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Abstract

Facial action unit (AU) recognition is formulated as a
supervised learning problem by recent works. However,
the complex labeling process makes it challenging to pro-
vide AU annotations for large amounts of facial images.
To remedy this, we utilize AU labeling rules defined by
the Facial Action Coding System (FACS) to design a novel
knowledge-driven self-supervised representation learning
framework for AU recognition. The representation encoder
is trained using large amounts of facial images without AU
annotations. AU labeling rules are summarized from FACS
to design facial partition manners and determine correla-
tions between facial regions. The method utilizes a back-
bone network to extract local facial area representations
and a project head to map the representations into a low-
dimensional latent space. In the latent space, a contrastive
learning component leverages the inter-area difference to
learn AU-related local representations while maintaining
intra-area instance discrimination. Correlations between
facial regions summarized from AU labeling rules are also
explored to further learn representations using a predict-
ing learning component. Evaluation on two benchmark
databases demonstrates that the learned representation is
powerful and data-efficient for AU recognition.

1. Introduction
Facial AUs defined by the Facial Action Coding Sys-

tem [4] describe the activities of sets of specific facial mus-
cles. Nearly all facial behaviors can be represented through
one or more AUs. Automatic facial AU recognition has at-
tracted attention due to its potential in a wide variety of ap-
plications.

The majority of current works on facial AU recogni-
tion are supervised, requiring fully AU-labeled images for
training. In general, there are two different approaches
to supervise AU recognition. The first treats AU recog-
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Figure 1. (a)The judgment areas of AU12 are shown. (b)Left:
Facial areas are divided into eight parts according to AU-related
appearance changes. Right: The relationships between facial ar-
eas. Corresponding AUs are labeled on the edges.

nition as a multi-label classification problem to be solved
by directly constructing an end-to-end deep network [2, 5].
However, AUs are typically correlated to partial facial ar-
eas. These works only utilize global facial information
for AU recognition, limiting their performance. Recent
works [14, 15, 17, 30] have opted for the second approach,
which tries to learn more AU-specific patterns to enhance
AU recognition. For example, these works locate AUs
based on facial landmarks and muscles. The nearby areas
of specific AUs are used to predict their labels. Leverag-
ing more AU-specific patterns can effectively improve AU
recognition. However, AU labels must be annotated by ex-
perienced experts, which is time and labor intensive. Exist-
ing AU-labeled databases are too limited to take advantage
of these supervised methods.

Recently, several works have tackled the issue of AU
annotations. Some works [25, 27] try to perform semi-
supervised AU recognition. These works summarize la-
bel distribution from ground-truth AU labels, and use the
learned distribution to improve AU recognition. However,
the summarized patterns may not be consistent with the true
distribution due to limited ground-truth AU labels. Li et al.
[16] have created self-supervised learning methods in which
large amounts of unlabeled images are used to learn repre-
sentations. They utilize the transformation between two ad-
jacent frames as the supervisory signal to learn AU-related
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global facial representations, ignoring the local property of
AUs. There are also several self-supervised methods [1, 6]
that learn powerful visual representations for image classifi-
cation via contrastive learning. However, both Li et al. [16]
and the contrastive learning works design self-supervised
tasks using random augmentation or temporal information.
They do not fully leverage task-related domain knowledge.

