting and modeling multidimensional
modulated expression annotations from human annotators.
Our data reveals that the perception of some expressions
can be quite different across observers; thus, our model is
designed to represent ambiguity alongside intensity. An em-
pirical exploration of how many dimensions are necessary
to capture the perception of facial expression suggests six
principal expression dimensions are sufficient. Using our
method, we collected multidimensional modulated expres-
sion annotations for 1,000 images culled from the popular
ExpW in-the-wild dataset. As a proof of principle of our im-
proved measurement technique, we used these annotations
to benchmark four public domain algorithms for automated
facial expression prediction.

1. Introduction
Humans communicate using their body. Automating

the perception of bodily and vocal expressions is neces-
sary towards building machines that can interact grace-
fully with humans [8, 59]. Facial expression is an im-
portant channel of the communication [9, 16], and percep-
tion of facial expressions is important for social interac-
tion [16, 29]. Computer vision researchers have long been
interested in measuring human facial expressions from im-
ages and video [4, 12, 41, 47, 56] with the aim of replicating
it in machines [4, 41].

Automated facial analysis is rooted in machine learning,
thus model training and benchmarking rely on large well-
annotated datasets. This raises three questions which are
not well addressed in the facial expression perception liter-
ature: First, how should images be annotated, i.e. what is
a good representation of human perception of facial expres-
sion? Second, can we measure the perception reproducibly
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Figure 1. Face expression perception is multidimensional, nu-
anced and subjective. Perceived expression is measured by ask-
ing 9 crowdsourced annotators to report perceived intensity for
each of six dimensions (15 and 21 dimensions in other experi-
ments as described in Sec. 4.1). Annotation histograms and Beta
distribution fits (Sec. 3.2) are shown. One dimension, ‘happy’,
captures the expression of the first face. The second requires two:
‘happy’ and ‘surprised’. The third requires more dimensions and
is more ambiguous.
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Figure 2. Expression predictions compared to ground truth.
The outputs of 4 expression prediction algorithms (colored sym-
bols) are compared to the ground truth obtained from our anno-
tations for one image. Gray bands: confidence intervals of our
ground truth, ×: µ (See Sec. 3.2 and 4.3).
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Figure 3. Evidence for intensity and compound expressions
found in the arts. (Top) Expressions vary in intensity. (Bottom)
Any pair of primary expressions may be combined to obtain a valid
composite expression (Table 1, Sec. 2.1). (Adapted with permis-
sion from Scott McCloud’s Making Comics [42], pages 84-85).

and, yet, efficiently? Third, what is the right metric to com-
pare an algorithm’s output with human ground truth?

To answer the first question we rely on insight from ex-
perimental psychology [15, 25, 31, 45], which suggests that
facial expressions are multidimensional and are perceived
with different degrees of intensity (see Fig. 1). This con-
strasts with the common practice in computer vision where
expressions are often annotated as a binary and/or a one-
hot code (Sec. 2). To answer the second question, we focus
on crowdsourcing – we annotated 1,000 ethnically diverse
in-the-wild faces from a public dataset [60], where each
was rated by 9 annotators for each of the 6 primary Ekman
expressions [17], the corresponding 15 compound expres-
sions [42, 49] and the combined set of 21 expressions. On
this dataset we explore the consistency of annotations, as
well as the number of dimensions that need to be annotated.
Lastly, we propose a metric that compares human annota-
tions, including their ambiguity, with algorithm prediction,
and use our annotated dataset to benchmark four recent al-
gorithms (Sec. 4.3).

Our main contributions are: 1. An efficient method for
collecting and modeling reproducible, multi-dimensional,
modulated facial expression annotations crowdsourced
from humans. The novel modeling technique transforms
annotations into probability distributions to express mea-
sures of expression intensity and ambiguity. 2. A bench-
mark for facial expression prediction algorithms consisting
of annotations on 1,000 face images from a public in-the-
wild dataset, and a metric for algorithmic accuracy of ex-
pression prediction.

