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Abstract

Gait is considered the walking pattern of human body,
which includes both shape and motion cues. However, the
main-stream appearance-based methods for gait recogni-
tion rely on the shape of silhouette. It is unclear whether
motion can be explicitly represented in the gait sequence
modeling. In this paper, we analyzed human walking us-
ing the Lagrange’s equation and come to the conclusion
that second-order information in the temporal dimension is
necessary for identification. We designed a second-order
motion extraction module based on the conclusions drawn.
Also, a light weight view-embedding module is designed by
analyzing the problem that current methods to cross-view
task do not take view itself into consideration explicitly. Ex-
periments on CASIA-B and OU-MVLP datasets show the
effectiveness of our method and some visualization for ex-
tracted motion are done to show the interpretability of our
motion extraction module.

1. Introduction

Gait is a biometric presenting the walking pattern of
pedestrian for identity recognition and has an edge over
other biometrics such as face, iris or fingerprint since it can
be recognized without touch and at a distance. Although it
has been studied for years, there are still some challenges
in gait recognition. For example, variations like carrying
conditions [4, 15, 16,42, 46], coat-wearing and viewpoint
differences [41,45] may cause changes in gait appearance
and make it hard to distinguish pedestrian.

Existing appearance-based approaches for gait recogni-
tion rely heavily on the visual appearance of silhouettes.
However, when the view angle is close, the appearance dif-
ference between two different person can be smaller than
that of the same people but viewed from two different an-
gles.

*Corresponding author.
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Figure 1. Three samples from CASIA-B dataset, where A and B
denote ID 39 and ID 77 respectively. A-1 and A-2 are two samples
of A selected from different sequences. It can be found that it is
difficult to find the difference between A and B visually. Even on
some frames, A-2 are more similar to B-/ than A-1.

A common approach to address the aforementioned is-
sue is learning viewpoint-invariant or robust features [0, 10,

,21,35,37,38,43]. However, these works focus on how
to extract apparent information and the fusion of spatial or
temporal features. The detection or estimation of viewpoint
is overlook and there is few model explicitly making use
of viewpoint. In other words, the viewpoint-robustness of
these methods is solely based on the coverage of data, which
is a well-known ill-posed problem.

Even when the viewpoint is close, the apparent infor-
mation is still not very reliable. As shown in Figure 1,
it is difficult to distinguish the identity of the three sam-
ples only from the body shape.This phenomenon explains
why pure appearance-based method such as Gait Energy
Images (GEIs) [34] cannot achieve ideal performance. The
similar situation will also occur in state-of-the-art Gaitset
method [6] which does not use temporal information either.

We argue that the ultimate solution to the problem shown
in Figure 1 is the gait motion. Recently, some methods mak-
ing use of temporal features are proposed [7,20,20,28,39].
Although these models show a stronger edge in recognition
accuracy, They do not discuss the motion information in
gait to the extent that some discriminatory biological infor-
mation may be missing.

In this paper, by mathematical modeling analysis, we ar-
gue that it is difficult to distinguish people using only first-

20249



i’ \
i i
Second-Order | H
i —
Motion | H
\ ;
p N
Al SH
1
1 i hsa A
! " ]

. Final Feat
Appearance Information mnal Feature

View Information =a - N

Figure 2. Overview of our multi-branch framework.

order temporal information '. To effectively modeling the
walking pattern of a pedestrian, second-order motion is nec-
essary. To verify this idea, a novel motion-assisted gait
recognition method is proposed. To further reduce the neg-
ative impact of viewpoint difference, a view-aware embed-
ding method is also introduced. It results in a multi-branch
framework which combined the view, appearance and in-
trinsic motion of silhouette sequences. Experimental results
show that the proposed model can effectively narrow the
intra-class distance caused by view variance.

The major contribution of this paper can be summarized
as the following four aspects:

* We model human walking by Lagrange’s Equation and
come to the conclusion that we need to use second-
order motion features to represent the gait in addition
to the first-order motion features.

* Based on the conclusion of Lagrange motion analysis,
we propose a second-order Motion Extraction Module
to extract features on the high-level feature maps.

* We proposed a novel and light-weighted view embed-
ding to narrow the difference caused by changes of
view.

* We apply our proposed method to the widely used
CASIA-B and OU-MVLP datasets and the effective-
ness of our method is verified. Some visualizations are
conducted to further prove the validity of our idea.

2. Related Works

Gait Recognition Gait recognition methods can be di-
vided into two categories, i.e. model-based methods and
appearance-based methods respectively.