To address these obstacles, we propose a novel
knowledge-driven self-supervised representation learning
framework for AU recognition to alleviate the demand for
AU labels. Specifically, we first summarize AU label-
ing rules taken from FACS as domain knowledge. FACS
determines AUs according to different facial appearance
changes. For example, as shown in Figure 1a, some key
facial appearance changes of AU12 consist of lip corners
raising, infraorbital triangle raising, and so on. AU-related
appearance changes are summarized, and facial areas are
divided into eight sections according to the locations of the
appearance changes, as shown in the left image of Fig-
ure 1b. There are also correlations between local areas,
summarized in the right image of Figure 1b. The sum-
marized knowledge is leveraged to design a self-supervised
representation learning framework. A backbone network
extracts local representations for each facial part, and a
project head maps the local features into a low-dimensional
latent space. In the latent space, a contrastive learning com-
ponent and a predicting learning component train the fea-
ture encoder. The challenge with contrastive learning is
designing reasonable data pairs. Positive pairs pull closer
and negative pairs push apart. In our contrastive learning
component, the embeddings from the same and symmetri-
cal areas are treated as positive pairs according to AU la-
beling rules. All others are regarded as negative pairs. In
addition, for each area, the embeddings from the same in-
put image are treated as positive pairs to maintain intra-area
instance discrimination. We propose a predicting learning
component to leverage the summarized inter-area relation-
ships to enhance representation learning. A group of pre-
dictors are used to learn correlations between the embed-
dings from different areas in the latent space. The inter-area
correlations are utilized as supervisory signals. Finally, the
proposed representation learning framework is trained on a
large available unlabeled database. AU classifiers are fur-
ther trained on two benchmark databases to evaluate the ef-
ficacy of the learned representations for AU recognition.

The contributions of the paper can be summarized
as follows. We propose a novel knowledge-driven self-
supervised representation learning framework for AU
recognition, which can learn AU-related local representa-
tions from large amounts of available unlabeled images.
Unlike previous self-supervised learning methods ignoring
task-related domain knowledge, we leverage both the differ-
ence and correlation between local facial areas as supervi-

sory signals under the guidance of AU labeling rules. Eval-
uation on two benchmark databases shows that the learned
local features are powerful and data-efficient for AU recog-
nition compared to state-of-the-art self-supervised, semi-
supervised, and supervised methods.

2. Related Work

2.1. AU recognition

A comprehensive survey on facial AU recognition can be
found in [18]. In this section, we provide a brief review of
advances in facial AU recognition.

The majority of recent works on AU recognition are
based on supervised methods. Several works [2,5] treat AU
recognition as a multi-label recognition problem, and have
achieved better performance than hand-crafted feature ex-
tractors. However, AUs are usually only related to partial
facial areas. These works ignore the property, which has
limited their performance. Recent works prefer to enhance
AU recognition by learning AU-specific patterns. For ex-
ample, Zhao et al. [30] try to address region and multi-label
learning jointly. Li et al. [15] combine region of interest
(ROI) adaptation with optimal LSTM-based temporal fus-
ing. Shao et al. [22] use an adaptive attention module to
extract precise local features in their joint AU detection and
face alignment framework (JÂA-Net). Li et al. [14] inte-
grate semantic correlations between AUs to create a deep
region learning framework for AU recognition. Jacob et
al. [11] leverage transformer encoder to perform AU recog-
nition. AU-specific representations are extracted based on
the regions of interest. Tang et al. [26] learn pixel-level
attention to enhance AU recognition by a pixel-interested
learning method. Song et al. [23, 24] leverage graph neural
network to exploit AU correlations to enhance AU recogni-
tion. These works benefit from leveraging more AU-related
patterns. However, supervised works need fully AU-labeled
data for training. A lack of available AU-labeled databases
has limited their generalization.

Some works try to alleviate the demand for AU annota-
tions. Several perform semi-supervised AU recognition by
summarizing label distributions from ground-truth AU la-
bels. For example, Song et al. [25] marginalize over the
latent values to tackle missing labels during inference for
their Bayesian Group-Sparse Compressed Sensing (BGCS)
method. Wu et al. [27] introduce a semi-supervised AU
recognition method (DAU-R) in which AU distributions are
captured by restricted Boltzmann machine (RBM). Niu et
al. [20] propose semi-supervised AU recognition method by
leveraging unlabeled web face images. However, the label
distribution learned from the limited ground-truth AU la-
bels may not be consistent with their true distribution. Li
et al. [16] propose self-supervised representation learning
for AU recognition. The transformation between two facial
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Table 1. The appearance changes and judgment areas for AUs.
AU AU Name Appearance Changes Judgment Areas
1 Inner Brow Raiser There are wrinkles in the middle of the forehead; Inner eyebrows raise. 1, 2, 3