2. Related work
2.1. Expression and perception

The mechanics and repertoire of facial expression are
fairly well understood. Ekman [15] postulated six pri-
mary dimensions (happy, angry, surprised, sad, fearful, dis-
gusted), independent of culture and experience, and de-
scribed the muscle actions that produce such primary ex-
pressions [17]. This point of view has, by and large, stood
the test of time [31]. Artists have empirically observed that

Expression 1 Expression 2 Compound Hypothesis
Angry Happy Cruel
Angry Surprised Outraged (P)
Angry Fearful Dreadful*
Angry Disgusted Contemptuous (P), Outraged (M)
Angry Sad Betrayed
Happy Surprised Amazed
Happy Fearful Desperate
Happy Disgusted Morbid (P)
Happy Sad Hopeful
Surprised Fearful Spooked
Surprised Disgusted Disbelieving (P)
Surprised Sad Disappointed
Fearful Disgusted Horrified
Fearful Sad Devastated
Disgusted Sad Remorseful

Table 1. The compound expressions hypothesis. All pairwise
combinations of 6 primary expressions are considered. The names
of the compound expressions were obtained from Scott McCloud’s
Making Comics [42] and Robert Plutchik’s theory of expression
[49]. McCloud nor Plutchik use multiple words to describe the
compound of angry and fearful. We use ‘Dreadful’ here following
prior work [33, 38]. An analysis of whether complex expressions
may be suitably modeled as superposition of primary expressions
can be found in Sec. 4.4. See also Sec. 2.1 and Fig. 4.

some expressions involve simultaneously more than one of
the six primary dimensions [42]. Recent research has ex-
plored that intuition and characterized the corresponding fa-
cial actions [13].

The perception of facial expressions is also well stud-
ied, alongside the perception of other socially relevant at-
tributes such as gender, age, and trustworthiness. Human
annotators can make fast judgments [54], which may be
used in important decisions [50]. Often, there is good
agreement amongst annotators on their perception, although
some annotators are believed to be more perceptive and re-
liable [25]. Whether and when the annotators’ judgments
correspond to meaningful and useful information is still de-
bated [30]. Notably, Barrett et al. [2] questioned whether a
person’s internal emotional state may be inferred from fa-
cial expression, an assumption central to Ekman’s earlier
views on emotion and facial expression. Our method and
data will help provide empirical evidence for the ongoing
Barrett-Ekman debate.

2.2. Automating prediction of expression perception
Computer vision algorithms may be used to measure fa-

cial expressions and predict the voluntary report that a reg-
ular person would make of their perception of the expres-
sion upon looking at a face image. We use the shorthand
“prediction of expression” and “expression classification”,
and the meaning should be clear by context.

Detecting and analyzing human faces was recognized
as an important task from the inception of computer vi-
sion [28]. Since the early 1990s, computer vision re-
searchers have been interested in automating the perception
of facial expressions [4, 12, 41, 47, 56] and deep learning is
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Figure 4. Predicting compound expressions from the primary six. We trained three regressors to predict compound expressions from
those of primary ones. The first regressor (full model) utilizes all 6 primary expressions as features to predict each compound expression.
The second (compound hyp.) uses 2 primary expressions to predict each compound expression, where the two expressions are taken from
the compound expressions hypothesis (Table 1). The third model (best 2) uses the two primary expressions that best fit each compound
expression. The µ of the fitted beta distributions are also plotted (see Sec. 3.2). The gray confidence intervals are computed from the beta
distribution and represent 66% confidence. Goodness-of-fit measurements comparing the different regressors are discussed in Sec. 4.4.

the prevalent approach of modern algorithms [1, 19, 34, 52,
55]. We make no direct contribution to algorithms. Rather,
we focus on defining a minimal and sufficient representa-
tion for expression perception, methods for dataset annota-
tion and methods for benchmarking algorithms.

2.3. Data annotation of perceived expression
Datasets for training and testing automatic models are

annotated by human observers who classify the expressions
they perceive. There are two popular approaches. The first
measures facial actions [4, 17], i.e. the contraction of spe-
cific muscles, a demanding task even for experts. Once the
facial actions are measured, one may infer the underlying
expression. The second, which we adopt, aims at making
use of the perception of regular people and thus focuses di-
rectly at naming facial expressions. The perception of many
face attributes is empirically consistent across human anno-
tators [24, 31], which justifies considering it as an intrinsic
property of the image. However, a number of questions are
left open in the literature.

