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Abstract

Online action detection is the task of predicting the ac-
tion as soon as it happens in a streaming video. A major
challenge is that the model does not have access to the fu-
ture and has to solely rely on the history, i.e., the frames
observed so far, to make predictions. It is therefore impor-
tant to accentuate parts of the history that are more infor-
mative to the prediction of the current frame. We present
GateHUB, Gated History Unit with Background Suppres-
sion, that comprises a novel position-guided gated cross-
attention mechanism to enhance or suppress parts of the
history as per how informative they are for current frame
prediction. GateHUB further proposes Future-augmented
History (FaH) to make history features more informative by
using subsequently observed frames when available. In a
single unified framework, GateHUB integrates the trans-
former’s ability of long-range temporal modeling and the
recurrent model’s capacity to selectively encode relevant
information. GateHUB also introduces a background sup-
pression objective to further mitigate false positive back-
ground frames that closely resemble the action frames. Ex-
tensive validation on three benchmark datasets, THUMOS,
TVSeries, and HDD, demonstrates that GateHUB signifi-
cantly outperforms all existing methods and is also more
efficient than the existing best work. Furthermore, a flow-
free version of GateHUB is able to achieve higher or close
accuracy at 2.8 X higher frame rate compared to all existing
methods that require both RGB and optical flow information
for prediction.

1. Introduction

Online action detection is the task to predict actions in
a streaming video as they unfold [12]. It is critical to appli-
cations including autonomous driving, public safety, virtual
and augmented reality. Unlike action detection in the offline
setting, where the entire untrimmed video is observable at
any given moment, a major challenge for online action de-
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Figure 1. We show an example video stream (middle row) where
the current frame (magenta) contains Cliff Diving action. Weights
from vanilla cross-attention (top row) do not correlate with how
informative each history frame is to current frame prediction, lead-
ing to incorrect prediction of Background. Our novel Gated His-
tory Unit (GHU) (bottom row) calibrates cross-attention weights
using gating scores to enhance history frames that are informa-
tive to current frame prediction (green) and suppress uninforma-
tive ones (red), leading to accurate prediction of Cliff Diving.

tection is that the predictions are solely based on observa-
tions of history without access to video frames in the future.
The model needs to build a causal reasoning of the present
in correlation to what happened hitherto, and as efficiently
as possible for the online setting.

Prior work for online action detection [14, 15, 19, 35,
48, 52] include recurrent-based LSTMs [21] and GRUs [9]
that are prone to forgetting informative history as sequen-
tial frame processing is ineffective in preserving long-range
interactions. Emerging methods [46,49] employ transform-
ers [42] to mitigate this by encoding sequential frames in
parallel via self-attention. Some improve model efficiency
by using cross-attention [23,49] to compress the video se-
quence into a fixed-sized latent encoding for prediction.

Fig. 1 shows an example video stream (middle row)
where the latest (current) frame contains Cliff Diving ac-
tion. It is worth noting that, as commonly observed in video
sequences, not every history frame is informative for cur-
rent frame prediction (e.g. frames showing people cheering
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or camera panning in Fig. 1). Existing transformer-based
approaches [49] use vanilla cross-attention to learn atten-
tion weights for history frames that determine their con-
tribution to the current frame prediction. Such attention
weights do not correlate with how informative each history
frame is to current frame prediction. As shown in Fig. 1 (top
row), when history frames are ordered from lower to higher
cross-attention weights for vanilla cross-attention, frames
that are informative for current frame prediction may have
lower weights while uninformative frames may have higher
weights, leading to incorrect current frame prediction. An-
other common challenge for existing methods is false pos-
itive prediction for background frames that closely resem-
ble action frames (e.g. pre-shot routine before golf swing).
Existing methods also do not leverage that although future
frames are not available for the current frame prediction,
subsequently observed frames that are future to the history
can be leveraged to enhance history encoding, which in re-
turn improves current frame prediction.