2 Outer Brow Raiser
Lateral eyebrows raise; Lateral eye cover folds are stretched upwards;

There are wrinkles in the lateral portion of forehead. 1, 2, 3

4 Brow Lowerer Eyebrows are lowered and pulled closer together; There are wrinkles or muscle bulges between eyebrows. 2, 3, 4
6 Cheek Raiser There are crow’s feet lines; Infraorbital triangles are lifted upwards. 2, 3, 5, 6
7 Lid Tightener Eye apertures are narrowed; Lower eyelids are stretched and raised. 2, 3
9 Nose Wrinkler Infraorbital triangles are lifted upwards; There are wrinkles across nose root. 4, 5, 6
10 Upper Lip Raiser There exist pouches in inner corner of infraorbital triangle; Center of upper lip is lifted up. 5, 6, 7

12 Lip Corner Puller
Lip corners are pulled obliquely; Nasolabial furrows are deepened;

Infraorbital triangles are lifted upwards and infraorbital furrows are deepened. 5, 6, 7

14 Dimpler Lip corners are tightened; There are wrinkles and bulges at mouth corners. 7

15 Lip Corner Depressor
Lip corners are moved down; Lip shape is stretched down;

There exist bulges below the lip corners. 7, 8

17 Chin Raiser The lower lip are lifted up; And there are wrinkles on the chin boss. 7, 8
23 Lip Tightener Lips are narrowed and tightened. 7
24 Lip Presser There are evidences of lips pressing together. 7
25 Lips Part There are evidences of lips parting and teeth exposing. 7, 8
26 Jaw Drop There are appearances of mandible lowering by relaxation; There is space between the upper and lower teeth. 7, 8

images is used as the supervisory signal to learn AU-related
representations. Large amounts of unlabeled videos can be
used to train the framework. However, Li et al. [16]’s work
only learns global facial features and ignores the local prop-
erty of AUs. Task-related domain knowledge is not fully
explored, and these factors have limited its performance.

In this paper, we propose a knowledge-driven self-
supervised representation learning framework for AU
recognition that can learn powerful AU-related local rep-
resentations from unlabeled facial images.

2.2. Self-supervised learning

Great progress has recently been made in self-supervised
learning, which adopts supervisory signals of the data itself
to learn representations from large amounts of unlabeled
data. The most competitive self-supervised representation
learning method is contrastive learning [1,6,9,12,21], which
utilizes contrastive loss to force low-dimensional data em-
beddings to pull together positive data pairs and push apart
negative data pairs. The key question of contrastive learning
is how to design reasonable data pairs.

Hénaff et al. [9] leverage contrastive predictive coding
by dividing images into overlapping patches. He et al. [6]
and Chen et al. [1] perform contrastive self-supervised rep-
resentation learning by generating different image views
under random data augmentation. Khosla et al. [12] pro-
pose supervised contrastive learning, which considers the
label information. These works typically leverage the dif-
ference between data pairs using random augmentation or
patch division. However, they do not fully utilize task-
related domain knowledge.

In this paper, we utilize domain knowledge to guide the
design of a self-supervised learning framework. For the
contrastive learning component, data pairs are designed ac-
cording to AU labeling rules, leveraging the inter-area dif-
ference to supervise representation learning. The corre-
spondences between facial areas are used as supervisory

signals to further enhance the learned representation via a
predicting learning component.

3. Problem Statement
Let D = {xi}Ti=1 denote training samples without AU

annotations, where xi represents a facial image, and T is
the number of all the training samples. The goal is to learn
a function f(·) fromD to extract AU-related local represen-
tations for each input image.

4. Methodology
AU labeling rules are summarized from the FACS. That

knowledge is leveraged to design a self-supervised repre-
sentation learning framework for AU recognition.

4.1. AU labeling rules

AUs describe facial muscular activities. The FACS de-
tails how to recognize AUs and label AU intensities via fa-
cial appearance changes. For example, AU1 represents in-
ner brow raiser. Important appearance changes for AU1 in-
clude the raising of the inner brow and the appearance of
wrinkles in the center of the forehead. AU activation trig-
gers appearance changes in different facial areas. Table 1
presents the main appearance changes for 15 common AUs.

