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Abstract

This paper introduces rotation-equivariance as a self-
supervisor to train inertial odometry models. We demon-
strate that the self-supervised scheme provides a powerful
supervisory signal at training phase as well as at inference
stage. It reduces the reliance on massive amounts of labeled
data for training a robust model and makes it possible to up-
date the model using various unlabeled data. Further, we
propose adaptive Test-Time Training (TTT) based on uncer-
tainty estimations in order to enhance the generalizability
of the inertial odometry to various unseen data. We show
in experiments that the Rotation-equivariance-supervised
Inertial Odometry (RIO) trained with 30% data achieves
on par performance with a model trained with the whole
dataset. Adaptive TTT improves models’ performance in
all cases and makes more than 25% improvements under
several scenarios. We release our code and dataset at this
website.

1. Introduction
Accurate and robust localization with low-cost Inertial

Measurement Units (IMUs) is an ideal solution to a wide
range of applications from augmented reality [34] to in-
door positioning services [30,35]. An IMU usually consists
of accelerometers and gyroscopes, sometimes magnetome-
ters and can sample linear acceleration, angular velocity and
magnetic field density in an energy-efficient way. It can be
light-weight and pretty cheap that many mobile devices like
smartphones and VR headsets are instrumented with it. In
many scenarios such as indoor or underground where global
navigation satellite system is not available, ubiquitous IMU
is a promising signal source, which can provide reliable and
continuous location service. Unlike Visual-Inertial Odom-
etry (VIO) [9] that is sensitive to surroundings and cannot
work under extreme lighting, IMU-only inertial odometry
is more desired and possible to perform accurate and robust
localization every time and everywhere [11, 20].

Recent advances of data-driven approaches (e.g., IONet
[4], RoNIN [14], TLIO [20]) based on machine learning

*1 denotes equal contribution.
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Figure 1. An example trajectory estimation improved by RIO.
On the left, we show original model performance before rotation-
equivariance supervised learning and right is the result of RIO.
In the middle, we show uncertainty estimation (orange), auxil-
iary losses (blue) computed by the self-supervised task, original
estimated velocity MSE (red) and updated model velocity MSE
(green).

and deep learning have pushed the limit of traditional iner-
tial odometry [15, 22]. These advancements make IMU de-
vice usable in the wild. However, to the best of our knowl-
edge, all of them are based on purely supervised learning,
which is notoriously weak under distribution shifts. IMU
sensor data varies widely with different devices and users,
and sometimes the sensor data drifts over time. It is hard to
control the distribution variability when the supervised al-
gorithms are deployed in diverse applications. A rich and
diverse datasets such as RoNIN [14] can alleviate the prob-
lem to some extent, but it is cumbersome to collect such a
big dataset and there are always scenarios that the dataset
does not include and therefore the supervised model cannot
capture their characteristics.

In order to mitigate the challenge of distribution shift
in real-world, we propose a geometric constraint, rotation-
equivariance, that can improve generalizability of deep
model in training phase and help the deep model to learn
from shifted sensor data at inference time. Heading-
Agnostic Coordinate Frame (HACF) is one coordinate
frame whose Z-axis is aligned with gravity as presented in
RoNIN [14]. We use HACF to solve pedestrian trajectory
estimation and constrain rotation under horizontal plane.
The assumption of rotation-equivariance is when the IMU
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sequence in HACF is rotated around Z axis by a random an-
gle, the corresponding predicted trajectory should be trans-
formed by the same horizontal rotation.

Under this assumption, we propose an auxiliary task. It
is to minimize angle error between deep model prediction
for rotated IMU data, and rotated prediction of the orig-
inal data. In experiments we validate that the auxiliary
task improves model robustness in training phase when it is
jointly optimized with the supervised velocity loss. During
inference time, we formulate the auxiliary task as a self-
supervised learning problem alone. Auxiliary loss is gen-
erated by test samples at inference time. We update model
parameters based on it and therefore the model is adapted to
the distribution of given test data. This process is named as
Test-Time Training (TTT) [27]. Empirical results of TTT
indicate the proposed self-supervision task brings substan-
tial improvements at inference time. Furthermore, we intro-
duce deep ensembles, a promising approach for simple and
scalable predictive uncertainty estimation [19]. We show in
experiments that the estimated uncertainty using deep en-
sembles is consistent with the error distribution. It helps
us to develop adaptive TTT, in which model parameters are
updated when the uncertainty of prediction reaches a cer-
tain level. We compare different TTT strategies and study
the relationship between update frequency and model pre-
cision.

