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Abstract
The paradigm of training models on massive data with-

out label through self-supervised learning (SSL) and fine-
tuning on many downstream tasks has become a trend re-
cently. However, due to the high training costs and the un-
consciousness of downstream usages, most self-supervised
learning methods lack the capability to correspond to the
diversities of downstream scenarios, as there are various
data domains, different vision tasks and latency constraints
on models. Neural architecture search (NAS) is one uni-
versally acknowledged fashion to conquer the issues above,
but applying NAS on SSL seems impossible as there is no
label or metric provided for judging model selection. In
this paper, we present DATA, a simple yet effective NAS
approach specialized for SSL that provides Domain-Aware
and Task-Aware pre-training. Specifically, we (i) train a
supernet which could be deemed as a set of millions of
networks covering a wide range of model scales without
any label, (ii) propose a flexible searching mechanism com-
patible with SSL that enables finding networks of differ-
ent computation costs, for various downstream vision tasks
and data domains without explicit metric provided. Instan-
tiated With MoCo v2, our method achieves promising re-
sults across a wide range of computation costs on down-
stream tasks, including image classification, object detec-
tion and semantic segmentation. DATA is orthogonal to
most existing SSL methods and endows them the ability
of customization on downstream needs. Extensive experi-
ments on other SSL methods demonstrate the generalizabil-
ity of the proposed method. Code is released at https:
//github.com/GAIA-vision/GAIA-ssl.

*Corresponding author.

…

…

Figure 1. Illustration of how DATA works. We first build a super-
net which is a set of many subnets, and train massive models si-
multaneously in the regime of self-supervised learning. Then, we
propose a unsupervised searching method that enables domain-
aware and task-aware model selection without any label. The
mechanism enables self-supervised models to fit various scenarios
including point,edge and cloud covering different vision tasks like
image classification, object detection, and segmentation. Network
architectures in figure are ploted by software PlotNeuralNet [25].

1. Introduction

As is universally agreed that deep learning algorithms
are data-hungry, how to leverage the exponentially growing
unlabelled data from open-source has become a huge chal-
lenge. Self-supervised learning (SSL), which utilizes the
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inherent relationships of data to formulate supervision with-
out manual annotation, has made remarkable progresses
in both natural language processing (NLP) [14, 18, 34, 35]
and computer vision (CV) [10, 19, 20] area. Despite its
great success, to unleash the true power of SSL requires
gigantic scale of data and unimaginable training budgets.
This brings about a side-effect that it is extremely expen-
sive to train models of various architectures to cover the
heterogeneous downstream needs, considering most scenar-
ios are requesting for models of different scales and dif-
ferent downstream vision tasks may desire different model
architectures. It is usually believed that neural architec-
ture search (NAS) is designed for solving the issues above.
However, labels are so indispensable for existing NAS
methods that it seems impossible to apply NAS in SSL, be-
cause there is no clue for model selection if no label or met-
ric is provided. These reflections leave us two problems:

(1) Is it possible to train networks of distinctive archi-
tectures simultaneously in SSL? Gladly, previous meth-
ods [4, 5, 8, 44] have proved that training a supernet that
comprises of millions of weight-sharing subnets is possible
in the regime of supervised learning. Thus the hardship only
lies in how to prevent the co-training of different networks
from diverging when there is no strong and stable supervi-
sion. Some recent studies [8, 49] interpret the process of
SSL of siamese based methods as a form of self-distillation
that the query-branch works as a student and the teacher-
branch works as a teacher. Thus if we stabilize the be-
haviour of the teacher, we could provide a relatively steady
knowledge source for the heterogeneous students. In this
work, we build a supernet training mechanism for siamese
based SSL that we fix the key-branch with the maximum
architecture of supernet as a teacher and vary only the ar-
chitectures of the query-branch. Experiments show that
this ensures the efficiency of convergence and greatly im-
proves the capability of feature representation of small sub-
nets. More importantly, this design of training supernet in
SSL brings us the answer to the critical question below.