To address the above limitations, we propose GateHUB,
Gated History Unit with Background suppression. Gate-
HUB comprises a novel Gated History Unit (GHU), a
position-guided gated cross-attention module that enhances
informative history while suppressing uninformative frames
via gated cross-attention (as shown in Fig. 1, bottom row).
GHU enables GateHUB to encode more informative his-
tory into the latent encoding to better predict for current
frame. GHU combines the benefit of an LSTM-inspired gat-
ing mechanism to filter uninformative history with the trans-
former’s ability to effectively learn from long sequences.

GateHUB leverages future frames for history by intro-
ducing Future-augmented History (FaH). FaH extracts fea-
tures for a history frame using its future, i.e. the subse-
quently observed frames. This makes a history frame aware
of its future and helps it to be more informative for cur-
rent frame prediction. To tackle the common false posi-
tives in prior art, GateHUB proposes a novel background
suppression objective that has different treatments for low-
confident action and background predictions. These novel
approaches enable GateHUB to outperform all existing
methods on common benchmark datasets THUMOS [22],
TVseries [12], and HDD [36]. Keeping model efficiency
in mind for the online setting, we also validate that Gate-
HUB is more efficient than the existing best method [49]
while being more accurate. Moreover, our proposed optical
flow-free variant is 2.8 faster than all existing methods
that require both RGB and optical flow data with higher or
close accuracy. To summarize, our main contributions are:

1. Gated History Unit (GHU), a novel position-guided
gated cross-attention that explicitly enhances or sup-
presses parts of video history as per how informative
they are to predicting action for the current frame.

2. Future-augmented History (FaH) to extract features for
a history frame using its subsequently observed frames
to enhance history encoding.

3. A background suppression objective to mitigate the
false positive prediction of background frames that
closely resemble the action frames.

4. GateHUB is more accurate than all existing meth-
ods and is also more efficient than the existing best
work. Moreover, our proposed optical flow-free model
is 2.8 % faster compared to all existing methods that
require both RGB and optical flow information while
achieving higher or close accuracy.

2. Related Work

Online Action Detection. Previous methods for online ac-
tion detection include use 3D ConvNet [12], reinforcement
learning [17], recurrent networks [14,19,35,35,48,52] and
more recently, transformers [46,49]. The primary challenge
in leveraging history is that for long untrimmed videos, its
length becomes intractably long over time. To make it com-
putationally feasible, some [14,19,35,46] make the online
prediction conditioned only on the most recent frames span-
ning less than a minute. This way the history beyond this
duration that might be informative to current frame predic-
tions is left unused. TRN [48] mitigates this by the hidden
state in LSTMs [21] to memorize the entire history dur-
ing inference. But LSTM limits its ability to model long-
range temporal interactions. More recently, [49] proposes
to scale transformers to the history spanning longer dura-
tion. However, not every history frame is informative and
useful. [49] lacks the forgetting mechanism of LSTM to
filter uninformative history which causes it to encode un-
informative history into the encoding leading to incorrect
predictions. Our Gated History Unit (GHU) and Future-
augmented History (FaH) combine the benefits of LSTM’s
selective encoding and transformer’s long range modeling
to leverage long-duration history more informatively to out-
perform all previous methods.
Transformers for Video Understanding. Transformers
can achieve superior performance on video understand-
ing tasks by effectively modeling the spatio-temporal con-
text via attention. Most of the previous transformer-
based methods [, 3, 16, 33] focus on action recognition in
trimmed videos [6] (videos spanning few seconds) due to
the quadratic complexity w.r.t. video length. Untrimmed
videos have a longer duration from a few minutes to hours
and contain frames with irrelevant actions (labeled as back-
ground). Temporal action localization (TAL) [4, 18,27, 30,
,39,47,51,53,54] and temporal action proposal gen-
eration (TAP) [27, 28, 40] are two fundamental tasks in
untrimmed video understanding. AGT [32] proposes activ-
ity graph transformer for TAL based on DETR [5]. TAPG
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Figure 2. Model Overview. GateHUB comprises a novel Gated History Unit (GHU) (a) as part of History Encoder (b) to explicitly enhance
or suppress history frames, i.e. streaming video frames observed so far, as per how informative they are to current frame prediction. GHU
encodes them by cross-attending with a latent encoding (Q). GateHUB uses Future-augmented History features (FaH) (d) to encode each
history frame using ¢y subsequently observed future frames. The Present Decoder (c) correlates with history by cross-attending the encoded
history with the present, i.e., a small set of most recent frames, to make current frame prediction. We subject the prediction to a background
suppression loss (e) to reduce false positives by effectively separating action frames from closely resembling background frames.