In summary, our paper has the following three main con-
tributions:

1) We propose Rotation-equivariance-supervised Iner-
tial Odometry (RIO) and demonstrate that rotation-
equivariance can be formulated as an auxiliary task with
powerful supervisory signal in training phase.

2) We employ TTT based on rotation-equivariance for
learning-based inertial odometry and validate that it
helps to improve the generalizability of RIO.

3) We introduce deep ensembles as a practical approach for
uncertainty estimation, and utilize the uncertainty result
as indicators for adaptively triggering TTT.

The remainder structure of this paper is: we first give
an overview on previous work regarding inertial odometry
algorithms and related self-supervised tasks. Then we intro-
duce our method and finally present experiments and eval-
uations.

2. Related work
Roughly, there are three types of inertial odometry al-

gorithms: i) double integration-based analytical solutions
[3, 28, 32]; ii) constrained model with additional assump-
tions [10, 15–17, 22, 24] and iii) data-driven methods [4, 14,
20, 26, 31, 33].

Conventional strap-down inertial navigation system is to
use double integration of IMU readings to compute posi-
tions [28]. Many analytical solutions [3, 32] have been
studied to promote the performance of the system. How-
ever, double integration leads to exploded cumulative error
if there are signal biases. It requires high-precision sen-
sors which are expensive and heavy, and typically are in-
strumented with aircrafts, automobiles and submarines.

Consumer-grade IMUs are small and cheap, but have
very low accuracy. A variety of constrained models with
different assumptions [17] are developed and they mitigated
error drifts to some extent. [10, 22] resort to shoe-mounted
sensors to detect zero velocity for limiting velocity errors.
[15] proposes step-detection and step-length estimation al-
gorithms to estimate walking distance under regular gait
hypothesis. Inertial odometry models fused with available
measurements by Extended Kalmann Filter (EKF) are pre-
sented in [16, 24]. [24] requires observations such as posi-
tion fixes or loop-closures. [16] suppose negligible acceler-
ation of the device equipmented with IMU. However, these
models fail in unrestricted environment and are not robust
when IMU devices are in the wild [14].

Data-driven methods further broaden applicable scenar-
ios of IMUs and relax condition limitations. RIDI [33] and
PDRNet [2] propose to estimate robust trajectories of natu-
ral human motions with supervised training in a hierarchical
way. RIDI [33] develops a cascaded regression model that
first uses a support vector machine to classify IMU place-
ments and then type-specific support vector regression mod-
els to estimate velocities. PDRNet [2] employs a smart-
phone location recognition network to distinguish smart-
phone locations and then uses different models trained for
different locations for inference. IONet [4] and RoNIN [14]
using unified deep neural networks provide more robust so-
lutions that work in highly dynamic conditions. They show
direct integration of estimated velocities helps with limiting
error drifts and a unified deep neural network model is capa-
ble to generalize to various motions. TLIO [20] introduces a
stochastic cloning EKF coupled with the neural network to
further reduce position drifts. IDOL [26] and [31] are recent
deep learning-based works that release heavy dependent of
device orientation. IDOL designs an explicit orientation es-
timation module relied on magnetometer readings and [31]
proposes a novel loss formulation to regress velocity from
raw inertial measurements.

Our work is in line with data-driven inertial odometry re-
search that focuses on mitigating challenge of distribution
shift in real-world. We propose rotation-equivariance as a
self-supervision scheme to improve model generalizability
and learn from unlabeled data. [5] proposes MotionTrans-
former framework that uses a shared encoder to transform
inertial sequences into a domain-invariant hidden represen-
tation with generative adversarial networks. They focus on
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domain adaptation for long sensory sequences from differ-
ent domains. Our method mainly deals with distribution
shifts over one sensory sequence, and we show obvious im-
provements with the help of proposed self-supervision task.
Notably, our work is a flexible module that can be com-
bined with many other deep learning based approaches like
RoNIN, TLIO and IDOL.