(2) How to judge the quality of a network if no label
or metric is provided? It is generally agreed that the big-
ger the better works for deep neural networks when data is
sufficient. Given a supernet that covers subnets of different
sizes and the knowledge distillation behaviour of SSL, the
distance between subnets and the maximum network natu-
rally becomes a self-supervised metric for judging the qual-
ity of networks. This metric works well especially when
there is a budget constraint for subnets. More discussions
about this assumption are placed in Sec 6

We further extend our exploration to enable the search-
ing process to be aware of the type of downstream tasks that
different tasks adopt different types of features for measur-
ing the distance of student and teacher. This greatly mini-
mizes the gap transferring to downstream tasks while keep-

ing the searching strategy plug-and-play.
As shown in Figure 1, our approach enables training

models of various sizes all in one go and searching appropri-
ate models specialized for specific downstream tasks, com-
putation constraints and data domains. This entire pipeline
does not require any label for training or model selection.
Instantiated with MoCo v2 [11] , we validate our contribu-
tions on evaluating our models on several standard of self-
supervised benchmarks. We also combine our approach
with other existing SSL methods [19,38,49] to demonstrate
the generalizability.

2. Related Work

2.1. Self-supervised learning

Self-supervised learning has become the main paradigm
of unsupervised learning. It aims at building a good pre-
text to learn fruitful feature representation from data it-
self. These pretexts can be mainly separated by two cat-
egories: reconstruction-based which concludes coloriza-
tion [48], spatial jigsaw puzzles [39], inpainting [45] and
discriminant-based which contains rotation predict [26],
instance-level contrastive [10,19,20], and fine-grained con-
trastive [38, 42].

Contrastive learning. For the first time, contrastive
methods [10, 20] makes self-supervised training become
comparable with supervised counterpart. Their method
mainly focus on pulling representations of different views
of the same image (positive pairs) closer and pushing rep-
resentations of different images (negative pairs) away in the
same time. Further, [7, 19] just use positive pairs to make
network learn fruitful feature. These aforementioned meth-
ods pretext are sub-optimal in some extent for dense pre-
dict task (object detection, semantic segmentation, etc.). To
relive this issue, fine-grained pretext [2, 24, 31, 38, 42] are
proposed. Most of these methods already outperform super-
vised counterpart in some dense predict downstream tasks.

2.2. Neural Architecture Search

Neural architecture search aims at automating the archi-
tecture design process under certain constraints. [50, 51]
proposes to use reinforcement learning with the metric on
proxy datasets as the reward for solving this problem. But
due to the unaffordable cost, one-stage NAS [1, 3, 6, 15, 30]
are proposed, which train and search candidate architec-
tures inside a single supernet. Though getting a specific
architecture easily with those methods, we still need to train
and search from scratch to get a new architecture once the
constraints (such as latency, memory cost) changed. Fur-
ther, researchers propose methods [4,5,9,44,46] to achieve
training one supernet, which can contain a series of subnets
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that cover a wide range of scenarios. Their effective super-
vised training methodology inspired us the most. In [29],
it firstly shows that network architectures performance on
self-supervised tasks like rotation prediction is linearly cor-
related with the performance on the supervised task which
inspired the design of searching mechanism in our method.

3. Method
3.1. Preliminaries

We formulate the process of common siamese based SSL
as a process of dynamic knowledge distillation [17, 49],
which shares the same notion with [8]. To be convenient,
we alias the query-branch as student branch, and the key-
branch as teacher branch in our paper. Given N unlabeled
samples x1, x2, ..., xN , two views (xs

i and xt
i) are obtained

on each sample through composition of different augmenta-
tions T and fed into a student g(·, θs) and a teacher network
g(·, θt), parameterized by θs and θt respectively. In most
cases, the teacher shares the exponential moving averaged
(EMA) weights of student, namely, θt ← λθs + (1− λ)θs.
We use zsi = g(xs, θs) and zti = g(xt, θt) to denote the
encoded features from student and teacher models, respec-
tively. H(zs, zt) is used to represent the similarity function.
Taking MoCo [20] as an example, the InfoNCE loss [33]
(Eq. 1) is adopted for training model:

Li = − log
exp (H(g(xs

i , θ
s) · g(xt

i, θ
t)/τ)∑N

j exp
(
H(g(xs

i , θ
s) · g(xt

j , θ
t))/τ

) (1)

where τ is a temperature hyper-parameter [41].