[44] applies transformer to predict the activity boundary for
TAP. However, unlike TAL and TAP which are both offline
tasks having access to the entire video, online action detec-
tion does not have access to the future and requires causal
understanding from history to present. We follow the exist-
ing transformer-based streaming tasks [8,20,49] and apply
a causal mask to address online action detection.

Long Sequence Modeling. To model long input sequences,
recent work [13] proposes to reduce complexity by factor-
izing [4 1] or subsampling the inputs [7]. Another group of
work focuses on modifying the internal dense self-attention
module to boost the efficiency [2,45]. More recently, Per-
ceiver [24] and PerceiverlO [23] propose to cross-attend
long-range inputs to a small fixed-sized latent encoding,
adding further flexibility in terms of input and reducing the
computational complexity. However, unlike our GHU, Per-
ceiverlO lacks an explicit mechanism to enhance/suppress
history frames making it sub-optimal for online action de-
tection. Our method uses LSTM-inspired gating to cal-
ibrate cross-attention to enhance/suppress history frames
per their informative-ness while employing transformers to
learn from long history sequences effectively.

3. Methodology

Given a streaming video sequence h = [h¢])__ ., our
task is to identify if and what action yo € {0,1,...,C}
occurs at the current frame hg. We have a total of C ac-
tion classes and label O for background frames with no ac-
tion. Since future frames hq, hs, ..., are NOT accessible,

the model makes the C' 4+ 1-way prediction for the current
frame based on the recent 7" frames, [h]?__ ., observed
up until the current frame. While 7" may be large in an
untrimmed video stream, as shown in the top row of Fig. I,
all frames observed in past history [h;],} . 4 May not be
equally informative to the prediction for the current frame.

3.1. Gated History Unit based History Encoder

To make the C' + 1-way prediction accurately for current
frame hq based on T history frames, h = [h])__,..,, we
employ transformers to first encode the video sequence his-
tory and then associate the current frame with the encoding
for prediction. Inspired by the recently introduced Perceive-
IO [23], our method consists of a History Encoder (Fig. 2b)
that uses cross-attention to project the variable length his-
tory to a fixed-length learned latent encoding. Using cross-
attention is more efficient than using self-attention because
its computational complexity is quadratic w.r.t. latent en-
coding size instead of the video sequence length which is
typically orders of magnitude larger. This is crucial to de-
veloping a model for the online setting. However, as shown
in Fig. 1, vanilla cross-attention, as used in PerceiverlO
and LSTR [49], fails to learn attention weights for his-
tory frames that correlate with how informative each history
frame is for hg prediction. We therefore introduce a novel
Gated History Unit (GHU) (Fig. 2a) that has a position-
guided gated cross-attention mechanism which learns a set
of gating scores GG to calibrate the attention weights to ef-
fectively enhance or suppress history frames based on how
informative they are to current frame prediction.
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Specifically, given h = [h;]§__ ;. ; as the streaming se-
quence of T history frames ending at current frame hg, we
encode h with a feature extraction backbone, u, followed
by a linear encoding layer E. We then subject the output
to a learnable position encoding, Epqs, relative to the cur-
rent frame, hy, to give z® = u(h)E + Epes where u(h) €
RTXM’ E € RJ\IXD’ Zh c RTXD and Epos c RTXD.
M and D denote the dimensions of extracted features and
post-linear encoding features, respectively. We also define
a learnable latent query encoding, q € RE*P that we
cross-attend with h. Following the standard multi-headed
cross-attention setup [23, 24], let Npeqqs be the number
of heads in GHU such that Q; = qW{, K; = z"W¥,
V; = zZPWY be the queries, keys and values, respectively,
for each head i € {1,..., Npeqas} (Fig. 2a) where projec-
tion matrices W{, W¥ € RP*dx and W? € RD>dv We
assign d, = d, = D/Npeaqs in our set up [42]. Next, we
obtain the position-guided gating scores, G, for h as,