Self-supervised tasks provide surrogate supervision sig-
nals for representation learning. Learning with self-
supervision gains increased interest to improve model per-
formance and avoid intensive manual labeling effort. Many
vision tasks utilize self-supervision for pre-training [21] or
multitask learning [23]. [36] uses view synthesis as su-
pervisor to learn depth and ego-motion from unstructured
video. [1] shows that ego-motion-based supervision learns
useful features for multiple vision problems. [18] demon-
strates that predicting image rotations is a promising self-
supervised task for unsupervised representation learning.
[27] uses the image rotation task and creates self-supervised
learning problem at test time. They validate their approach
with object recognition and show substantial improvements
under distribution shifts.

3. RIO

3.1. Rotation-equivariance

Our goal is to develop a self-supervised method to im-
prove the robustness of inertial odometry, and make the
model perform well under various scenarios. We observe
that when IMU data in HACF is rotated around z-axis by
a certain angle, the corresponding trajectory also rotated
around z-axis by the same angle. We name this property
as rotation-equivariance.

Specifically, for a sequence of accelerometer data in a
world coordinate frame, namely acceleration A = {a⃗t}nt=1

with a⃗t ∈ R3, and gyroscope data for the same period in the
same coordinate frame, angular velocity Ω = {ω⃗t}nt=1 with
ω⃗t ∈ R3, we randomly select a horizontal rotation Rot(.|ϕ)
that rotates A and Ω by ϕ degrees around z axis, notate as
Aϕ and Ωϕ. The neural network model F (·) takes accelera-
tion A and angular velocity Ω as input and yields a velocity
estimation v⃗ as output:

v⃗ = F (A,Ω|θ), (1)

where θ are learnable parameters of model F (·). With
rotation-equivariance, given velocity estimation v⃗1 =
F (A,Ω|θ), v⃗2 = F (Aϕ,Ωϕ|θ), there should be a horizontal
rotation ϕ between v1 and v2 That is, if operator Rot(.|ϕ)
is applied to velocity v1 and then get the rotated velocity
vϕ1 , we expect vϕ1 = v2. Negative cosine similarity [7] is
employed to evaluate the difference between these two ve-
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Figure 2. Schematic illustration of proposed RIO. For IMU
readings, random angles are selected to generate rotated IMU data.
The same deep model is applied to the original and rotated data to
estimate trajectories. Estimated trajectory of the original data is
rotated by the same set of angles. Estimated trajectories of rotated
data are compared with corresponding rotated trajectory estimated
by the original data to compute losses and update the deep model.

locities:

D(vϕ1 , v2) = − < vϕ1 , v2 >

∥vϕ1 ∥2 · ∥v2∥2
, (2)

where < ·, · > denotes the inner product between vectors.
Therefore, we define a self-supervised auxiliary task, that
given a set of N training IMU samples S = {Ai,Ωi}Ni=1,
the neural network model should learn to solve the self-
supervised training objective:

min
θ

1

N

N∑
i=1

L(Ai,Ωi, θ), (3)

where the loss function L(Ai,Ωi, θ) is defined as:

1

K

K∑
j=1

D(F (A
ϕj

i ,Ω
ϕj

i |θ), Rot(F (Ai,Ωi|θ)|ϕ). (4)

In the following subsections we describe how the self-
supervised auxiliary task helps with model training and in-
ference.

3.2. Joint-Training

In the training phase, we optimize the auxiliary loss (see
Eq. (4)) with velocity losses jointly. With the auxiliary task,
the neural network model is encouraged to produce velocity
estimations with a certain relative geometric relationship.
However, it is unrealistic for the model to learn the magni-
tude and direction of the velocity in a consistent coordinate
frame only with the auxiliary task. Jointly, we adopt the
robust stride velocity loss to supervise the model. Given a
model output v⃗t at time frame t, and a ground truth velocity
v⃗gtt , the stride velocity loss is computed as the mean square
error between them. v⃗gtt is calculated as the average veloc-
ity over the sensor input time stride. In practice, we take one
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Algorithm 1 Joint-Training