3.2. Self-supervised Supernet Training

No single model could perfectly match the needs of het-
erogeneous downstream applications, as there might be dif-
ferent latency constraints, data domains and task gaps. Thus
we aim to train a great deal of models together instead of
training a single one in the regime of SSL, and we hope they
cover a wide range of model scale. We extend the definition
of a network from g(x, θ) to g(x, θ,A), with a new dimen-
sion meaning model architecture. Concretely, we build up
a supernet Φ which contains numerous weight-sharing [46]
subnets g(k) of various architectures A(k), formulated as:{

A =
(
A(1), . . .A(k), . . .A(K)

)
θ =

(
θ(1), . . . θ(k), . . . θ(K)

) (2)

where K is the total number of subnets. Particularly, we
mark the largest model in supernet Φ as g(·, θ(K),A(K)),
because weights of all the subnets g(·, θ(k),A(k)) are com-
pletely included by it. During training, we fix the archi-
tecture of teacher-branch as the model-K which means
At = A(K), and vary the architecture of student-branch

as As ∈ A. The weights of teacher-branch use the EMA
version of the model-K, namely, θt ← λθ(K)+(1−λ)θ(K).

In each training iteration, we random sample two net-
work architectures A(m),A(n) from Φ together with the
maximum one A(K) to form a architecture set Ω =
{A(m),A(n),A(K)}. Following the conventional train-
ing regime in siamese-based SSL, we feed xt

i to teacher-
branch and generate the embedded feature of teacher
zti = g(xt

i, θ
t,At), and we feed xs

i to the models in
student-branch from Ω to get student features Zs

i =

{zs(m)
i , z

s(n)
i , z

s(K)
i } where z

s(m)
i = g(xs

i , θ
s(m),A(m)).

With similarity measured by dot product, we apply In-
foNCE loss on {(zti , zsi )|zsi ∈ Zs

i }, back-propagate the gra-
dients and update all the involved parameters. The whole
training process is shown as pseudo-code in Algorithm 1

Algorithm 1 Self-Supervised Supernet Training

Require: Define supernet Φ with largest architecture
A(K). Choose the specific contrastive learning method
to determine criterion. Initialize the neural network
g(·, θs,A(K)) and g(·, θt,A(K))

1: for i = 1, ..., Titers. do
2: Get the min-batch of data xi.
3: Get two views of xi. xs

i , xt
i.

4: optimizer.zero grad().
5: loss initialized with 0.
6: zt = g(xt

i, θ
t,A(K)).

7: Sample two model architectures A(m),A(n) from Φ
to construct set Ω = {A(m),A(n),A(K)}.

8: for A(k) in Ω do
9: loss+ = criterion(zt, g(x

s
i , θ

s(k),A(k))).
10: end for
11: loss.backward().
12: optimizer.step().
13: θt ← λθs + (1− λ)θs.
14: end for

Model space of supernet. We choose the popular
ResNet [22] as the basic architecture in our work. Depth1

and width2 are adopted as factors to formulate the model
space. Sharing the same notion with [22], the output feature
maps of each stage are denoted as (C1, C2, C3, C4, C5)
for future use. As shown in Table 1, the depth of stage start
from (2, 2, 5, 2) to (4, 6, 29, 4) with a step of (1, 2, 2, 1),
and the width of stem and each stage start from (32, 48, 96,
192, 384) to (64, 80, 160, 320, 640) with a step of (16, 16,
32, 64, 128).

3.3. Self-supervised Model Selection

This part reveals the core motivation behind our adop-
tion of supernet in the regime of SSL. Beyond the value of

1Number of bottleneck blocks in each stage.
2Number of channels of 3× 3 convolutions in each stage.
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Figure 2. Pipeline of our method. It contains two stages. In the first stage, we fix the architecture of the key-branch as a steady teacher,
and vary the architectures of the query-branch for supernet training. In the second stage, we propose a domain-aware and task-aware
self-supervised metric for subnet searching, based on the similarity of task-specific features extracted from target dataset between subnets
and model of the key-branch. d{1,2,3,4} : number of bottleneck blocks in this stage.

layer name Wrange Wstep Drange Dstep

stem [32, 64] 16 - -
stage1 [48, 80] 16 [2, 4] 1
stage2 [96, 160] 32 [2, 6] 2
stage3 [192, 320] 64 [5, 29] 2
stage4 [384, 640] 128 [2, 4] 1

Table 1. Model space of supernet. Width and depth of each stage
are sampled in range with certain step.

training massive models simultaneously, it presents a fea-
sible metric for self-supervised NAS and provides abun-
dant architecture candidates for searching. As is universally
acknowledged that the bigger the better works mostly for
deep neural networks, the distance between subnets and the
largest model naturally becomes a metric for model selec-
tion.