Model-based gait recognition methods [2, 17, 19,24, 33]
make use of pose information to model human pose-
invariant identity information. This kind of method is nat-
urally robust to interference items such as clothing vari-
ation and carrying articles. However, model-based meth-

dz

at first-order information

UIn this paper, we call items in the form of

. . 2 . .
and items like % second-order information.

ods are greatly affected by the accuracy of pose estimation.
Pedestrian pose estimation itself still remains a challenging
problem [14, 18], especially for cross-domain pose estima-
tion [44], which is a closer scenario to gait recognition.

Nowadays, with the development of deep learning, the
performance of appearance-based methods have made a
greater breakthrough. Wu et al. [37] and Chao et al. [6] pro-
posed networks suitable for gait recognition firstly. Wolf
et al. [36], Lin et al. [20] and Huang et al. [12] used three
dimensional convolution on gait recognition. Fan et al. [7]
and Huang et al. [1 1] take temporal models into considera-
tion.

View-invariant Modeling Viewpoint change is a chal-
lenging problem in biometrics including face recognition
and gait recognition. Compared with face, there are fewer
methods take view into consideration in gait recognition.
He et al. [9] proposed a multi-task GAN and use view la-
bels as the supervision to train the GAN. Chai et al. [5] take
different projection matrices as view embedding methods
and approach high growth on several backbones. However,
these models are complex and have too many parameters.

Optical Flow and Motion Optical flow is one repre-
sentation of motion and optical flow estimation is a task
which predicts the pixel-to-pixel correspondence between
two adjacent frames. Recently, many deep learning meth-
ods [29,40] are used for optical flow estimation. Among
these methods, RAFT [32] is the one with perfect perfor-
mance and the fastest speed now. Optical flow has been
used in many areas including action recognition [3,26] and
video generation [1].

3. Why second-order motion?

Gait is recognized as the walking pattern that can dis-
tinguish pedestrian [23]. In the early years However,
appearance-based methods with convolutional neural net-
works now mainly focus on the two dimensional feature of
silhouettes. Even Gaitset [0], which is one of the-state-of-
the-arts, does not rely on any temporal feature. It is hard to
prove whether current state-of-the-art methods depends on
human body shape or traditional “gait”. In the early years,
some methods [8,27,30] have explored the effects of mo-
tion as well as acceleration (second-order motion) on gait
recognition, but they have not looked deeper into the theory
and the physics behind it.

Therefore, in order to explore the essential information,
we propose to use the Lagrange’s Equation [13] to analyze
the walking of human. As shown in Figure 3, we assume
that the human thighs and legs are rigid and model them
mechanically. The length and mass of the two thighs and
two legs are denoted as Iy, l2, 1, mo and I3, 14, m3, my re-
spectively. 6; represents the angle between them and verti-
cal lines. Also, the human body is assumed to move forward
with a small distance x.
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Figure 3. Analysis diagram of pedestrian walks.
Then we can obtain the kinetic energy 7 as:

1 dx 1
T= §(m1 +mg +m3 +my) ()% + = (mil3(

dt 6
o 46
+ mgzg(d—f)z + mgzg(d—f)2 + mal?(

%)2
dt
dby ’
)

(D

and the potential energy V as:

1 l
V = ——mygly cos 0y — m3g(ly cos by + 3 cos 03)

1 l
— imgglg cos Oy — myg(la cos by + gcos 04)

Let us calculate L = T — V. Then with the La-
grange’s Equation’, the system can be formulated with
z, 917 027 937 647 t as:

(m1 4+ mg + m3 +m4)227§ = Qo

%mll%% - %(ml +m3) gl Sin@l% =@
%mg %% — %(mg + may)gls sim%% =Qy 3

%mglg% — %mgglg sin@;,»dd—(gt3 = Q3

%mdi% - %m4gl4 sin 94dd—9t4 = Q4

where Qg, @1, Q2, Q3, Q4 are generalized force, including
the force from human muscles and resistance. These force
is the essence of pedestrian and they change gradually and
continuously in a gait cycle.
It can be observed that in Equation (3), to maintain
this dynamical system, we need the second-order deriva-
d%z d?0, d%6, d%0; d%6.

tives A2 A2 2 Q2 o a2 e in addition to the first-

order derivatives 491 d02 dbs dos

T Gt ai ar- If we only have the
first-order variables, the system is not unique.