1: for X, v⃗gt in loader do ▷ load a batch with n samples
2: for each Xi, v⃗

gt
i do parallel

3: Random select a angle ϕi

4: Xϕi

i = Rot(Xi|ϕi) ▷ compute conjugate input
5: v⃗i = F (Xi|θ)
6: v⃗ci = F (Xϕi

i |θ) ▷ compute outputs
7: lvi =

∑
x,y,z

(v⃗i − v⃗gti )2 ▷ compute velocity loss

8: v⃗ϕi

i = Rot(v⃗i|ϕi) ▷ prepare rotated output
9: if ∥vi∥2 > 0.5 then

10: lssli = D(vϕi

i , vci ) ▷ compute as Eq. (2)
11: else
12: lssli = 0 ▷ set the loss to zero
13: end if
14: end for
15: L =

∑
i

lvi +
∑
i

lssli

16: Update θ using Adam
17: end for

second sensor data as input and calculate the corresponding
average velocity as supervisor, the same as in [14].

To train the model on both tasks, we create conjugate
data for each training input data and organize them as data
pairs. For each input Xi, select a random angle ϕi (0 <
ϕi ⩽ 2π) to horizontally rotate accelerations and angu-
lar velocities in Xi and get the conjugate data Xϕi

i . Xi

and its conjugate Xϕi

i are processed by the neural net-
work model F and get two outputs as v⃗i = F (Xi|θ) and
v⃗ci = F (Xϕi

i |θ). For output v⃗i, calculate the stride veloc-
ity loss as (v⃗i − v⃗gti )2. As mentioned in Sec. 3.1, rotate
v⃗i around z axis by ϕi and get v⃗ϕi

i = Rot(v⃗i|ϕi). Calcu-
late the negative cosine similarity between v⃗ϕi

i and v⃗ci as the
loss for the self-supervised auxiliary task. To avoid ambigu-
ous orientation of the velocity when stationary, we ignore
the auxiliary loss when velocity magnitude is no more than
0.5 m/s. The pseudo-code of joint training can found in
Algorithm 1.

3.3. Adaptive TTT

At test time, we propose adaptive TTT based on rotation-
equivariance and uncertainty estimation. It helps improve
model performance on unseen data which has a large gap
with training data. For test samples, we create conjugate
data pairs the same as in training phase. With the self-
supervised auxiliary task presented in Sec. 3.1, we calcu-
late the auxiliary loss to update θ of neural network model
F (·|θ) before making predictions. For IMU data that arrive
as an online stream, we adopt the online model updating
according to auxiliary losses. And we design restart strat-
egy to restore pre-trained model parameters under specific

situations.
Properly updating models can make substantial improve-

ments under distribution shifts. However, if model param-
eters are updated in an inappropriate way, model perfor-
mance on both original data and shifed data may drop dra-
matically. The proposed auxiliary task cannot capture ac-
curate losses when objects moving with an ambiguous di-
rection like moving slowly or stationary. At inference time,
the velocity threshold used in training phase is not enough
to ensure stable and reliable updates. Batch data to optimize
model at test time is from a continuous period of time while
in the training phase they are randomly sampled. Sampled
data from continuous period tend to be with ambiguous di-
rection at the same time. Therefore, we introduce uncer-
tainty estimation to assist with determining the right time to
update or restore model parameters.

Uncertainty estimation We use deep ensembles to pro-
vide predictive uncertainty estimations. It is able to express
higher uncertainty on out-of-distribution examples [19]. We
adopt a randomization-based approach, that with random
initialization of the neural network models parameters and
random shuffling of the training data to get individual en-
semble models.

Formally, we randomly initialize M neural network
models {F (X|θm}Mm=1with different parameters θm that
each of them parameterize a different distribution on out-
puts. Each model converges through an independent opti-
mization path with training data randomly shuffling. For
convenience, assume the ensemble is a Gaussian distribu-
tion and each model prediction pθm = F (X|θm) represents
a sample from the distribution. We approximate the predic-
tion uncertainty as the variance of sampled predictions that
σ2 = 1

M

∑
m
(pθm − p∗)

2 where p∗ = 1
M

∑
m

pθm .

For our inertial odometry model, we get velocity v⃗θm
from model F (X|θm), and the velocity variance can be cal-
culated with corresponding sampled estimations. We show
in experiments that velocity variance based on deep ensem-
bles well indicates models confidence level for the estima-
tion. The velocity variance is used as prediction uncertainty
indicators to determine when to update or restore model pa-
rameters.