We split the global facial regions into eight separate
judgment areas according to the emerging locations of ap-
pearance changes and facial landmarks, as shown in the left
side of Figure 1b. Each facial area is a rectangular box,
located by several special landmarks labeled with a red as-
terisk. Table 1 summarizes the judgment areas for each AU.
For example, the judgment areas related to AU1 include ar-
eas 1, 2, and 3. Each AU can be judged by jointly observing
the appearance changes of several different judgment areas.
Facial areas will change appearance as different AUs are
activated.

There are also correlations between different facial areas.
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Figure 2. The framework. In the backbone network, one input facial image is first transformed into two different views by different
augmentations. Then f(·) based on CNNs and a ROI Align layer is utilized to extract eight local representations for each view. Project
head maps the local facial features to a low-dimensional latent space by g(·). In the latent space, contrastive learning and predicting
learning components are introduced to train the framework in a self-supervised manner.

On the one hand, appearance changes between asymmetric
areas correspond. For example, both AU12 and AU10 will
cause appearance changes in judgment areas 5, 6, and 7.
The medial portion of upper lip raising in area 7 and the
upper portion of nasolabial furrow deepening in areas 5 and
6 will occur simultaneously while AU10 is activated. Lip
elongating and angling obliquely at the corner in area 7 will
occur simultaneously with the lower portion of nasolabial
furrow deepening in areas 5 and 6 due to the activation of
AU12. This demonstrates that the appearance changes in
areas 5, 6, and 7 are highly corresponding owing to the acti-
vation of different AUs. On the other hand, according to [3],
facial appearance changes on the left and right sides are usu-
ally similar in deliberate and emotional facial actions due
to symmetry determined by facial muscular mechanisms,
though their intensities may be different. For example,
while AU1 is activated, the appearance changes presented
in areas 2 and 3 are usually similar, though the magnitude
of inner brow raising may be different. The inter-area rela-
tion graph is summarized in the right image of Figure 1b, in
which each vertex denotes one judgment area. Related AUs
are marked on the edges connecting related vertices.

4.2. The proposed representation learning frame-
work

Figure 2 shows the representation learning framework,
including a backbone network, a project head, a contrastive
learning component, and a predicting learning component.
First, the input facial image is transformed into two views
by different augmentation methods. Then the two trans-
formed views are respectively fed into f(·) to extract local

representations for the separate facial regions defined in the
left image of Figure 1b. In order to leverage AU labeling
rules to train the feature encoder in a self-supervised man-
ner, a project head maps the local facial representations to
a low-dimensional latent space, as in other works [1, 12].
Finally, under the guidance of summarized knowledge, a
contrastive learning component and a predicting learning
component are designed in the latent space to train the rep-
resentation learning framework.

4.2.1 Contrastive learning component

The facial area can be divided into eight parts according to
the summarized labeling rules. Representations differ from
one area to the next. The contrastive learning component
differentiates the representations from the facial areas ac-
cording to the summarized knowledge. First, a mini-batch
of N images {xi}Ni=1 is randomly sampled from D. The re-
lated mini-batch for training includes 2N samples, {x̃i}2Ni=1.
x̃2i and x̃2i−1 are augmentations of xi (i=1...N). After pass-
ing through f(·), 16N local representations are acquired for
the mini-batch,

{
h1i , h

2
i , ..., h

8
i

}
i=1,...,2N

. Then a project
head g(·) is applied to map the local representations into
a low-dimensional latent space,

{
v1i , v

2
i , ..., v

8
i

}
i=1,...,2N

.
The embeddings from the same or symmetrical judgment
regions are treated as positive pairs in the latent space; oth-
erwise, they are regarded as negative pairs. The cosine sim-
ilarity between v and u can be denoted as csim(v, u) =

vτu
∥v∥2∥u∥2

. We introduce the following loss functions:
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La =

2N∑
i=1

8∑
p=1

ℓai,p (1)

ℓai,p =
1

Ni,p

2N∑
j=1

8∑
q=1

1[i ̸=j∨p ̸=q] · 1[q∈Φ(p)] · ℓ(vpi , v
q
j ) (2)