First, crowd-sourcing, e.g. on Amazon Mechanical Turk
(AMT), has been adapted in the domain, but the consistency
of reports in such setting, has never been studied to the best
of our knowledge. Goodfellow [21] discussed observations
on human performance for expression classification but not
for crowdsourced settings and not through formal experi-
ments. Recent work [35] compared annotations from dif-
ferent annotators with the goal of consolidating scores, yet
did not quantify the reliability of the annotation mechanism.
Our work directly analyzes the reproducibility of crowd-
sourced annotations, and provides practical recommenda-
tions on how many expression dimensions and how many
annotators are needed.

Second, it is not known whether all images are equally
consistently interpreted, and whether some are ambiguous.
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AffectNet [44] 420K ✓ 7 ✗ ✗

EmotioNet [18] 50K ✓ 6+17‡ ✗ ✗

FERPlus [3] 36K ✓ 7 ✗ ✗

iCV-MEFED [22] 31K ✗ ✗ ✗ ✗

RAF-DB [36] 30K ✗ 7+11 ✗ ✗

ExpW [60] 8.3k ✓+ ✗ ✗ ✗

RAF-ML [35] 4.9k ✓ 6 ✗† ✓††

RADIATE [7] 1.7k ✗ ✗ ✗ ✗

CAFE [37] 1.2k ✗ ✗ ✗ ✗

Our study 1k ✓ 6+15 ✓ ✓

NimStim [51] 0.7k ✗ ✗ ✗ ✗

BU-3DFE [58] 0.6k ✗ ✗ ✓ ✗

Dawel, Amy, et al [10] 0.6k ✗ ✗ ✓ ✓

NIMH-ChEFS [14] 0.5k ✗ ✗ ✓ ✗

Karolinska [20] 0.5k ✗ ✗ ✓ ✗

DEFSS [43] 404 ✗ ✗ ✓ ✗

RaFD [32] 216 ✗ ✗ ✓ ✗

JAFFE [39] 213 ✗ 7 ✓ ✗

Chicago [40] 158 ✗ ✗ ✓ ✗

Table 2. Synopsis of face image collections annotated for ex-
pression. (*) Primary and compound expressions. (‡) EmotioNet
annotated facial action units to generate expression categories. (+)
ExpW faces are sourced from both movies and in-the-wild images.
(†) RAF-ML asked each annotator to select one expression out of
all categories, the rating is binary per category. (††) RAF-ML ob-
tained modulated labels by combining binary annotations from a
large number of annotators. (Sec. 2.3)

We address this question and find that, indeed, some face
images are ambiguous, which motivates representing the
ground truth as an interval, or a probability distribution,
rather than a single label or value (Sec. 4.2).
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Third, while it is well established in the psychology lit-
erature that facial expressions differ in intensity and multi-
ple primary expressions (or compound expressions) can co-
exist [13,42,49], none of the existing datasets that one may
use for testing facial expression algorithms support both
multi-class encoding and modulated intensity of each ex-
pression class (see Table 2). We propose here a method for
collecting annotations of multidimensional modulated ex-
pressions for each face image. The method used to gener-
ate the RAF-ML dataset [35] produced multi-dimensional
modulated annotations and is most similar to ours; how-
ever, they asked annotators to pick only one expression per
face, while we allow annotators to pick an intensity rating
for each expression per face. Furthermore, their method re-
quired 40 annotators per face while in our case we find that
5-6 annotators are needed (Sec 4.2), thus, our method is less
expensive and more likely to capture subtle expression vari-
ations. Blank et al. [5] also introduced a novel method to
estimate multi-dimensional intensity ratings from discrete
one-hot annotations using co-occurrence matrices. How-
ever, it has not yet been shown that such approaches are
an equivalent or sufficient representation of how a person
would perceive multiple expressions in a face.

Fourth, while it has been suggested that compound ex-
pressions may be thought of as combinations of the six pri-
mary expressions [13, 42] (see Table 1), it has not yet been
verified whether the perception of crowdsourced annotators
satisfies this hypothesis, and thus whether one may sim-
ply annotate the six primary expressions, or whether both
primary and compound (15 pairwise compounded expres-
sions) need to be annotated (for a total of 21 expressions).
This question is explored in Sec. 4.4.

2.4. Benchmarking perceived expression
Most previous methods for benchmarking facial expres-

sion algorithms are based on comparing the output of the
algorithm to a one-hot encoding [1, 6, 19, 52, 55]. Re-
cently, RAF-ML [35] proposed the direct usage of several
common metrics for evaluating multi-dimensional measure-
ments onto expression prediction. Along this direction, we
further propose a new metric where not only modulated al-
gorithmic predictions are compared with modulated ground
truth annotations via a distance metric, but also the ground
truth ambiguity is represented as a probability distribution
and the algorithm’s predictions are matched to such distri-
bution using a cross-entropy metric.