It’s not surprising that methods based on three dimen-
sional convolutions [12,20,21,36] show better performance
since cascaded 3D convolution layers can extract second-
order information at the best situation. We believe that 3D

convolution can extract the temporal information, but it is

2Details can be found in supplementary materials

difficult to prove whether the cascaded 3D convolution lay-
ers can necessarily extract the second-order motion infor-
mation. There is no way to know whether the 3D convolu-
tion is taking the motion or just summing the feature maps.

With reference to the conclusions drawn from the human
motion system, we have designed a module for extracting
second-order motion features according to methods used in
optical flow estimation [32]. In contrast to 3D convolution,
it can explicitly extract the motion between adjacent frames.

4. Methods

In this section, we proposed a novel framework called
LagrangeGait 3. As shown in Figure 4, the framework
consists of three branches. The upper branch is the mo-
tion branch which extracts the second-order motion feature
according to the conclusion drawn from Section 3. The
middle branch is the main branch to extract the appear-
ance feature and can be any backbone such as Gaitset [6]
or GaitGL [21]. The feature maps calculated by shallow
layers in main branch are used in motion branch. The bot-
tom branch is the view branch, in which the view of input
silhouette sequence is predicted and the learnable view em-
bedding are produced.

Given a silhouette sequence, we denote it as I =
{I,,I,I5,.. I} and T is the length of sequence. The
feature maps extracted from the shallow layers are denoted
as Xorigin = [X1,X2,...Xy], where X; € REXHXW
and Xopigin € R>XCXHXW regpectively. ¢ represents the
length of feature maps in time dimension after pooling, e.g.
t = T in Gaitset [6], and ¢ = % in GaitGL [21], since
GaitGL has a pooling layer with 3 x 1 x 1 kernel size and
the same size of stride. With the obtained X4, Wwe send
it into different branches and then the motion feature map
Xnotion, the appearance feature map X ppearance, and the
view feature f;c, can be respectively calculated as

Xorigin = ng(I),
Xmotion = motion(Xorigin)

; “)

Xappearance = Fbackbone(Xorigin)

fview = view(Xappearance)

Cox HXW C

where Xappearancev Xmotion7 eR 2X X > fview € R*s

and Fyackbones Fmotions Friew are corresponding branches.

Then we first predicted the view of sequence and then
fuse it with X ,ppearance and X otion:

p= Fpredict(fview)v
fmotvi(m = Ffusion1 (Xmotionyﬁ) ’ (5)

.fappearance = Ffusionz (Xappearan057p)

where p is the predicted view and p € RM, M is the num-
ber of discrete views. fiotion and foppearance are the final

3The code will be released at https://github.com/ctrasd/LagrangeGait
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features of motion and appearance, f,otion € R7motion*€3
fappearance € Rnappearmwexcg~ Nmotions Nappearance de-
note the number of strips sliced using the HPP module [6]
for the motion feature map and appearance feature map. cs
denote the number of channel of feature maps.

Finally, the feature used for gait recognition can be ex-
pressed as

ffinal = [.fmotion§ fappearance] . (6)
4.1. Motion Extraction Module

According to Section 3, we designed a second-order mo-
tion extraction module. As shown in Figure 5, 3D convo-
lutions are used as the first-order feature extraction layer.
In second-order stage, the structure of RAFT [32] is refer-
enced and adjacent frame response relationships are used.

With X,,.;4in, obtained from Equation (4), we denote
the feature map at time 7; and Tj1q1 as Xorigin,; and
Xorigin,i+1 respectively. Then the correlation of adjacent
frames can be calculated as

XO = FQ(Xorigin,i)
X1 = Fx(Xorigin,i+1) @)
Att(Xo, X1) = Softmaz(Xg X1)

where Fp and F) are combinations of convolution lay-
ers with filter size of 1x 1 and dimension merge operation.
Att(Xo, X1) € REWXHW = Then the correlation map
should be reshaped to Cor(Xp, X1) € REXWXHW Fora
pixel in X,rigin,i» its corresponding pixel in the next frame
Xorigin,i+1 18 assumed not moving too much. So for every
pixel = (u,v) in Xyigin.» the corresponding point in the
feature map Xorigin,i+1 i ' = (u+ flu),v+ f1v)).
The sampling range is

N(z), = {z + dz|dx € Z?,||dz|, <7}, 8)

Figure 4. Framework of the proposed LagrangeGazt

where dx is the sampling offset and r is the sampling ra-
dius. For each pixel 2 on Cor(Xg, X1) we sample it ac-
cording to N(z), and X, ; € € REXWx2r+D® can be
obtained. Then we exchange the channel and form it into
Xoorri € R(2r+1)2 XHXW