28 = o (z"WY) (1)
G =log(z®) + z& 2)

where W9 € RP*! is the matrix projecting each history
frame to a scalar. z&8 € RT*! is a sequence of scalars for
the history frames h after applying sigmoid 0. G € RT*!
is the gating score sequence for history frames in GHU. By
using z" which already contains the position encoding, the
gates are guided by the relative position of the history frame
to the current frame hg. As also shown in Fig. 2a, we now
compute the gated cross-attention for each head, GHU}, as,

QK]
Vdy

and multi-headed gated cross-attention defined as,

MultiHeadGHU(Q, K, V, G) = Concat([GHUi}fV:hg“ds)Wo

(C))
where W° € RP*P re-projects the attention output to D
dimension. It is possible to define G separately for each
head but in our method, we find sharing G across all heads
to perform better (Sec. 4.4). From Eqn. 1 and 2, we can
observe that each scalar in z8 lies in [0, 1] due to sigmoid
which implies that each gating score in G lies in [— inf, 1].
This enables the softmax function in Eqn. 3 to calibrate the
attention weight for each history frame by a factor in [0, €]
such that a factor in [0, 1) suppresses a given history frame
and a factor in (1, e] enhances a given history frame. This
provides an explicit ability to GHU to learn to calibrate the
attention weight of a history frame based on how informa-
tive the history frame is for prediction of hy. Unlike previ-
ous methods with relative position bias [11,31], G is input-
dependent and learns based on the history frame and its po-
sition w.r.t. current frame. This enables GHU to assess how
informative each history frame is based on its feature rep-
resentation and relative position from the current frame hg.

G HU; = Softmax ( + G) Vi A3)

We feed the output of GHU to a series of N self-attention
layers to obtain the final history encoding (Fig. 2b).

3.2. Hindsight is 2020: Future-augmented History

Existing methods [14, 19,46, 48,49] extract features for
each frame by feed-forwarding the frame and optionally, a
small set of past consecutive frames through pretrained net-
works like TSN [43] and I3D [6]. It is worth noting that
although for current frame prediction its future is not avail-
able, for the history frames their future is accessible and
this hindsight can potentially improve the encoding of his-
tory for current frame prediction. Existing methods do not
have a mechanism to leverage this. This inspires us to pro-
pose a novel feature extraction scheme, Future-augmented
History (FaH), where we aggregate observed future infor-
mation into the features of a history frame to make it aware
of its so far observable future. Fig. 2d illustrates the FaH
feature extraction process. For a history frame h; and a fea-
ture extraction backbone w, when ¢y future history frames
for h; can be observed, FaH extracts features for h; using a
set of frames [h]'~;’ (i.e. history frame itself and its sub-
sequently observed t; future frames). Otherwise, FaH ex-

tracts features for h, using a set of frames [h;]{_, , = (i.e.
history frame itself and its past ¢, frames),
_Ju(lhiliziy,,) it > —tf
o ={"gy w O

At each new time step with one more new frame getting
observed, FaH will feed-forward through u twice to extract
features for (1) the new frame using [hi]?:ftps frames and
(2) h_¢, that is now eligible to aggregate future informa-
tion using [hi]?:_tf frames (as shown in Fig. 2d purple and
green cuboid respectively). Thus, FaH has the same time
complexity as existing feature extraction methods. FaH
does not trivially incorporate all available subsequently ob-
served frames. Instead, it encodes only from a set of future
frames that are the most relevant to a history frame (as we
empirically explain later in Section 4.4).

3.3. Present Decoder

In order to correlate the present with history to make cur-
rent frame prediction, we sample a subset of ¢, most re-
cent history frames [;]{__, _; to model the present (i.e.
the most immediate context) for hg using the Present De-
coder (Fig. 2c). After extracting the features via FaH, we
apply a learnable position encoding, EEC, to each of the
i, frame features and subject them to a multi-headed self-
attention with a causal mask. The causal mask limits the
influence of only the preceding frames on a given frame.
We then cross-attend the output from self-attention with the
history encoding from the History Encoder. Inspired by
Perceiver [24], we repeat this process twice and the self-
attention does not need a causal mask the second time.
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Finally, we feed the output corresponding to each of ¢,
frames to the classifier layer for prediction.