3. Methods
3.1. Multidimensional modulated annotation

People may perceive one or more primary expressions
at varying intensities when viewing a face. To adequately
capture this phenomenon, we designed three graphic in-
terfaces where the annotator may report how much or

Figure 5. Annotator interface for expression annotation. The
interface shown here was used to annotate the perception of the
expression of the six primary expression classes (see Sec. 3.1 and
4.1). Annotators must select one intensity (column) per dimen-
sion (row). A similar interface was used for annotating the 15
compound expressions (Table 1) and the set of 21 primary and
compound expressions separately (see Supplementary).

how little they perceive each facial expression on a 5-
point scale (Fig. 5). Throughout our annotation collec-
tion, we adapted three sets of multi-dimensional expres-
sion options in our interface: (1) 6 primary expressions
(‘happy’,‘angry’,‘surprised’,‘sad’,‘fearful’,‘disgusted’), (2)
15 compound expressions (‘cruel’, ‘outraged’, ‘dreadful’,
‘contemptuous’, ‘betrayed’, ‘amazed’, ‘desperate’, ‘mor-
bid’, ‘hopeful’, ‘spooked’, ‘disbelieving’, ‘disappointed’,
‘horrified’, ‘devastated’, and ‘remorseful’), and (3) the set
of 21 primary and compound expressions.

We took an online crowdsourcing approach to collect the
human annotations because it is easily accessible, scalable,
and cost-efficient. The custom interface was developed us-
ing Amazon SageMaker Ground Truth, which allows one to
easily crowdsource the task.

The experimental details on curating the dataset are de-
scribed in Sec. 4.1. To measure the reliability and efficiency
of the online crowdsourcing approach, we then analyze the
annotator efficiency and rating consistency in Sec. 4.2. A
benchmark analysis on four public-domain algorithms is
presented in Sec. 4.3, and an exploration of modeling com-
pound expressions is introduced in Sec. 4.4.

3.2. Modeling annotations with Beta distributions
After multidimensional modulated annotations have

been collected, they can be used to model the variabil-
ity in human perception of a given expression. From
the annotation interface (Fig. 5), we map the modu-
lated intensity choices “Not at all”, “Somewhat”, ..., “Ex-
tremely” to numerical values 0.1, 0.3, ..., 0.9. We denote
the modulated annotator intensity rating with r(i,d,l) ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, where i ∈ [1, 2, ..., N ] indicates the
image index (N = 1, 000), d ∈ [1, 2, ..., D] is the expres-
sion dimension (D =6, 15 or 21), and l ∈ [1, 2, ..., L] indi-
cates the human label annotator index (typically L = 9).

In order to model expression perception intensity (mag-
nitude) and spread (uncertainty) of the annotators’ percep-
tions, we fit a Beta distribution [26] (Sec. 4.1) for each set
of annotators’ ratings r(i,d) = {r(i,d,1), r(i,d,2), ..., r(i,d,L)}
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for each expression dimension d of each face image i. We
fit the ratings to the beta distribution g(r|α(i,d), β(i,d)) us-
ing maximum likelihood estimation (MLE) [46] obtaining
parameters α(i,d) and β(i,d). A small uniform regularization
noise sampled from [−0.1, 0.1] is added to each rating be-
fore computing the MLE. Omitting the subscripts for sim-
plicity, the two parameters α and β control the shape of the
curve, i.e. the position of the mode (or anti-mode) and the
dispersion (or variance). The mean, µ, of the distribution
is defined as µ = α

α+β . Confidence intervals visualize the
range of 68.3% (median ±σ) of the distribution.

The ratings we collect from annotators are discrete val-
ues while the Beta distribution is continuous. Therefore, we
approximate the definite integral of g(r|α, β) following the
principle of the trapezoidal rule [57] with the resolution of
the partition being the same as the five-level rating. This
approximation yields a discrete version of the Beta function
which we denote as ḡ(r|α, β) and use for calculation.