TTT strategy Further, we propose an adaptive TTT
strategy based on uncertainty estimations. First, we stop
updating model parameters when velocity estimations have
a high confidence level. When objects move with ambigu-
ous orientation, the auxiliary loss tends to be large, however,
velocity variance is not necessary to be high and tends to be
low in most cases. It helps with avoiding overhead updating
and only updating models when necessary.

Second, we need to know when to reset models. Models
will drift a lot if there is any inappropriate updating. We
hope to keep the state of updated parameters if the motion
is continuous. However, if the motion switches to a differ-
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ent mode, IMU data distribution will change a lot and the
updated model performance may be worse than the original
model on the unseen data. Meanwhile, from a simple obser-
vation that in most cases there is a stationary or nearly sta-
tionary zone between two different motion modes, we pro-
pose to restore original model parameters when objects sta-
tionary or nearly stationary. We use velocity uncertainty to
capture these moments in that the inertial odometry model
tends to have an absolute high confidence level when sta-
tionary or nearly stationary.

To do inference at test time, the neural network model
is first initialized with pre-trained parameters θ∗. Test sam-
ples that one with 200 frames IMU data from 1 second time
window are sampled every 10 frames at 20 Hz. When 128
test samples arrive, we make them in a batch X for test-time
training. To avoid unstable or useless updating at inference
stage, and inspired by [18], we choose to use fixed number
of (e.g., four) discrete angles evenly distributed between 0
to 360 degree to create conjugated samples. We select four
degrees {72◦, 144◦, 216◦, 288◦} to create conjugate inputs
the same way as in the training phase. With the original and
conjugate inputs, we can get velocity estimations from the
model. Denoting original outputs as V and conjugate out-
puts as V c, rotate original outputs by corresponding angle
ϕ and get V ϕ. The auxiliary loss L is calculated the same
as in the training phase:

L(vϕi

j , vcij ) =

{
D(vϕi

j , vcij ) ∥vj∥2 > 0.5

0 ∥vj∥2 ≤ 0.5
(5)

For every batch of data, we update the model at most 5
times. With deep ensemble-based uncertainty estimation,
velocity uncertainty is estimated as the outputs variance of
three independent pre-trained models, denoted as σ2

v . Ac-
cording to the adaptive TTT policy, we stop updating the
model if the average velocity variance σ2

v is smaller than a
certain value; restore original parameters if the minimal ve-
locity variance min(σ2

vi) is absolute small. In practice, we
stop updating if σ2

v < 0.04 and restore parameters if any
min(σ2

vi) < 1e− 4. The pseudo-code of adaptive TTT can
be found in the supplementary.

4. Evaluations
We evaluate our proposed method in this section. Our

main purpose is to verify that the proposed auxiliary task
based on rotation-equivariance helps to improve models ro-
bustness and accuracy. In order to eliminate the influence
of other factors, we adopt a consistent mature architecture,
datasets and data augmentation strategy for all models used
for evaluation. All models are with ResNet-18 [13] back-
bone and we use the largest smartphone-based inertial nav-
igation database provided by RoNIN to train models [14].
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Figure 3. Comparison of example trajectories. The left is a tra-
jectory from IPS database and the right is from RoNIN. For both,
TTT strategy based on rotation-equivariance descreased velocity
MSE and resulted in better trajectory estimations. More examples
are in the appendix.

We also retain the data augmentation strategy used in [14].
With different supervision tasks in training phase and dif-
ferent strategies at inference time, we demonstrate that the
proposed auxiliary task helps the model outperform the ex-
isting state-of-the-art method.

Network details We adopt Resnet-18 backbone since
ResNet-18 model achieved the highest accuracy on multiple
datasets shown by RoNIN. We replace Batch Normalization
(BN) with Group Normalization (GN) in that the trained
model is going to be used in TTT where training with small
batches. BN that uses estimated batch statistics has been
shown to be ineffective with small batches whose statistics
are not accurate. GN that uses channels group statistics is
not influenced by batch size [27] and results in similar re-
sults as BN on inertial odometry problem. As we propose in
Sec. 3.2, we train a model denoted as J-ResNet with joint-
training setting following Algorithm 1.