Domain-awareness. This mechanism enables us to apply
NAS on the downstream data during self-supervised learn-
ing, which shrinks the domain gap. Specifically, given a
constraint of computation budget C, we feed the down-
stream data D into teacher branch and obtain the exem-
plar feature representations zti = g(xi, θ

t,A(K)) for xi ∈
D. Then we randomly sample subnets under the con-
straint of budget and collect feature representations zs(k)i =
g(xi, θ

s(k),A(k)) for each model on the downstream data.

We denote the similarity function by H ′ and the conquering
model is selected to maximize the similarity on the entire
downstream dataset:

max
k

|D|∑
i

H ′(zti , z
s(k)
i ) (3)

The whole process does not involve any fully-supervised
metric such as accuracy or precision.

Task-aware metrics. The gaps between different vision
tasks are always unignorable. To enable our pre-trained su-
pernet to serve various downstream vision tasks, the archi-
tecture search has to be conducted under task-aware met-
rics. Model selected under a single self-supervised metric
is not suitable for different tasks. For instance, classifier
of image classification task mostly handles the avg-pooled
feature that focuses on the global information of image,
while in object detection, equipped with FPN [27], detec-
tors use the multi-stage features of backbone for inference.
These task-specific types of features matter most for the
specific downstream task. Hence we search for different
models by measuring the distance of the features directly
used in head of downstream task. We call this task-aware
metrics. The pipeline of our method is demonstrated in Fig-
ure 2.

For task of image classification, we direct use the fea-
ture of z. For object detection, we adopt feature of C5
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for Faster-RCNN-C4 and features from C2-C5 for Faster-
RCNN-FPN. And for task of semantic segmentation, we
adopt features from C4-C5. The influence of task-aware
metric is detailed in Table 9.

Similarity of relative relations. During the task-aware
searching, the size of the feature map of subnets might be
inconsistent with it of teacher. Thus we turn to utilize the
relative relations of features to evaluate the similarity of two
feature maps. We use M ∈ RC′×HW and M ′ ∈ RC×HW

to represent features from student and teacher respectively,
where H ,W denote the height and width, C and C ′ repre-
sent number of channels, and {m1,m2, ...,mHW } means
the feature in each column of matrix M . We define rij to
express the vector relative relation of vector mj and mi as
in Eq. 4, and the similarity of relative relation R on feature
maps can be formulated in Eq. 5. We combine this with the
task-aware metric, and conduct model selection in Eq. 3.

rij = − log
exp (mi ·mj/τ)∑HW
k (mi ·mk/τ)

(4)

R(M,M ′) =

HW∑
i

HW∑
j

−r′ij log rij (5)

4. Experiments
4.1. Experiments Setup

Datasets. We instantiate our method with the popular
MoCo v2 [11] and train on ImageNet [13] which has∼1.28
million images in 1000 categories. For the purpose of ver-
ifying transferability of models we search on downstream
tasks, we experiment on ImageNet [13] semi-supervised
classification, COCO [28] instance segmentation, PASCAL
VOC [16] object detection, and Cityscapes [12] semantic
segmentation. In the ablation study, to validate the general-
izability of our method, we combine our method with other
self-supervised learning methods [19,38,49] and train them
on ImageNet-10%.

Training details. When supernet trained on Imagenet,
we use SGD as the optimizer. The SGD weight decay is
0.000075. We train 200 epochs using a batch size of 1024
on 16 GPUs and an initial learning rate of 0.12. For super-
net trained on ImageNet-10%, we all follow their official
default settings.

Searching details. In order to verify that our method can
effectively deal with various scenarios, we compute FLOPs
for all of our subnets according to 224x224 input resolution
and divide them into seven groups at 1 GFLOPs interval
from 1 GFLOPs ∼ 8 GFLOPs. We randomly sample one

hundred subnets in different groups and search the network
in target dataset according to the task-aware metric to find
the best one in every group. When verifying our method on
various downstream tasks, we will display our experiment
results of each group.