Finally, the second-order feature maps are integrated in
time dimension to obtain the feature map of sequence:

Xeorr = [Xcorr,l; Xcorr,Z; ceey Xcorr,t—l}- 9)
Here X .o € REr+1)*xt=1xHXW and we use 3D convo-
lution to extract the final feature:

FSdconv (Xcorr)a (10)

Xmotion =

where F3g.0n, are convolution layers with kernel size 3 x
3 % 3. X photion € ROXTXHXW

4.2. View Embedding

For gait recognition, there are few methods taking view
itself into consideration. In this paper we propose a more
light-weighted view embedding method.

First we calculate the view feature of input sequence with
feature map X ;4 Obtained in Equation (4) as

Xappearance = PMaac (Xorigin) (11)

.fview = PGlobal,Avg (Xappearance)’

where Pprq. 1S the max pooling at time dimension and
Pgiobal 4vg 18 the global average pooling.
Then with f,;c., the prediction of view can be formu-
lated as
ﬁ = inewfview + Bview

9 = arg maxp;
i

12)

20252



HW*C HW
Image 3D Conv Feature Map HW
T=1 T=1
W
H
C*HW
Image 3D Conv Feature Map
T=2 T=2 @__,
Image 3D Conv Feature Map
T=N T=N

.y g =
Bilinear Sampling L i/ \\
Radius=r i 1 i
N . !
r+1n? ! r !
F. J |
1
- :
: T T+1 :
\ Sampling, r=2 /’

Bilinear Sampling

. H*W*C
Radius=r

Conv

( J |
/

First-order

Second-order

Figure 5. Structure of the second-order motion extraction module. We use 3D convolution as the first-order motion extraction module,
and calculate the pixel-to-pixel corresponding matrix as the second-order motion feature. Since a pixel cannot move too far away from the
origin location, we do the bi-linear sampling to reduce the computation cost.

Here M is the number of views, M = 11 for CASIA-B [41]
and for OUMVLP [31] M = 14. Wyie,, € RMXC2 g
the weight of FC layer and B, is the bias of FC layer.
9 €{0,1,2,...., M — 1} is the result of view prediction.

For every discrete view ¢, we will train two embedding
Eng € Co,E,y5 € Cp for motion and appearance fea-
ture and they will be used in the horizontal pyramid pooling
module [6]. Cj is the dimension of feature map obtained
from the first convolution layer in Figure 4.

4.3. HPP with View Embedding

In gait recognition, horizontal pyramid Pooling
(HPP) [6] is a widely used module. In this paper, in
addition to using HPP on appearance feature maps, we also
do the same operation on the motion feature maps. After
pooling, the features are connected with the proposed view
embedding to make the final feature projection.

For appearance feature map obtained after horizontal
pyramid pooling, we denote them as:

13)

where 7 is the number of strips to split, f.,,: € R2. For
appearance branch and motion branch, the number of strips

fapp,lv fapp,27 ~-~fapp,m

are Nappearance and Nmotion
Assuming the prdicted view of Xppearance 18 2. Then
the procedure of F'y;0n1 can be formulated as:

fav,i = [fapp,i; Ea,z]

.ffinala,i = Wp,i.fav,ivi = 17 27 -« Nappearance (14)

fapp = [ffinala,la ffinala727 ey ffinalamapp]

Here fa'u,i € RCerCO, ffinala,i S RC2, .fapp S RnaprCZ'
The procedure of F'yysion2 is similar with Fygion1:

.fmv,i = [.fmotion,i; Em,z}
ffinalm,i = Wpfmv,iai = 1,2, .. npmotion; 3
fmotion = [.ffinalm,la ffinalm,27 (X3 .ffinalm,nm,,ﬁan]
(15)
where fmv,i € RCQJFCO’ ffinalm,i S RCQ, .fmotion S
R7motion XC2
Finally, the final feature can be approached by bring
Equation (14) and (15) into (6). where frinai €

R(Mmotion+nappearance) XC2

4.4. Joint Losses

In the proposed framework, our losses include cross en-
tropy (CE) and triplet loss. Combining the Equation (12),
the CE loss can be expressed as

N M

Low ==Y yisloglpy) wrt. pi; =

i=1 j=1

eﬁij

Zj]\/il eris’

(16)
where N is the number of samples, M is the number of
views and y;; is whether the view of ith sample is j.