ℓ(vpi , v
q
j ) = − log

exp(csim(vpi ,v
q
j)/τ)

2N∑
k=1

8∑
r=1

1[i̸=k∨p ̸=r]·exp(csim(vpi ,vrk)/τ)
(3)

where Ni,p is the total number of positive pairs related to
the embedding vpi . 1[·] ∈ {0, 1} is a function evaluating
to 1 if the condition is true. Φ (p) denotes the set of ar-
eas, including p and its symmetric area (if the symmetric
area exists). τ is a temperature parameter. The above loss
function pulls positive data pairs closer and pushes negative
data pairs apart. However, it tends to reduce the diversity
of intra-area representations. Intra-area contrastive learning
is used to counteract this. For each local facial area, the
embeddings from the same input facial image are treated
as positive pairs; otherwise, they are regarded as negative
pairs. The loss functions are defined as follows:

Lb =

8∑
m=1

ℓbm (4)

ℓbm = −
∑2N

i=1 log
exp(csim(vmi ,vmψ(i))/τ)

2N∑
k=1

1[k ̸=i]·exp(csim(vmi ,vmk )/τ)
(5)

where ψ(i) is the index of the other augmented image from
the same input facial image. The overall contrastive learn-
ing loss is defined as Equation-6, where λ is a weight to bal-
ance the degree of the intra-area instance diversity. Overall,
the contrastive learning component leverages the inter-area
differences as supervisory signals, while keeping the intra-
area representations diverse.

Lcon = La + λLb (6)

4.2.2 Predicting learning component

There are correspondences between local facial regions due
to the activation of AUs. The representation of one judg-
ment area should be predictive from its related areas due
to the inter-area co-occurrence relations of the appearance
changes. In this section, we introduce a predicting learn-
ing component that leverages these relationships to enhance

representation learning. A group of predictors is applied in
the latent space to learn the relationships between the re-
lated facial areas. Figure 2 shows the predicting graph be-
tween local embeddings. The group of predictors is denoted
as {φqp}, where φqp denotes a predictor predicting embed-
dings of area p from the ones of related area q. There is one
predictor for each arrow. In total, 26 predictors are adopted
to learn the correlations between local facial areas. The pre-
dicting relations are shown in Equation-7, where vqi denotes
the q-th latent feature of the i-th image x̃i in the mini-batch.
K denotes the number of the related areas of area p. 1[q∼p]

is a function evaluating to 1 if p relates to q. v̂pi denotes
the predicted embeddings of p-th areas of i-th image x̃i in
the mini-batch. For area p, the multiple predicted repre-
sentations from other related areas of the same image are
averaged as the final predicted results.

v̂pi =
1

K

8∑
q=1

1[q∼p] · φqp(v
q
i ) (7)

Lpre =

2N∑
i=1

8∑
p=1

(
1− vpi · v̂pi

∥vpi ∥2 · ∥v̂
p
i ∥2

)
(8)

The distance between the predicted and target embed-
dings is closed by one cosine loss. The function is shown as
Equation-8. The loss function forces the predicted embed-
dings to be close to the target one. The correlations between
representations from different areas are exploited to super-
vise the training of the representation learning framework.

4.2.3 Overall learning

The overall learning loss is defined as Equation-9, where α
and β are weighted coefficients to balance the contrastive
and predicting components.

L = αLcon + βLpre (9)

The contrastive learning component tries to leverage the
inter-area difference to train the feature encoder while main-
taining intra-area instance diversity. The predicting learn-
ing component leverages the correlations between different
areas to further enhance the learned representations. By
jointly training the contrastive and predicting learning com-
ponents, our method can differentiate the representations of
different areas while learning the inter-area co-occurrence
relations. Both the difference and correspondence between
facial areas are leveraged as supervised signals to improve
learning of AU-related local representations. AU labeling
rules guide the design of the self-supervised representation
learning framework.
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5. Experiments

5.1. Experimental conditions

The framework is trained on the BP4D+ database [29].
After training, learned representations are evaluated by
training AU classifiers on two databases: the BP4D
database [28] and the Denver Intensity of Spontaneous Fa-
cial Action database (DISFA) [19].