3.3. Annotation ambiguity and cross entropy
Annotators, based on their perception, may disagree on

the intensity of each facial expression for the same face. We
adapt a formulation of entropy to measure such intensity
ambiguity amongst annotators. For each face image i per
expression dimension d, we take a set of L ratings r(i,d) =
{r(i,d,1), r(i,d,2), ..., r(i,d,L)}, and calculate the entropy S as

S(r(i,d)) =

0.9∑
r=0.1

f (r, r(i,d)) ∗ log(f (r, r(i,d))) (1)

where f (r, r(i,d)) indicates the frequency of rating value r ∈
{0.1, 0.3, 0.5, 0.7, 0.9} in the set of L intensity ratings in
r(i,d). We apply the entropy to analyze the extent to which
there is a consensus amongst the annotators and find the
prevalent perception (Sec 4.2).

We introduce a cross entropy measure for comparison
between a Beta distribution fitted from a set of ratings and
another single intensity rating. If the latter comes from a
human annotator, then we have r ∈ {0.1, 0.3, 0.5, 0.7, 0.9};
if the latter comes from a model’s prediction, we quantize
it into the discrete values for fair cross-entropy calculation.
To this point, we define the cross entropy between a discrete
rating r and a Beta distribution given by α and β as:

Hβ(r|α, β) = − log(ḡ(r|α, β)), (2)

which we use in analysis and benchmarking (Sec. 4).

3.4. Algorithm benchmarking metrics
Multidimensional modulated annotations can be used to

benchmark current expression perception algorithms. The
model predicted facial expression intensity for image i
along expression dimension d can be denoted as r̂(i,d) ∈
(0, 1). We calculate the cross-entropy Hd for an expression
dimension d across all images using:
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Figure 6. Annotator rating frequency. The distribution of an-
notations across all images per expression dimension (6 primary
expressions). A given expression is most often not present on a
given face.(Sec. 4.2)
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Figure 7. Quantity of annotations by annotator. The number
of images rated by unique annotators. The x-axis is number of
annotated images presented in a log10 scale. (Sec. 4.2)

Hd =
1

N

N∑
i=1

Hβ(r̂(i,d)|α, β), (3)

where Hβ(r|α, β) is defined in Eq. 2. We also introduce
Md, a measure of absolute distance between the Beta distri-
bution and the rating, for each expression dimension d as:

Md =
1

N

N∑
i=1

|µ(i,d) − r̂(i,d)|, (4)

where µ(i,d) is the distribution mean for image i along di-
mension d.

4. Experiments and analysis
The following subsections introduce the experimental

design used to validate multidimensional modulated anno-
tations (Sec. 4.1), assess annotator behavior during the task
(Sec. 4.2), demonstrate their potential for use to bench-
mark expression perception algorithms (Sec. 4.3) and test
the compound expression hypothesis (Sec. 4.4).

4.1. Experimental details
Image selection for benchmark annotation. 1,000 unique
images were curated from the pre-existing Expression in-
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Figure 8. Annotator agreement. The frequency of entropy val-
ues (S as defined in Eq. 1, Sec. 3.3) across all images and ex-
pressions annotated during the primary expression experiment.
Lower entropy scores signify greater agreement between annota-
tors. (Sec. 4.2)

the-Wild (ExpW) dataset [60]. We first excluded images
that contained non-human faces, a watermark corrupting the
face area, and images with low resolution. To diversify the
range of individuals in the set, we then filtered the data using
ethnic and nationality keywords found in the original ExpW
query metadata (i.e., African, American, Asian, European,
etc.), leaving 42,790 images. We obtained face bounding
boxes from the images and sampled faces by given ExpW
expression labels to ensure a variety of facial expressions.
Finally, 1,000 ethnically-diverse cropped face images above
40KB and of high image quality [11] were selected for in-
clusion.

Annotation collection. We designed a custom Amazon
SageMaker GroundTruth graphic interface (Fig. 5) to col-
lect annotator data in three experiments. First, participants
were recruited to rate face images by the 6 primary expres-
sions and paid at a rate of $0.072 per completed image. In
the second experiment, participants rated images by the 15
compound expressions and were paid $0.24 per image. In
the final experiment, participants rated images by the set of
21 expressions and were paid $0.24 per image. The median
time taken to annotate 6, 15, and 21 expressions was 25,
56, and 62 seconds respectively, yielding an average pay
rate of $13.23 per hour. Each image was annotated by 9
unique AMT participants per experiment, resulting in ap-
proximately 27,000 annotations and 358.3 hours of work.