Let a triplet of gait silhouette sequences group be
(Q, P,N), where () and P are from the same subject and
Q@ and N are from two different subjects. Denote K triplets
of fixed identity as {Ti|T; = (fars ffinats fribar)si =
1,2, ..., K}. Then the triplet loss can be expressed as

K n
1
Lirip = ?ZZmax(m—d;j —i—d;}O), (17)

i=1 j=1

20253



Table 1. Rank-1 accuracy (%) on CASIA-B [

] under 11 probe views excluding identical-view cases. * denotes the methods are trained

with additional cross-entropy loss for identity classification. Ours* are trained without view embedding.

Gallery NM#1-4 0°-180°

Probe 0° 18° | 36° | 54° | 72° | 90° | 108° | 128° | 144° | 162° | 180° | mean

CNN-Ensemble [37] | 88.7 | 95.1 | 98.2 | 964 | 94.1 | 91.5 | 939 | 975 | 984 | 95.8 | 856 | 94.1

GaitSet [0] 90.8 | 97.9 | 994 | 969 | 936 | 91.7 | 950 | 97.8 | 989 | 96.8 | 858 | 95.0

GaitPart [7] 94.1 | 98.6 | 99.3 | 985 | 940 | 923 | 959 | 984 | 99.2 | 97.8 | 90.4 | 96.2

GaitGL [22] 94.6 | 97.3 | 98.8 | 97.1 | 958 | 943 | 96.4 | 985 | 98.6 | 98.2 | 90.8 | 96.4

NM#5-6 Ours 952 | 97.8 | 99.0 | 98.0 | 96.9 | 94.6 | 96.9 | 98.8 | 989 | 98.0 | 91.5 | 96.9

GaitGL* [21] 96.0 | 98.3 | 99.0 | 979 | 969 | 954 | 97.0 | 989 | 993 | 98.8 | 940 | 974

3DLocal* [12] 96.0 | 99.0 | 99.5 | 989 | 97.1 | 942 | 963 | 99.0 | 98.8 | 985 | 952 | 975

CSTL* [11] 972 | 99.0 | 99.2 | 98.1 | 96.2 | 95.5 | 97.7 | 98.7 | 99.2 | 989 | 96.5 | 97.8

Ours* 95.7 | 98.1 | 99.1 | 983 | 964 | 952 | 975 | 99.0 | 993 | 98.9 | 949 | 975

CNN-LB [37] 64.2 | 80.6 | 82.7 | 769 | 64.8 | 63.1 | 68.0 | 769 | 822 | 754 | 613 | 724

GaitSet [0] 83.8 | 91.2 | 91.8 | 88.8 | 833 | 81.0 | 84.1 | 90.0 | 92.2 | 944 | 79.0 | 87.2

GaitPart [7] 89.1 | 94.8 | 96.7 | 95.1 | 88.3 | 849 | 89.0 | 93.5 | 96.1 | 93.8 | 85.8 | 91.5

GaitGL [22] 90.3 | 94.7 | 959 | 94.0 | 919 | 86.5 | 90.5 | 955 | 97.2 | 963 | 87.1 | 92.7

BG#1-2 Ours 899 | 945 | 959 | 946 | 939 | 88.0 | 91.1 | 96.3 | 98.1 | 97.3 | 88.9 | 93.5

GaitGL* [21] 92.6 | 96.6 | 96.8 | 955 | 935 | 893 | 922 | 96.5 | 98.2 | 969 | 91.5 | 945

3DLocal* [12] 92.8 | 959 | 97.8 | 96.2 | 93.0 | 87.8 | 92.7 | 96.3 | 979 | 98.0 | 88.5 | 94.3

CSTL* [11] 91.7 1 96.5 | 97.0 | 954 | 909 | 88.0 | 91.5 | 95.8 | 97.0 | 955 | 903 | 93.6

Ours* 942 | 96.2 | 96.8 | 958 | 943 | 89.5 | 91.7 | 96.8 | 98.0 | 97.0 | 909 | 94.6

CNN-LB [37] 37.7 | 57.2 | 66.6 | 61.1 | 552 | 546 | 552 | 59.1 | 589 | 48.8 | 394 | 54.0

GaitSet [0] 614 | 754 | 80.7 | 77.3 | 72.1 | 70.1 | 71.5 | 73.5 | 73.5 | 684 | 50.0 | 704

GaitPart [7] 70.7 | 85.5 | 869 | 833 | 77.1 | 72.5 | 769 | 82.2 | 83.8 | 80.2 | 66.5 | 78.7