The BP4D+ database is a multi-modal spontaneous emo-
tion corpus consisting of 140 subjects. Each participant per-
forms with 10 tasks. There are about 1.4 million frames in
total. All available 2D image samples are used. The sub-
jects are randomly divided, with 70% used for training and
30% used for validating.

The BP4D database includes spontaneous facial videos
of eight tasks from 41 subjects. These subjects are differ-
ent from those recorded for the BP4D+ database. There
are 328 two-dimensional videos coded with 12 AUs (i.e.,
AU1, AU2, AU4, AU6, AU7, AU10, AU12, AU14, AU15,
AU17, AU23, and AU24). We use all available AU labels
and around 140,000 valid image samples.

The DISFA database consists of spontaneous videos of
27 subjects. The AUs are labeled with intensities ranging
from 0 to 5. There are about 130,000 valid image samples.
Eight AUs (i.e., AU1, AU2, AU4, AU6, AU9, AU12, AU25,
and AU26) are considered and each AU with an intensity
greater than or equal to 2 is treated as active.

Dlib toolkit [13] is applied to detect 68 facial land-
marks for each image. The augmentation methods are ran-
dom color distortions with different brightness, saturation,
constrast, and hue. f(·) includes CNNs and an RoI-align
layer [7]. The CNNs are based on ResNet-50 network [8].
The features extracted from the final convolutional layer of
the conv4 x are utilized as global features, as is common
practice in other works [7, 10]. f(·) takes a 224 x 224 RGB
image as the input and outputs a 4096-dimensional local
representation for each facial area. g(·) is a multi-layer per-
ceptron (MLP) with a hidden layer of size 2048; it outputs
vectors of size 128. In the latent space, a group of predictors
is applied to learn the vector correspondences. Each predic-
tor is an MLP with a single hidden layer of size 1024. The
representation learning framework is trained end-to-end by
minimizing the loss functions in Equation-9. λ, τ , α, and
β are set to 0.1, 0.07, 0.01, and 1, respectively. The frame-
work is implemented by PyTorch and trained by Adam op-
timizer with an initial learning rate of 0.0001 and batch size
of 128.

In order to evaluate the learned representation, the AUs
are divided into several groups according to their related
judgment areas from Table 1. AUs are usually judged by
jointly observing several related judgment areas. Table 2
shows the groups of predicted AUs and their related facial
judgment areas. AU classifiers based on MLP with two

Table 2. The correspondence between facial areas and predicted
AUs.

Facial areas Predicted AUs
1, 2, 3, 4 AU1, AU2, AU4
2, 3, 5, 6 AU6, AU7
4, 5, 6, 7 AU9, AU10, AU12

7 AU14, AU23, AU24
7, 8 AU15, AU17, AU25, AU26

(a)

(b)

Figure 3. (a) F1 score with different λ on the BP4D and DISFA
databases. (b) F1 score with different α on the BP4D and DISFA
databases.

hidden layers of sizes 1024 and 128 are trained for each
group via cross-entropy loss (fixed the parameters of f(·)).
Subject-independent 3-fold cross-validation is used for the
BP4D and DISFA databases. F1 score is adopted to evaluate
the performance of AU recognition.

5.2. Experimental results and analysis

5.2.1 Evaluation for contrastive learning component

As shown in Equation 6, the inter-area contrastive learning
loss La tries to differentiate the embeddings from different
facial areas, but tends to reduce the diversity of intra-area
representations. Lb tries to retain intra-area instance diver-
sity, but also reduces the inter-area difference to a certain
extent. λ is a weight to balance the degree of the intra-
area instance diversity. When λ is 0, the intra-area loss Lb

is discarded and no intra-area instance diversity is consid-
ered. As λ increases, the weight of Lb increases. We train
the representation learning framework with different λ on
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Table 3. F1 score of self-supervised AU recognition on the BP4D
database.