4.2. Ranking Correlation

Firstly, we verify that the similarity of the task-specific
features between pre-trained subnets and the largest net-
work can be a reliable indicator to assess the performance of
these subnets. We sample fifty subnets uniformly and exper-
iment on the above ImageNet-1% (IN-1%) semi-supervised
classification, VOC object detection, COCO instance seg-
mentation and Cityscapes semantic segmentation. We com-
pute the Spearman [37] correlation between the similarity
ranking and their final performance ranking. The results are
shown in Table 2. For the low ranking correlation of seman-
tic segmentation, we infer the reason is that the data dis-
tribution of the Cityscapes [12] dataset is largely different
from the ImageNet [13] dataset used in the self-supervised
training stage.

Architecture Dataset Feature Correlation
ResNet-FC [22] IN-1% [13] z 0.90
FasterRCNN-C4 [36] VOC [16] C5 0.84
MaskRCNN-FPN [21] COCO [28] C2-C5 0.86
FCN [32] Cityscapes [12] C4-C5 0.63

Table 2. Ranking correlation. Architecture : The specific al-
gorithm architecture adopted when transferring to downstream
tasks. Feature : The feature utilized for model selection. IN-1% :
ImageNet-1%.

4.3. Results on Various Downstream Tasks

Linear evaluation on ImageNet. We train supervised lin-
ear classifiers (a fully-connected layer with softmax) on
frozen features after BN statics calibration for all of net-
works we search, following the procedure described in [43]
(detailed in supplementary materials). We report 1-crop,
top-1 classification accuracy on the ImageNet validation set.
The result is shown in Figure 3 and the network architec-
tures we search are described in appendix. We notice .The
top-1 accuracy of linear evaluation of the model we search
in Group 3G-4G is 68.5% which outperforms ResNet50
(3.8G, 67.5%) by 1%.

We find that relative small models benefit most from the
training strategy. But the searched architecture in 7G∼8G
group performs slightly worse than R101. We infer that
when one model architecture outperforms the largest one,
its output features are also far away from the largest teacher.

Semi-supervised classification on ImageNet. Next, fol-
lowing [10], we evaluate performance of the architectures
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Model FLOPs Params Depth Width APb APb
50 APb

75 APm APm
50 APm

75

R50* [11] 3.8G 25.5M [3, 4, 6, 3] [64, 64, 128, 256, 512] 38.7 59.2 42.3 35.5 56.2 37.9
R50† [40] 3.8G 25.5M [3, 4, 6, 3] [64, 64, 128, 256, 512] 38.6 59.5 42.1 35.2 56.3 37.5
Group FLOPs Params Depth Width APb APb

50 APb
75 APm APm

50 APm
75

1G∼2G 1.8G 13.6M [2, 2, 5, 2] [32, 48, 96, 192, 512] 36.2 56.6 39.5 33.4 53.9 35.4
2G∼3G 2.7G 14.7M [2, 2, 13, 2] [48, 48, 96, 192, 384] 38.3 58.4 41.8 34.8 55.2 37.4
3G∼4G 3.7G 25.7M [3, 2, 17, 3] [32, 48, 96, 192, 512] 39.9 60.2 43.5 36.0 57.1 38.6
4G∼5G 4.2G 33.1M [2, 2, 25, 2] [64, 64, 128, 192, 384] 40.4 60.9 44.3 36.5 58.0 39.3
5G∼6G 5.9G 43.4M [4, 6, 21, 4] [32, 64, 96, 192, 640] 41.2 61.9 45.2 37.2 58.5 39.9
6G∼7G 6.6G 40.2M [3, 6, 27, 3] [64, 80, 96, 192, 640] 41.5 62.1 45.1 37.3 58.9 40.1

Table 3. Results of object detection and instance segmentation on COCO. * : Results of model pretrained through MoCo v2. † : Results of
model pre-trained on ImageNet, fine-tuned on train2017 following 1x schedule and evaluated on val2017.

1 2 3 4 5 6 7 8
Flops(G)

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

To
p-

1 
ac

c(
%

)

68.5

Ours
Standard R{18,34}
Standard R{50,101}

Figure 3. Linear evaluation on ImageNet. All of the classifiers are
trained on the ImageNet train set with 100 epochs and evaluated on
the ImageNet validation set. We compare it with standard ResNet
architectures, which are all trained with MoCo v2 on ImageNet for
200 epochs.

we search on ImageNet val set after fine-tuning on 1% and
10% subset of ImageNet train set with annotations. For
the convenience of description, we use ImageNet-1% and
ImageNet-10% to represent the two subsets. The training
procedure is detailed in supplementary materials. The re-
sults of Top-1 on the val set are reported in Table 4. We
obtain +7.6% boost when fine-tuned on ImageNet-1% and
gain +1.7% on ImageNet-10%. For ImageNet-1% semi-
supervised setting, even the model selected from 1G∼2G
group outperforms the ResNet50 baseline by a large mar-
gin.