Beta distribution fitting. Annotator intensity ratings were
used to estimate shape parameters, α and β, of a Beta dis-
tribution per expression per face (Sec. 3.2).

0
2
4
6

ha
pp

y S = 0.69

0
2
4
6

an
gr

y S = 0.0

0
2
4
6

su
rp

. S = 0.53

0
2
4
6

sa
d

S = 0.0

0
2
4
6

fe
ar

fu
l S = 0.35

0.0 0.2 0.4 0.6 0.8 1.0
Intensity

0
2
4
6

dis
g.

S = 0.0

0
2
4
6

S = 1.46

0
2
4
6

S = 0.35

0
2
4
6

S = 1.52

0
2
4
6

S = 0.35

0
2
4
6

S = 0.68

0.0 0.2 0.4 0.6 0.8 1.0
Intensity

0
2
4
6

S = 0.35

0
2
4
6

S = 1.0

0
2
4
6

S = 1.37

0
2
4
6

S = 1.15

0
2
4
6

S = 1.37

0
2
4
6

S = 1.52

0.0 0.2 0.4 0.6 0.8 1.0
Intensity

0
2
4
6

S = 1.52

Figure 9. Annotator agreement is image-specific. Sample im-
ages with varying levels of annotator agreement (measured with
entropy S; see Eq. 1, Sec. 3.3 and Fig. 8). The density of the raw
ratings are shown with the beta fit for each expression dimension.
(Sec. 4.2)

4.2. Annotator behavior and consistency
We begin our analysis of the experimental results by ex-

amining annotator behavior. The annotation process was
reasonably quick. As expected annotators took more time to
simultaneously annotate more expression dimensions (me-
dian time per image 25 seconds for the primary (6), 56 sec-
onds for compound (15), 62 seconds for the set of both
(21)). Annotators were also less willing to rate images
along more dimensions. As seen in figure 7, more annota-
tors gave up after annotating a few images for the compound
and 21 expressions tasks, which we take as an indication
that such tasks are more demanding.

Next, we considered how often and how intensely each
expression is labeled in the dataset. Fig. 6 shows a his-
togram of how often each intensity rating was used across
all images and annotators during the primary expressions
annotation task. We then explored how many face images
were perceived to exude multiple expressions by calculat-
ing the total number of expression dimensions where the
median intensity rating meets (equal or larger) a threshold
τ = 0.5 (i.e., a majority of annotators indicate that an ex-
pression can be perceived at least moderately).

On images rated solely along the six primary expressions
we find that 28.7% of images do not satisfy this condition
for any expression, 58.5% meets the threshold for one ex-
pression, 10.1% for two expressions, 2.3% for three, 0.4%
for four, and none with more than four expressions having
a median intensity rating ≥ 0.5 for a given face. Thus, we
find that single primary expressions are prevalent, and that
compound expressions are mostly the superposition of two
primary expressions and not more.
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Ratings used to Fit Beta Distribution
8 7 6 5 4 3 2

angry 1.69 1.78 1.93 2.21 2.81 4.42 10.24
disgusted 2.03 2.18 2.44 2.92 3.84 5.88 11.78
fearful 1.79 1.92 2.14 2.52 3.29 5.11 10.85
happy 1.62 1.71 1.85 2.12 2.73 4.46 10.60
sad 1.80 1.93 2.12 2.48 3.22 4.97 10.83
surprised 1.79 1.89 2.06 2.40 3.16 5.18 12.24

Table 3. How many annotators are needed for reproducible
measurements? Beta distributions are fit to the data using all pos-
sible combinations of c = 2, 3,.., L-1 annotator ratings (Sec. 4.2).
Cross-entropy, Hβ (Eq. 2, Sec. 3.3), was computed from the left-
out annotations. The mean cross-entropy values across all images
are shown by expression and the number of annotations used to fit
each distribution. Cross-entropy saturates around 5-6 ratings, indi-
cating six annotators are sufficient to collect reproducible ratings.