Methods SimCLR MoCo TCAE Ours
AU1 11.3 7.6 43.1 50.1
AU2 6.0 2.9 32.2 45.4
AU4 19.7 13.7 44.4 53.6
AU6 67.5 79.2 75.1 79.2
AU7 72.2 79.8 70.5 78.4

AU10 81.1 85.0 80.8 85.2
AU12 75.8 87.7 85.5 87.4
AU14 52.6 61.6 61.8 65.4
AU15 16.0 33.7 34.7 51.5
AU17 22.3 56.8 58.5 56.1
AU23 4.5 16.3 37.2 44.6
AU24 9.4 28.8 48.7 42.0
Avg. 36.5 46.1 56.1 61.6

the BP4D+ database and evaluate the learned representa-
tions by training AU classifiers on the BP4D and DISFA
databases. F1 scores on two databases with different λ are
shown in Figure 3a. When λ is 0.1, which is the optimal re-
sult, the F1 score increases by 7.6% and 8.6% on the BP4D
and DISFA databases, respectively, compared to when λ is
0. The results demonstrate that leveraging the inter-area
difference while maintaining intra-area instance discrimi-
nation is effective for the representation learning. When λ
increases beyond 0.1, F1 scores tend to decrease. The con-
trastive learning component is proficient at balancing the
differences of inter-area embeddings and the diversity of
intra-area embeddings.

5.2.2 Evaluation for the complementary of the con-
trastive and predicting learning components

In this section, we evaluate the contrastive and predicting
learning components by setting different α in Equation 9,
while β is equal to 1. When α is 0, the contrastive learning
component is discarded. Under this setting, the feature en-
coder is only trained by the predicting learning component.
As α increases, the weight of the contrastive learning com-
ponent increases. Figure 3b shows the evaluation results on
the BP4D and DISFA databases. From Figure 3b, when α
is 0.01, the performance increases significantly compared
to when α is 0. It demonstrates that leveraging inter-area
difference is important. When α increases beyond 0.01, the
results tend to decrease due to the smaller weight of pre-
dicting learning component. This result demonstrates that
the contrastive learning and predicting learning components
can complement to each other. Balancing two components
benefits the representation learning.

5.3. Comparison with self-supervised methods

We compare our method with several self-supervised
methods, including SimCLR [1], MoCo [6], and
TCAE [16]. SimCLR and MoCo models are retrained on
the BP4D+ database. Both models are based on ResNet-50

Table 4. F1 score of self-supervised AU recognition on the DISFA
database.

Methods SimCLR MoCo TCAE Ours
AU1 23.8 8.9 15.1 54.6
AU2 20.3 16.5 15.2 53.6
AU4 42.9 55.9 50.5 58.1
AU6 35.1 48.4 48.7 52.5
AU9 16.4 20.2 23.3 45.5

AU12 61.3 72.1 72.1 77.6
AU25 70.3 84.9 82.1 86.9
AU26 32.3 13.5 52.9 53.2
Avg. 37.8 40.0 45.0 60.2

(a)

(b)
Figure 4. (a) F1 score of semi-supervised AU recognition on the
BP4D database. (b) F1 score of semi-supervised AU recognition
on the DISFA database.

architecture. TCAE provides evaluation on the BP4D and
DISFA databases. Their experimental results are used as a
direct comparison. Tables 3 and 4 show the self-supervised
results on the BP4D and DISFA databases.

The proposed method achieves 25.1% and 22.4%
improvement over SimCLR on the BP4D and DISFA
databases, respectively. Our method is also 15.5% and
20.2% better than MoCo on those databases. Compared to
the two contrastive learning methods, the proposed method
makes full use of domain knowledge to guide the design of
self-supervised tasks, improving task-related representation
learning. Our method is also superior to TCAE, achiev-
ing F1 scores that are 5.5% and 15.2% higher on the BP4D
and DISFA databases, respectively. TCAE ignores the local
property and domain knowledge of AUs. Our method lever-
ages AU labeling rules to design a self-supervised frame-
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Table 5. F1 score of supervised AU recognition on the BP4D database.
Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.
DRML 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