We use the RoNIN model with ResNet-18 backbone as
a baseline. While RoNIN publish a pre-trained ResNet
model, denoted as R-ResNet, which is exactly the one they
claimed in [14], it is a model using BN and trained with
the whole RoNIN dataset. They only publish half of the
whole database due to privacy limitation. For fair compari-
son, we re-train a model using GN with the public database
as a baseline. Other implementations are exactly the same
as they claimed in [14]. We denote the re-trained model as
B-ResNet.

Databases Models are evaluated with three popular pub-
lic databases for inertial odometry: OXIOD [6], RoNIN
[14] and RIDI [33], and one database collected in differ-
ent scenarios by ourselves, IPS. Collecting details are pre-
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Database Metric R-ResNet B-ResNet J-ResNet B-ResNet-TTT J-ResNet-TTT

RoNIN
ATE (m) 5.14 5.57 5.02 5.05 5.07
RTE (m) 4.37 4.38 4.23 4.14 4.17
D-drift 11.54% 9.79% 9.59% 8.49% 9.10%

OXIOD
ATE (m) 3.46 3.52 3.59 2.92 2.96
RTE (m) 4.39 4.42 4.43 3.67 3.74
D-drift 20.67% 19.68% 17.43% 15.50% 15.98%

RIDI
ATE (m) 1.33 1.19 1.13 1.04 1.03
RTE (m) 2.01 1.75 1.65 1.53 1.51
D-drift 10.50% 7.99% 7.61% 6.89% 6.93%

IPS
ATE (m) 1.60 1.84 1.67 1.55 1.55
RTE (m) 1.52 1.68 1.65 1.46 1.47
D-drift 8.38% 7.66% 7.96% 5.93% 6.75%

Table 1. Performance evaluation. We compare five methods: R-ResNet, B-ResNet, J-ResNet with standard inference pipeline; B-ResNet
and J-ResNet with TTT. Methods are evaluated on the test data of four datasets: RoNIN, OXIOD, RIDI, and IPS. Best results are highlighted
in red per row.

sented in the supplementary. For trajectory sequences in
OXIOD RIDI and IPS, the whole estimated trajectory is
aligned to the ground-truth trajectory with Umeyama algo-
rithm [29] before evaluation. For RoNIN whose sensor data
and ground-truth trajectory data are well calibrated to the
same global frame, we directly use the reconstructed trajec-
tory to compare with the ground-truth.

We evaluate neural networks J-ResNet and B-ResNet
with two different approaches. One is the standard neural
network inference pipeline which is the same as in IONet
[4], RoNIN [14], and another use the adaptive TTT pro-
posed in Sec. 3.3. R-ResNet is evaluated only with standard
pipeline since it is with BN as normalization layers and it
cannot be optimized with small data batch.

4.1. Metrics definitions

Three metrics are used for quantitative trajectory evalua-
tion of inertial odometry model: Absolute Trajectory Error
(ATE) and Relative Trajectory Error (RTE), and Distance
drift (D-drift). ATE and RTE are standard metrics proposed
in [25].

ATE (m), is calculated as the average Root Mean
Squared Error (RMSE) between the estimated and ground-
truth trajectories as a whole.

RTE (m), is calculated as the average RMSE between
the estimated and ground-truth over a fixed length or time
interval. Here we use time-based RTE the same as in
RoNIN that we evaluate RTE over 1 minute.

D-drift, is calculated as absolute difference between the
estimated and ground-truth trajectory length divided by the
length of ground-truth trajectory.

4.2. Performance

Tab. 1 is our main results. All subjects used to evaluate
models do not present in training sets. Our evaluation of the

R-ResNet for RoNIN test datasets is consistent with the re-
port of RoNIN unseen sets in [14]. Other three datasets are
not used in the training phase. R-ResNet is trained with full
RoNIN training dataset and we use half of it which is pub-
lished to train B-ResNet and J-ResNet. Therefore, we eval-
uate R-ResNet performance just for reference. B-ResNet is
a fair baseline and we compare other methods with it.