COCO instance segmentation. For COCO instance seg-
mentation, we follow the common setting [20] that fine-tune
a Mask R-CNN detector (FPN) on COCO train2017 split
(∼118k images) for all the architectures of our search with
standard 1× schedule and evaluating on COCO val2017

Model Params Top-1 Top-5
1% 10% 1% 10%

R50* [11] 25.5M 39.8 61.8 68.3 85.1
Group Params 1% 10% 1% 10%
1G∼2G 14.7M 45.8 61.9 73.7 84.9
2G∼3G 19.5M 46.5 63.0 74.7 85.8
3G∼4G 33.5M 47.5 63.4 75.1 85.7
4G∼5G 37.0M 47.8 64.3 75.3 86.4
5G∼6G 43.4M 49.0 65.1 76.2 86.7
6G∼7G 45.4M 49.3 65.4 76.3 87.0
7G∼8G 45.2M 49.5 65.6 76.5 86.9

Table 4. Results of semi-supervised classification on the 1% and
10% portion ImageNet. * : Results of models pre-trained through
MoCo v2. † : Results of models pre-trained on ImageNet. All
of the models are fine-tuned on the corresponding subset for 20
epochs and evaluated on the ImageNet validation set.

split. The results are shown in Table 3. The pre-train ar-
chitecture under 4 GFLOPs of our search outperforms the
standard ResNet50 by 1.2AP in detection, and the promo-
tion is 0.6AP for segmentation.

Object detection on PASCAL VOC. When transferring
to VOC [16] object detection, following the [11]: a Faster
R-CNN detector [36] (C4-backbone) is adopted. And it is
trained on VOC trainval07+12 set for 24K iterations and
evaluated on the VOC test2007 set. The results are pre-
sented in Table 5. With our framework, we can provide
a model whose FLOPs and Params are similar to standard
ResNet50, outperforms the R50 baseline by 1.2 AP.

Cityscapes semantic segmentation. Cityscapes [12] is a
widely used benchmark for semantic segmentation. Follow-
ing [38], we fine-tune the backbone of our search in the
FCN [32] form on train set (2975 images) for 40k itera-
tions with batch size 16 and test on val set (500 images).
The results are reported in Table 6. Although the correla-
tion of our ranking strategy is fair, as shown in Table 2, we
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Model FLOPs Params AP AP50 AP75

R50† [11] 3.8G 25.5M 53.5 81.3 58.8
R50* [11] 3.8G 25.5M 57.2 82.4 63.7
Group FLOPs Params AP b AP b

50 AP b
75

1G∼2G 1.8G 12.2M 50.9 79.8 55.2
2G∼3G 2.8G 25.0M 58.0 82.7 64.5
3G∼4G 3.7G 25.6M 58.5 83.0 65.0
4G∼5G 4.2G 33.1M 59.1 83.2 65.3
5G∼6G 5.9G 43.4M 60.5 83.9 67.1
6G∼7G 6.9G 47.4M 60.4 83.5 67.0
7G∼8G 7.3G 45.3M 60.4 83.6 67.3

Table 5. Results of object detection on PASCAL VOC. * : Model
pretrained by MoCo v2. † : Results of models pre-trained on Ima-
geNet.

Model Depth Width mIoU
R50† [3, 4, 6, 3] [64, 64, 128, 256, 512] 75.5
R50* [11] [3, 4, 6, 3] [64, 64, 128, 256, 512] 76.4
Group Depth Width mIoU
1G∼2G [2, 2, 5, 2] [48, 48, 96, 192, 512] 72.7
2G∼3G [3, 2, 9, 2] [48, 48, 96, 192, 512] 75.2
3G∼4G [2, 2, 17, 3] [32, 48, 96, 192, 384] 77.4
4G∼5G [2, 6, 19, 3] [32, 48, 96, 192, 640] 77.0
5G∼6G [2, 4, 25, 3] [64, 64, 128, 192, 640] 78.1
6G∼7G [4, 6, 23, 4] [32, 64, 128, 192, 640] 77.6
7G∼8G [4, 6, 21, 4] [32, 64, 160, 192, 640] 78.2

Table 6. Results of semantic segmentation on Cityscapes. † :
Models pre-trained on ImageNet. * : Models pre-trained through
MoCo v2.

can still find the network outperforms the baseline with our
effective training by 1 mIoU.