ROI 36.2 31.6 43.4 77.1 73.7 85.0 87.0 62.6 45.7 58.0 38.3 37.4 56.4
JÂA-Net 53.8 47.8 58.2 78.5 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4
SRERL 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9
UGN-B 54.2 46.4 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.5 53.6 63.3
HMP-PS 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4

FAT 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2
PIAP 54.2 47.1 54.0 79.0 78.2 86.3 89.5 66.1 49.7 63.2 49.9 52.0 64.1
Ours 53.3 47.4 56.2 79.4 80.7 85.1 89.0 67.4 55.9 61.9 48.5 49.0 64.5

Table 6. F1 score of supervised AU recognition on the DISFA database.
Methods AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg.
DRML 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

ROI 41.5 26.4 66.4 50.7 8.5 89.3 88.9 15.6 48.5
SRERL 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
JÂA-Net 62.4 60.7 67.1 41.1 45.1 73.5 90.9 67.4 63.5
UGN-B 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0
HMP-PS 38.0 45.9 65.2 50.9 50.8 76.0 93.3 67.6 61.0

FAT 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
PIAP 50.2 51.8 71.9 50.6 54.5 79.7 94.1 57.2 63.8
Ours 60.4 59.2 67.5 52.7 51.5 76.1 91.3 57.7 64.5

work that can learn AU-related local representations, signif-
icantly enhancing performance. The local features learned
by our method are more powerful than those learned by pre-
vious self-supervised methods.

5.4. Comparison with semi-supervised methods

This section evaluates whether the learned representa-
tion enables data-efficient AU recognition. On the two
databases, a certain percentage of samples (i.e.., 10%, 20%,
30%, 40%, or 50%) is missed while training AU classi-
fiers (fixed the parameters of f(·)). Our method is compared
to DAU-R [27] and BGCS [25]. BGCS is retrained because
it does not provide experimental results on two databases,
while the results of DAU-R on the BP4D database are di-
rectly cited. Figure 4 shows the results on two databases.

First, as the missing rate increases, the performance
of the methods shows a downward trend. More super-
visory information improves AU classifier training. Sec-
ondly, our results achieve considerable improvement over
DAU-R and BGCS under different missing rates. Both
DAU-R and BGCS summarize label distribution from lim-
ited ground-truth AU labels to constrain unlabeled data.
The better performance of our method demonstrates that it
can learn powerful patterns from many unlabeled images,
enabling more data-efficient AU recognition than previous
semi-supervised methods.

5.5. Comparison with supervised methods

We also compare our method to state-of-the-art su-
pervised methods, including DRML [30], ROI [15], SR-
ERL [14], JÂA-Net [22], UGN-B [23], HMP-PS [24],
PIAP [26], and FAT [11]. Tables 5 and 6 show the results.
In this section, we further finetune the parameters of f(·).

Our results outperform recent supervised methods on
both databases. Our F1 score is 16.2%, 8.1%, 2.1%, 1.6%,

1.2%, 1.1%, 0.3%, and 0.4% better than DRML, ROI,
JÂA-Net, SRERL, UGN-B, HMP-PS, FAT, and PIAP on
the BP4D database. On the DISFA database, the result
of our method is also higher than the supervised methods.
Though the works try to divide face to extract AU-related
features, they need fully AU-labeled images for training.
Our knowledge-driven method is able to learn local patterns
from large amounts of unlabeled facial images. These re-
sults demonstrate that the learned unsupervised representa-
tions are powerful and well generalized.

6. Conclusion

In this paper, we propose a novel knowledge-driven
self-supervised representation learning framework for AU
recognition. AU labeling rules are summarized and lever-
aged to guide the design of the framework. Specifically, fa-
cial areas are divided into eight separate parts according to
AU labeling rules. A contrastive learning component based
on the differences between facial areas is introduced to train
the feature encoder. The correspondence between facial
areas is also explored by a predicting learning component
to enhance the representation learning. The framework is
trained on a large unlabeled database. Evaluation on two
benchmark databases demonstrates that the learned features
outperform other self-supervised methods and have better
generalization and data efficiency for AU recognition.
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