The results show that J-ResNet outperforms B-ResNet on
most databases. J-ResNet reduces ATE by 9.96%, 4.47%
and 9.13% on RoNIN, RIDI and IPS databases, respec-
tively. Notably, for RoNIN database, J-ResNet outperforms
R-ResNet which is trained with twice as much training data.

B-ResNet-TTT outperforms B-ResNet on all databases by
a significant margin. It reduces ATE by 9.29%, 17.04%,
11.84% and 15.59% on RoNIN, RIDI, OXIOD and IPS
databases, respectively. For J-ResNet-TTT, it reduces ATE
by 17.55%, 9.43% and 7.06% on OXIOD, RIDI and IPS,
and it has a comparable performance on RoNIN comparing
to J-ResNet. In a word, the adaptive TTT strategy proposed
in Sec. 3.3 can further improve performance of B-ResNet
and J-ResNet.

Both models are trained with RoNIN training database
in training phase. J-ResNet is trained with the auxiliary
task and it already helps to improve performance on RoNIN
test database. We assume the auxiliary task is optimized
in training phase for RoNIN database that it does not sig-
nificant improve model performance further with test-time
training. For OXIOD, RIDI and IPS which are novel
databases for both models, adaptive TTT further improve
models performance on all metrics.

Fig. 3 shows selected trajectories performance visualiza-
tion of J-ResNet and J-ResNet-TTT. It shows estimated tra-
jectories against the ground-truth of both models along with
velocity estimation losses comparison. Velocity estimation
losses are reduced a lot when there are large velocity losses
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Figure 4. Comparison of performance on different scenarios included in IPS database. In most scenarios, models with TTT strategy have
a better performance and J-ResNet is better than B-ResNet.

of original model. It demonstrates that the auxiliary task
used in adaptive TTT can help to optimize model at pivotal
steps and result in a better trajectory estimation.

4.3. Performance on Multiple Scenarios

The proposed rotation-equivariance contributes differ-
ently in different scenarios. Although RoNIN training
database is the largest public inertial odometry database
with rich diversity, model performance under certain sce-
narios can be improved by a large margin using RIO.

We compare model performance by scenarios in IPS
database and present results in Fig. 4. In different scenarios,
devices with IMU sensors are mounted at different place-
ments, and are handled with different ways. Fig. 4 shows
that in all scenarios, J-ResNet outperforms B-ResNet, and
TTT version of both models improve even further. Under
calling, back pocket, photo portrait and photo landscape
scenarios, ATE of B-ResNet can be reduced by 28.55%,
37.56%, 24.47% and 19.92%, and for J-ResNet, TTT ver-
sion reduces ATE by 20.06%, 11.36%, 20.13% and 6.02%,
respectively. These four scenarios are not very common in
daily life and may not show up as frequent as other poses
in RoNIN training database. Therefore, large improvements
under unusual scenarios elucidate that adaptive TTT helps
trained models to learn from novel data distribution and im-
prove their performance under distribution shifts.

4.4. TTT Strategy Analysis

In this section, we evaluate the TTT strategy in isolation
and explain why uncertainty estimations help with model
performance improvement.

1) Is uncertainty estimation with deep ensemble reliable?
Fig. 5 shows one trajectory velocity estimations against its
ground-truth together with their uncertainty estimations and
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Figure 5. Example of the uncertainty estimation. Estimated ve-
locity uncertainty well follows estimation errors. Adaptive TTT
using uncertainty estimations leads to a lower ATE as the model is
updated. More examples are in the appendix.

velocity estimation losses. It demonstrates that our predic-
tive uncertainty well follows the estimation losses. As we
expected, the predictive uncertainty decreases when veloc-
ity estimation losses decrease. With the uncertainty estima-
tion, we can stop updating when it is below a certain level
since the model is pretty accurate at this time. Notably, the
predictive uncertainty decreases to zero when the magni-
tude of velocity is around zero. As mentioned in Sec. 3.3,
detection of stationary or nearly stationary zones is impor-
tant for adaptive TTT in that it is the right time to restore
original model parameters.