GaitGL [22] 76.7 | 88.3 | 90.7 | 86.6 | 82.7 | 77.6 | 83.5 | 86.5 | 88.1 | 83.2 | 68.7 | 83.0

CL#1-2 Ours 81.6 | 91.0 | 948 | 92.2 | 855 | 82.1 | 86.0 | 89.8 | 90.6 | 86.0 | 73.5 | 86.6

GaitGL* [21] 76.6 | 90.0 | 90.3 | 87.1 | 845 | 79.0 | 84.1 | 87.0 | 87.3 | 84.4 | 69.5 | 83.6

3DLocal* [12] 78.5 | 889 | 91.0 | 89.2 | 83.7 | 80.5 | 832 | 843 | 879 | 87.1 | 747 | 845

CSTL* [11] 78.1 | 89.4 | 91.6 | 86.6 | 82.1 | 79.9 | 81.8 | 86.3 | 88.7 | 86.6 | 75.3 | 84.2

Ours* 774 | 90.6 | 93.2 | 90.2 | 84.7 | 80.3 | 85.2 | 87.7 | 89.3 | 86.6 | 71.0 | 85.1
where d;; = || f%wz I fﬁna J||§ and d;; = || foijwl) I training and the rest are used for testing. The first four se-
ffimz ; 3. quences of the NM condition (NM#1-4) are kept in gallery

Combining Equation (16) and (17), the final loss can be
expressed as:

L = Lirip + AcpLck, (18)

where A\cg is a hyper-parameter.
5. Experiments and Analysis

In order to prove the effectiveness of our framework, we
did experiments on CASIA-B dataset [41] and OU-MVLP
dataset [31]. Also we did ablation study to verify the effec-
tiveness of each module.

5.1. Datasets and Evaluation Protocols

CASIA-B [41] is a widely used gait dataset. It contains
124 subjects, each contains 11 views and there are ten se-
quences for every view. The sequences are obtained in three
scenarios: walking under normal situation (NM), walking
with bag (BG) and walking wearing coat or jacket (CL) re-
spectively. Experiments in this paper are conducted follow-
ing the LT setting in [37], in which 74 subjects are used for

and the rest of sequences are divided into three probe sub-
sets, i.e. NM subsets containing NM#5-6, BG subsets con-
taining BG#1-2 and CL subsets containing CL#1-2.
OU-MVLP [31] is the largest public gait dataset which
contains 10,307 subjects. 5,153 subjects are used for train-
ing and the rest 5,154 subjects are used for test. There are 14
views for every subject and two sequences for every view.
During test, sequences with index#01 are kept in gallery and
the rest of which contained in index#00 are used for probe.

5.2. Implementation Details

All models proposed are implemented in Pytorch [25]
with four Nvidia 1080Ti/2080Ti GPUs. We pre-process im-
ages in CASIA-B [41] and OU-MVLP [31] datasets with
the same method in [6]. The image size of each silhouette
is 64x44. Adam optimizer is used for training and the mar-
gin in separate triplet loss is set to 0.2. The A¢p is set to
0.03 on CASIA-B dataset and 0.3 on OU-MVLP dataset.

The GaitGL [22] is used as our backbone and we add
our second-order motion extraction module after the first
basic 3D convolution and temporal pooling. The learning
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Table 2. Rank-1 accuracy on OU-MVLP dataset [31] (%), * means the methods are trained with additional cross-entropy loss for identity
classification.

Method Probe View
cHho 0° [ 15° | 30° | 45° | 60° | 75° | 90° | 180° | 195° | 210° | 225° | 240° | 255° | 270° | M¢an

GEINet | 11.4 | 29.1 | 41.5 | 455 | 395 | 41.8 | 389 | 149 | 33.1 | 432 | 456 | 394 | 405 | 363 | 35.8
Gaitset | 79.5 | 87.9 | 89.9 | 90.2 | 88.1 | 88.7 | 87.8 | 81.7 | 86.7 | 89.0 | 89.3 | 87.2 | 87.8 | 86.2 | 87.1
GaitPart | 82.6 | 88.9 | 90.8 | 91.0 | 89.7 | 89.7 | 89.9 | 85.2 | 88.1 | 90.0 | 90.1 | 89.0 | 89.1 | 88.2 | 88.7
GaitGL | 84.3 | 89.8 | 90.8 | 91.0 | 90.5 | 90.5 | 90.3 | 88.1 | 87.9 | 89.6 | 89.8 | 88.9 | 88.9 | 88.2 | 89.1