Our annotation approach lets us examine not only the
prevalence of expressions, but also the variability amongst
annotations. We find that some expressions yield near-
perfect annotator agreement while others receive intensity
annotations across the entire scale, indicating that the ex-
pression is ambiguous. We modeled this by calculating the
entropy S defined in Eq. 1, for each intensity distribution
along each expression dimension. Fig. 9 illustrates three
sample images with relatively low, medium, and high en-
tropy scores. The histogram of entropy scores across all
images annotated for the primary expressions is shown in
Fig. 8. Annotators agreed most in their ratings of ‘dis-
gusted’ (mean=0.82, std=0.37) and agreed least on ‘sur-
prised’ (mean=0.99, std=0.28).

Since perceived expressions can be subjective and am-
biguous, it can be hypothesized that multiple annotators are
needed to generate reproducible expression distributions for
a face image. To explore this, we conducted an analysis to
determine how many annotators are needed to fit expres-
sion distributions that effectively model human perception.
We calculated the cross-entropy, Hβ using Eq. 2, between
the beta fit and the left out annotator intensity ratings when
using all combinations of c = 2, 3, ..., L-1 ratings where
L=9. Table 3 shows the mean Hβ values across all com-
binations of annotator ratings per expression dimension for
each image. Entropy values generally decrease as more rat-
ings are used to fit the beta, converging around 5 or 6 rat-
ings for most expressions. The “happy” and “angry” dimen-
sions have comparatively low entropy values whereas “dis-
gusted” has comparatively large entropy values, even when
using 8 intensity ratings to fit the beta. Some expression di-
mensions, where more perception variance exists, may need
more annotators when crowdsourcing to generate a stable
distribution.
4.3. Benchmarking algorithms

Multidimensional modulated annotator ratings can help
us better model the human perception of expression and as-
sess the performance of automated systems. Many modern
expression perception algorithms output confidence scores

for the 6 primary expressions. Cross entropy (Hd) and ab-
solute distance (Md) described in Sec. 3.4 can be used to di-
rectly compare algorithmic scores with human perception.
We applied our benchmark dataset and method to the evalu-
ation of 4 state-of-the-art expression detection algorithms,
including two commercial algorithms (‘C1’, ‘C2’) and 2
open source academic algorithms (RMN [48], DAN [53]).
Each algorithm takes a face image as input and produces an
expression vector as output that included at least the 6 pri-
mary expressions of interest. We directly compare the al-
gorithmic output with the mean, µ, of the beta distribution.
We evaluate the performance of the algorithms using Hd

and Md between µ and the algorithm’s predicted value. Our
cross-entropy metric specifically accounts for the spread of
annotator ratings across the 5 bins.

We also generate annotator ground truth for an additional
expression dimension (d = D + 1), “neutral”. With the
rationale that “neutral” could be interpreted as the opposite
of any of the non-neutral facial expressions, we formulate a
“neutral” raw ratings, per annotator l, per image i, denoted
as vD+1 = 4 − (max([v1, v2, ..., vD])), then compute the
normalized intensity rating rD+1.

Benchmark results can be found in Fig. 10, where DAN
shows the best performance at predicting intensity for pri-
mary expressions in terms of absolute distance and cross-
entropy metric, followed by C1. We show in Fig. 2 a sample
image and the primary expression predictions of the 4 se-
lected algorithms. To compare our metrics with traditional
metrics used to benchmark expression detection algorithms,
we calculated classification accuracy and F-score using the
original one-hot ExpW labels on the 1,000 subset. Results
for each algorithm are shown in Table 4 where DAN appear
to be the best across half the expressions and metrics. Thus,
our evaluation method gives a sharper endorsement to the
DAN algorithm.

4.4. Testing the compound expression hypothesis
Are six primary dimensions sufficient to completely

characterize a facial expression [17] (Sec. 2)? More strin-
gently: are many/most/all expressions well represented as
the compounds of one-two primary expressions [13, 42]?
Thanks to our 1,000 annotated face images, where we col-
lected perceptions limiting annotators to, respectively, the 6
primary, the corresponding 15 two-way compound, and the
21=6+15 expressions dimensions, we are now in a position
to start exploring these questions.

To this end, we constructed three algorithms to infer
compound expressions from primary ones. The first is a lin-
ear model taking into account all primary expressions. The
second is a set of 15 linear models, each one of which com-
bines the two normative compound expressions (Table 1).
The third is a set of 15 linear models where we selected the
two most informative primary expressions for each com-
pound expression. See Fig. 4 for an example.
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Figure 10. Expression prediction benchmark. Four state-of-the-
art automated expression prediction algorithms were benchmarked
using two metrics: cross entropy (Hd) and absolute distance (Md)
as defined in Sec. 3.4. The box plots show the median (horizontal
line), 66% confidence intervals (colored boxes) and 95% confi-
dence intervals (whiskers) (see Sec. 4.3).