2) Comparing adaptive TTT with others: Last row of
Fig. 5 compares Adaptive TTT (A-TTT) ATE change over
time with Naive TTT (N-TTT). N-TTT refers to the pro-
cess that always update models according to losses of self-
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Database Metric A-TTT N-TTT

RoNIN
ATE (m) 5.05 4.94
RTE (m) 4.14 4.27
D-drift 8.49% 9.43%

OXIOD
ATE (m) 2.92 3.50
RTE (m) 3.67 4.39
D-drift 15.50% 19.55%

RIDI
ATE (m) 1.04 1.11
RTE (m) 1.53 1.64
D-drift 6.89% 7.56%

IPS
ATE (m) 1.55 1.63
RTE (m) 1.46 1.54
D-drift 5.93% 6.73%

Table 2. TTT strategies comparision. A-TTT has an obvious
advantage over N-TTT for all metrics on four databases.

supervised task and ignore velocity uncertainty estimations.
It keeps the latest updated model and does not restore origi-
nal parameters over one continuous trajectory. Fig. 5 shows
that ATE of N-TTT increase faster than A-TTT. There are
two obvious time windows that ATE increase steeper with
N-TTT, and during these time velocity is decreasing to zeros
which means object is going to be stationary. With adaptive
strategy, the model will restore original parameters and ATE
will be suppressed. Tab. 2 compares A-TTT and N-TTT on
four databases and shows that the performance of A-TTT
has obvious advantages over N-TTT.

5. Ablation Studies
We conducted additional experiments with joint-training

and TTT settings under ablation considerations.
Models performance v.s. size of training data We

trained models in joint-training with different size of train-
ing datasets. Denote the neural network which is provided
and published by RoNIN [14] as 100% B-ResNet since it is
trained with the whole RoNIN database. We trained mod-
els with 50%, 30% and 10% data of the whole database
in two ways as mentioned before, and evaluate their perfor-
mance under different settings. Fig. 6 shows the comparison
of different models. While B-ResNet and J-ResNet perfor-
mances drop a lot as the training database becomes smaller,
J-ResNet-TTT with 30% training database is still compa-
rable to 100% B-ResNet. However, J-ResNet-TTT perfor-
mance also drops a lot when using 10% training databases.

Influence of updating iterations At test-time, model
can be updated multiple times with one batch of data. Fig. 7
shows results of one model with different updating itera-
tions from 1 to 15. There are obvious improvements when
increase iterations from 1 to 5. However, more than 5 up-
dates do not show obvious advantages and the model per-
formance even degrade a little when updating 15 times one
batch. More iterations cost more time and computing re-
source. Therefore, we recommend no more than 5 updates
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Figure 6. Impact of the size of training data on ATE and RTE.
Methods are evaluated on IPS database and compare them with the
performance of 100% B-ResNet.
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Figure 7. Impact of the number of TTT iterations on ATE and
RTE. Methods are evaluated on IPS database.

one batch during TTT.

6. Discussion and Conclusion
In this paper we present a Rotation-equivariance-

supervised Inertial Odometry (RIO) in order to improve per-
formance and robustness of inertial odometry. The rotation-
equivariance can be formulated as a self-supervised auxil-
iary task and can be applied both in training phase and in-
ference stage. Extensive experiments results demonstrate
that the rotation-equivariance task helps with advancing
model performance under joint-training setting and will fur-
ther improve model with Test-Time Training (TTT) strat-
egy. Not only rotation-equivariance, there may be more
equivariance (e.g., time reversal, mask auto-encoder of time
series [12]) that can be formulated as self-supervised task
for inertial odometry. In addition, We also noticed that
the rotation equivariance could be achieved by model de-
sign, e. g. [8]. We hope our observation will enlighten fu-
ture work in the aspect of self-supervise learning of inertial
odometry.

Further, we propose to employ deep ensemble to esti-
mate the uncertainty of RIO. With uncertainty estimation,
we develop adaptive TTT for evolving RIO at inference
time. It thus can largely improve the generalizability of
RIO. Adaptive TTT using the auxiliary task makes a model
trained with less than one-third of the data outperforms
the state-of-the-art deep inertial odometry model, especially
under scenarios that the model does not see during the train-
ing phase. Adaptive online model update with uncertainty
estimation is a practical way to improve deep model per-
formance in real life applications. Uncertainty estimation
based on deep ensemble gives reliable judgment on the out-
put of deep models. Adaptive TTT can be implemented in
different ways, either conservative or aggressive, for updat-
ing the model depending on application scenarios.
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