Transfer to other classification tasks. Furthermore, we
evaluate our framework on more diverse classification
datasets in VTAB [47] (detailed in supplementary materi-
als). We only find the most similar pre-train architecture
in 3G∼4G FLOPs group for the comparison with standard
ResNet50. We perform fine-tuning on these datasets and
report the results in Figure 4. The training details are de-
tailed in supplementary materials. Compared to our MoCo
v2 [20] baseline, we can get consistent improvement on
these datasets. Although MoCo v2 is at a disadvantage in
classification compared to supervised pre-training, thanks
to the advantages of our training strategy and model cus-
tomization, it can exceed the performance of supervised
pre-training on some datasets. As the results show, the
performance on eurasat [23] dataset attracts our attention.
This dataset is a land cover classification dataset, and we
find its data distribution is completely different from Ima-
geNet [13]. Hence, when transferring to this dataset, these

feature representations are of no use.
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Figure 4. Transferablity to other data domains in image classifi-
cation task. IN : Model pre-trained on ImageNet. MoCo : Model
pre-trained through MoCo v2.

5. Ablation Study
Combining with contrastive learning methods. Our pro-
posed pipeline is orthogonal to most contrastive learning
methods. The reason for choosing MoCo v2 as base-
line lies in its comprehensive performance on various
downstream tasks. To demonstrate the generalizability of
DATA, we instantiated with three classic contrastive self-
supervised learning methods, BYOL [19], ReSSL [49] and
DenseCL [38]. Due to the huge computation cost for
training self-supervised models, we conduct experiments of
these methods only on ImageNet-10%. Since [19, 49] are
designed for classification task originally and [38] is mainly
designed for the dense-prediction task, we report compari-
son results on area of their expertise. As shown in Table 7,
consistent improvement could be observed.

Method Task performance
BYOL (repro) Cls 23.7
Ours+BYOL Cls 24.8
ReSSL (repro) Cls 23.7
Ours+ReSSL Cls 26.7
DenseCL (repro) Det 49.1
Ours+DenseCL Det 50.2

Table 7. Ablation study on combining DATA with other con-
trastive learning methods. Cls : Results of semi-supervised classi-
fication on the ImageNet-1% dataset. The top-1 accuracy adopted
as metric. Det : Results of object detection on PASCAL VOC. AP
is adopted as metric.

Ablation with teacher architecture. In this ablation
study, we explore the impact of choice on teacher architec-
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ture. Instead of fixing the architecture of teacher branch to
the largest network, we compare with the setting using the
same architecture as the sampled subnet in student branch,
namely, zt(k)i = g(xt

i, θ
t(k),A(k)). We base the experiment

on MoCo v2 and train supernets on ImageNet-10%. Next,
we extract the standard ResNet50 from supernet and eval-
uate it on the val set following the setting of linear classi-
fication. As reported in Table 8, we see that fixing the ar-
chitecture of teacher branch is crucial, that the top-1 accu-
racy reaches 42.4% under linear evaluation protocol, 3.4%
higher than the unfixed setting. This convey a message that
a stable teacher is important for self-supervised supernet
training. We also observe that this result outperform the
vanilla MoCo v2 by 0.9%, which means supernet distilla-
tion is helpful over self-distillation.

Method Fixed teacher arch Top-1 Top-5
MoCo v2 41.5% 66.6%
Ours 39.0% 64.2%
Ours ✓ 42.4% 67.2%

Table 8. Ablation on feature alignment. This table reports top-
{1,5} accuracy of linear evaluation with 200 epochs on ImageNet-
10%.

Ablation with task-aware metrics. Here we explore the
effectiveness of task-aware metrics for model selection. For
each downstream task, we select models according to met-
rics based on z, C5 and C2-C5 respectively. As reported
in Table 9, task-aware metrics yield 0.4%, 0.7% and 0.7%
improvements when task and metric are matched.