Ours 84.5 | 89.8 | 91.0 | 91.2 | 90.7 | 90.5 | 90.2 | 88.5 | 879 | 89.9 | 90.0 | 89.2 | 89.2 | 88.7 | 89.4

3DLocal* | 86.1 | 91.2 | 92.6 | 92.9 | 92.2 | 91.3 | 91.1 | 869 | 90.8 | 92.2 | 92.3 | 91.3 | 91.1 | 90.2 | 90.9
CSTF* | 87.1 | 91.0 | 91.5 | 91.8 | 90.6 | 90.8 | 90.6 | 89.4 | 90.2 | 90.5 | 90.7 | 89.8 | 90.0 | 8§89.4 | 90.2
GaitGL* | 84.9 | 90.2 | 91.1 | 91.5 | 91.1 | 90.8 | 90.3 | 88.5 | 88.6 | 90.3 | 90.4 | 89.6 | 89.5 | 88.8 | 89.7
Ours* 859 190.6 | 91.3 | 91.5 | 91.2 | 91.0 | 90.6 | 88.9 | 89.2 | 90.5 | 90.6 | 89.9 | 89.8 | 89.2 | 90.0

rate is set to 3e-4 for CASIA-B dataset and le-4 for OU-
MVLP dataset at first. The batch size is set to (32,8) for
CASIA-B and (20,8) for OU-MVLP dataset. For CASIA-
B dataset, we trained our model for 70K iterations. And
for OU-MVLP dataset, the number of training iteration is
200K. The learning rate will be reset to le-5 at the 160K
iteration. 30 frames are sampled from one sequence during
training period and all frames are used during test period.

5.3. Comparison with State-of-the-Arts

Evaluation on CASIA-B [41]. The rank-1 accuracy(%)
on CASIA-B [41] are shown in Table 1. Methods with * are
trained with additional cross-entropy loss for identity classi-
fication. We find that joint loss with L g and cross-entropy
loss for identity classification can lead to severe overfit-
ting according to our experiments and the performance is
poor. So the results of “Ours*” are reported without Lc g
in Equation (16) and view embedding.

We compared our method with the latest methods, in-
cluding CNN-Ensemble [37], GaitSet [6], GaitPart [7],
GaitGL [21,22], 3D-Local [12] and CSTL [11]. It can be
seen that our method has a large improvement under all
conditions compared to all other methods when the cross-
entropy loss of identification is not used. The recognition
accuracy of our method in conditions NM, BG and CL
is 96.9%, 93.5%, 86.6%, which outperforms the original
GaitGL [22] by 0.5%, 0.8% and 3.6% respectively. They
are big step ups from the already high performance.

Methods using the cross-entropy loss for identity classi-
fication have relatively high performances. Our approach is
almost equal to the previous SOTA performance at NM and
BG settings and the rank-1 accuracy is much higher than
that of other methods. The average rank-1 accuracy of our
method is 0.56%, 0.3%, 0.53% higher than GaitGL [21],
3DLocal [12] and CSTL [11].

Evaluation on OU-MVLP [31]. The rank-1 accu-
racy(%) on OU-MVLP dataset are shown in Table 2. As
can be seen, our method consistently outperforms SOTA
except for the 90° and 195° compared with methods which

Table 3. Ablation study on motion and view(Rank-1,%).
NM | BG | CL Mean
Baseline(GaitGL) [22] 96.4 | 92.7 | 83.0 | 90.7
+motion 96.8 | 93.1 | 84.7 | 91.5
+motion+view(Supervision) | 96.7 | 93.5 | 853 | 91.8
+motion+view embedding 96.9 | 93.5 | 86.5 | 92.3

do not use cross-entropy loss of identification. When com-
pared with methods in which additional cross-entropy loss
for identity classification is used, our method make some
progress based on the baseline GaitGL [21] which proves
the validity of motion extraction module. It can be seen that
ours is 0.3% higher than GaitGL [22]. Although, we can
not outperform 3DLocal [12] and CSTF [11], we argue that
our method does not conflict with the contribution points of
them. The code of them are not open source now and their
model are complex enough, It’s not easy to do experiments
with our modules on them. We believe that if we integrate
our ideas with theirs, we can get better performance.

5.4. Ablation Study

In this paper, we propose the second-order motion ex-
traction module and view-embedding. To verify the valid-
ity of each module, we performed ablation study on them.
In addition, we explored the effect of sampling radius r in
Equation (8) and the length Cy of the view-embedding in
Equation (14) and Equation (15). Due to the richness of
CASIA-B data type, we performed ablation study on it.