C1 C2 RMN DAN
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

neutral 0.61 0.75 0.60 0.85 0.48 0.40 0.49 0.38
happy 0.79 0.80 0.78 0.86 0.77 0.76 0.80 0.80
angry 0.41 0.51 0.43 0.46 0.24 0.64 0.31 0.68

surprised 0.49 0.38 0.41 0.32 0.38 0.40 0.43 0.46
sad 0.38 0.28 0.35 0.28 0.42 0.32 0.49 0.40

fearful - - - - - - - -
disgusted 0.00 0.00 0.00 0.00 0.07 0.05 0.15 0.14

Table 4. Comparing traditional benchmark metrics. We com-
pare the results of 4 algorithms on original ExpW ground truth [60]
using standard multi-class classification metrics: accuracy and F-
score (Sec. 4.3). The highest score per metric per expression di-
mension is highlighted. Both Accuracy and F-score are to be max-
imized.1

We conducted a 10-fold cross-validation experiment
where we fit the models using 90% of images and pre-
dicted the µ (see Sec 3.3). Each time, we measured the
Mean Absolute Error (MAE) between the prediction and
the actual value (we express MAE as percent of the [0, 1]
dynamic range). We found MAE=6.2% for the full model,
and MAE=7.5% and 7.8% respectively for the two models
utilizing only two dimensions. These findings suggest that
compound expressions may be predicted accurately using
the six primary dimensions, with a small amount of infor-
mation lost in the process. Further analysis is needed to
better characterize this small effect.

5. Conclusion and discussion
We proposed a novel method to collect and model multi-

dimensional modulated facial expression annotations. The

1The inclusion criteria for image selection (Sec. 4.1) yielded too few
samples of “Fear”, an expression underrepresented in the original EXPW
labels (≈1% of dataset). Yet, the distribution of “Fear” annotations we ob-
tained closely resembles that of other expressions (see Fig. 6), thus high-
lighting the information gain of using multidimensional modulated anno-
tations.

method improves upon previous work because it does not
rely on expert annotators, multiple expressions are simulta-
neously annotated (up to 21) with their perceived level of
intensity, and expression ambiguity can be measured. Us-
ing our method, we annotated a diverse set of 1,000 in-the-
wild face images. We were then able to benchmark two
commercial and two academic expression prediction algo-
rithms using two different metrics and found the DAN [53]
algorithm to be the best overall. Our metrics refine our un-
derstanding of algorithm performance by considering the
underlying distribution of human expression perception.

Additional findings emerge from our study. First, 5-6
crowdsourced annotators are sufficient for achieving repro-
ducible measurements. Second, while the expression of
most in-the-wild face images is well characterized by one
of Ekman’s six primary dimensions, some faces require two
dimensions to be characterized. Third, annotator percep-
tions are best measured using a modulated, rather than bi-
nary, scale. Fourth, annotators will agree on the percep-
tion of most faces; however, for a number of expressions
perception is ambiguous, with annotations spreading over
many intensities. Any method that benchmarks expression
prediction algorithms has to take such ambiguities into ac-
count. Fifth, while we find that reducing expression annota-
tion to six primary dimensions is quite effective, we observe
that a small amount of information is lost in the process –
understanding how this happens will require further inves-
tigation.

Future directions of research in this area include further
exploring algorithmic techniques that allow models to learn
from both clear and ambiguous facial expressions. Another
interesting question is exploring individual annotator be-
havior, e.g. understanding whether annotators of different
age, gender, and ethnicity may perceive facial expressions
differently in a systematic way and whether some annota-
tors may have richer perception than others.

Ethics discussion. Measuring human perception of facial
expression from images helps build better benchmarks for
automating the perception of facial expression in machines.
This, in turn, will enable engineers to build machines that
can better interact with human users, thus enabling ma-
chines to address a wider range of human needs. Along-
side the obvious benefits, this technology presents risks, in-
cluding change in the patterns of human social interaction,
control of privacy, the potential for racial bias, and poten-
tially unforeseen economic impact due to rapid technologi-
cal change [23, 27].
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