Dataset Task Architecture Feature Performance
z 47.5

IN-1% [13] Semi-cls ResNet-FC C5 47.3
C2-C5 47.1

z 57.8
VOC [16] Det FasterRCNN-C4 C5 58.5

C2-C5 58.1
z 39.2

COCO [28] Det MaskRCNN-FPN C5 39.3
C2-C5 39.9

Table 9. Ablation with task-aware metrics. IN-1% : ImageNet-
1%. Semi-cls : Semi-supervised classification, using top-1 accu-
racy as metric. Det : Object detection, using AP@IoU as metric.
All models share the similar computation budget with ResNet50.

Ablation with domain-awareness. We also explore the
influence of domain-awareness. Specifically, we compare
our searched models above with models searched through
different datasets. Results are reported in Table 9. Note that
these models are all in 3G∼4G group.

We find that searching by ImageNet seems to be
an acceptable indicator for the performance of object

detection on COCO. While in task of segmentation,
searching without domain-awareness severely degrades the
correlation(0.63→ 0.23) and mIoU(77.4→ 76.2).

Task Target Source Correlation Performance
Det COCO ImageNet 0.82 39.7
Det COCO COCO 0.86 39.9
Seg Cityscapes ImageNet 0.23 76.2
Seg Cityscapes Cityscapes 0.63 77.4

Table 10. Ablation on architecture search with domain awareness.
Det : Object detection. Seg : Semantic segmentation. Target:
Target dataset of downstream task where models are finetuned.
Source: Source dataset for model selection.

6. Limitation
The major limitation of this work lies in the imbal-

anced training among subnets. Specifically, we find that the
smaller two-thirds of subnets in supernet are trained well
while the rest larger subnets are not. We infer that subnets
could benefit more from knowledge distillation and most of
their weights are always covered regardless of which subnet
is sampled during training.

For our assumption, it indeed can not deal with this situa-
tion where candidate subnets are close to the largest teacher
network. Because when one model architecture outper-
forms the largest one, its output features are also far away
from the counterpart of largest teacher.

7. Conclusion
We have explored combining NAS with self-supervised

learning and positive results are shown. Firstly, we manage
to train massive weight-sharing subnets in a supernet simul-
taneously in the regime of self-supervised learning. More
importantly, this mechanism of supernet training makes
possible the unlabeled NAS since the feature distance be-
tween subnets and the largest network works perfectly as a
self-supervised metric for model selection. Our work is or-
thogonal to most existing self-supervised learning methods
and endows them the capability of customization on various
downstream needs. We hope our approach could truly use-
ful in real-world applications and our adventure on NAS in
SSL could inspire more genius minds.

8. Acknowledgement
We thank Jiawei He, Shuwei Sun, Yuqi Wang, Lin Zhang

and anonymous reviewers for their helpful discussions that
improved this paper.

This work was supported in part by the Major Project
for New Generation of AI (No.2018AAA0100400), the Na-
tional Natural Science Foundation of China (No. 61836014,
No. U21B2042, No. 62072457, No. 62006231).

9848



References
[1] Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari,

Kento Uchida, Shota Saito, and Kouhei Nishida. Adaptive
stochastic natural gradient method for one-shot neural archi-
tecture search. In ICML, 2019. 2

[2] Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed,
Roei Herzig, Gal Chechik, Anna Rohrbach, Trevor Darrell,
and Amir Globerson. Detreg: Unsupervised pretraining with
region priors for object detection. arXiv:2106.04550, 2021.
2

[3] Andrew Brock, Theodore Lim, James M Ritchie, and Nick
Weston. Smash: one-shot model architecture search through
hypernetworks. In ICLR, 2018. 2

[4] Xingyuan Bu, Junran Peng, Junjie Yan, Tieniu Tan, and
Zhaoxiang Zhang. Gaia: A transfer learning system of object
detection that fits your needs. In CVPR, 2021. 2

[5] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. In ICLR, 2020. 2

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 2

[7] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, 2020. 2

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 2, 3

[9] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. Autoformer: Searching transformers for visual recog-
nition. In ICCV, 2021. 2

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020. 2, 5

[11] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv:2003.04297, 2020. 2, 5, 6, 7

[12] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR.
5, 6

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 5, 7, 8

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, 2019. 2

[15] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four gpu hours. In CVPR, 2019. 2

[16] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 2010. 5, 6, 8

[17] Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang,
Yezhou Yang, and Zicheng Liu. Seed: Self-supervised dis-
tillation for visual representation. In ICLR, 2021. 3

[18] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature,
scope, limits, and consequences. Minds and Machines,
30(4):681–694, 2020. 2

[19] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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