Analysis of Motion Extraction and View embedding.
The effects of second-order motion extraction module and
view embedding are shown in Table 3. It can be seen that
both motion and view embedding make sense. The motion
extraction module can boost from 90.7% to 91.5% on aver-
age. The only use of view as the training supervision boost
from 91.5% to 91.8% and the whole use of view embedding
can boost another 0.5% on average. Among them, the addi-
tion of motion improves the rank-1 accuracy under all three
conditions. The addition of view can mainly improve the
accuracy under BG and CL condition.

Analysis of sample radius and length of embedding.
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The result are shown in Table 4. It can be seen that the the
influence of length of embedding and the radius are negligi-
ble and do not cause serious impact. However, it can be seen
that embedding length of 32 is preferable while the radius
of 3 is also much better.

Table 4. Ablation study on sample radius and length of embedding
(Rank-1, %)

Em_length | Radius | NM | BG | CL | Mean
32 2 96.8 | 93.3 | 85.6 | 91.9
64 2 96.6 | 93.5 | 84.7 | 91.6
32 3 96.9 | 93.5 | 86.6 | 92.3
64 3 96.4 | 93.3 | 86.5 | 92.0
32 4 96.6 | 93.1 | 854 | 91.7
64 4 964 | 933 | 86.2 | 92.0

Analysis of model generalization. In order to ver-
ify the generalization of our proposed second-order motion
extraction module and view embedding, we replaced the
backbone in our framework with another widely used open
source network GaitSet [6]. The result are shown in Ta-
ble 5. It can be seen that our method make a huge improve-
ment in the mean rank-1 accuracy. The proposed modules
mainly make increase on BG and CL and the motion ex-
traction module make a relatively greater contribution. It is
consistent with common sense that motion extraction mod-
ule improves BG and CL more since sequences under BG
and CL condition will have more difference in appearance
from probe sequence under NM condition.

Table 5. Rank-1 accuracy(%) on CASIA-B [41] with Gaitset [6]
as backbone.

NM | BG | CL | Mean
Baseline(Gaitset) [0] 95.0 | 87.2 | 70.4 | 84.2
+motion 95.0 | 873 | 73.3 | 85.2
+motion+view embedding | 94.9 | 87.8 | 73.3 | 854

5.5. Visualization

In order to intuitively show the functions of our pro-
posed module, we visualize the extracted second-order mo-
tion feature map. As shown in Figure 6, the proposed
second-order motion extraction module can surely capture
the motion information, including the motion direction and
the motion distance. Also, we visualized the extracted mo-
tions from different pedestrian using the standard optical
flow visualization method. Results are shown in Figure 7,
it can be seen that the visualization for different pedestrian
are discriminable.

6. Limitations and Negative impact

In this paper, though the Lagrange’s equation is used to
analyze the pedestrian motion and come to the conclusion
about second-order motion, we believe there will be a better
network matching the Equation 3. Also, due to the lack
of open source codes of some SOTA methods at this time,
we cannot further demonstrate the superiority of proposed
theory on their basis.
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Figure 6. Visualization of extracted motion. (x,y) denotes the lo-
cation of pixel in feature map t=1. The feature map is visualized
with mean operation at the channel dimension. In the sampled cor-
responding map, the brighter the pixel, the more similar the pixel
in the t=2 frame to the frame at the (x, y) position of the t=1 frame.
It can be found that the extracted features can well represent the
motion direction and distance of each pixel.

Figure 7. Visualization of extracted motion feature map with opti-
cal flow format.

Since this study is an application of biometrics technol-
ogy to intelligent video surveillance, possible privacy is-
sue may arise if the deployment is not under authorization.
Strict monitoring management and personal data protection
are the keys to avoiding the negative impact of the proposed
method.

7. Conclusion

In this paper, we first model the walking of human with
Lagrange’s Equation and illustrate that second-order infor-
mation is necessary to distinguish between two pedestrian
with similar appearance. According to this conclusion, we
explain why the current methods with 3D convolution can
approach better performance and proposed a novel second-
order motion extraction module. Besides, we put forward
a lightweight view-embedding to reduce the intra-class dis-
tance caused by the change of view. Our experiment on two
widely-used dataset proved our idea. We hope that proposed
modules or just some ideas can bring convenience to future
work. Our motion analysis framework may also be used in
other fields, such as video-based person re-identification.
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