3.4. Background Suppression Objective

Existing online action detection methods [14, 19,46,48,

] apply standard cross entropy loss for C' 4+ 1-way multi-
label per-frame prediction. Standard cross entropy loss does
not consider that the “no action” background class does not
belong to any specific action distribution and is semantically
different from the C action classes. This is because back-
ground frames can be anything from completely blank at the
beginning of a video to closely resemble action frames with-
out actually being action frames (e.g., aiming before making
a billiards shot). The latter is a common cause for false pos-
itives in online action detection. In addition to the complex
distribution of background frames, untrimmed videos suf-
fer from a sharp data imbalance where background frames
significantly outnumber action frames.

To tackle these challenges, we design a novel back-
ground suppression objective that applies separate emphasis
on low-confident action and background predictions during
training to increase the margin between action and back-
ground frames (Fig. 2e). Inspired by focal loss [29], our
objective function, £; for frame h; is defined as,

- { —yi(L—p?) " log(py)  ify! =1

—S1yi(1 —pi)7* log(pi) otherwise ©

where v,,7 > 0 enables low-confident samples to con-
tribute more to the overall loss forcing the model to put
more emphasis on correctly predicting these samples. Un-
like original focal loss [29], our background suppression
objective specializes for online action detection by applying
separate y to action classes and background. This separa-
tion is necessary to distinguish the action classes that have
a more constrained distribution from the background class
whose distribution is more complex and unconstrained. Our
objective is the first attempt in online action detection to put
separate emphasis on low-confident hard action and back-
ground predictions.

3.5. Flow-free Online Action Detection

Existing methods [ 14,46, 48] for online action detection
use optical flow in addition to RGB to capture fine-grained
motion among frames. Computing optical flow takes much
more time than feature extraction or model inference, and
can be unrealistic for time-critical applications such as au-
tonomous driving. This motivates us to develop an optical
flow-free version of GateHUB that is able to achieve higher
or close accuracy compared to existing methods without
time-consuming optical flow estimation. To capture motion
without optical flow using only RGB frames, we leverage
multiple temporal resolutions using a spatio-temporal back-
bone such as TimeSformer [3]. We extract two feature vec-

tors for a frame h; by encoding a frame sequence sampled
at a higher frame rate spanning a smaller time duration and
another frame sequence sampled at a lower frame rate span-
ning a larger time duration. Similar to the setup using RGB
and optical flow features, we concatenate the two feature
vectors before feeding them to GateHUB.

4. Experiments
4.1. Datasets

Following existing online action detection work [14, 17,

,48,49], we evaluate GateHUB on three common bench-
mark datasets — THUMOS’ 14, TV Series, and HDD.

THUMOS’14 [22] consists of over 20 hours of sports
video and is annotated with 20 actions. We follow prior
work [46,48] and train on the validation set (200 untrimmed
videos) and evaluate on the test set (213 untrimmed videos).

TVSeries [12] includes 27 episodes of 6 popular TV
shows with a total duration of 16 hours. It is annotated with
30 real-world everyday actions, e.g. open door, run, drink.

HDD (Honda Research Institute Driving Dataset) [37]
includes 137 driving videos with a total duration of 104
hours. Following prior work [46], we use the vehicle sensor
as input signal and divide data into 100 sessions for training
and 37 sessions for testing.

4.2. Implementation Details

For TVSeries and THUMOS’ 14, following [14, 17, 46,

,49], we resample the videos at 24 FPS (frames per sec-
ond) and then extract frames at 4 FPS for training and eval-
uation. The sizes of history and present are set to 1024 and
8 most recently observed frames, respectively, spanning du-
rations of 256s and 2s correspondingly at 4 FPS. For HDD,
following OadTR [46], we extract the sensor data at 3 FPS
for training and evaluation. The sizes of history and present
are 48 and 6 most recently observed frames respectively,
spanning durations of 16s and 2s correspondingly at 3 FPS.

Feature Extraction. Following [46, 49], we use
mmaction2 [10]-based two-stream TSN [43] pretrained on
Kinetics-400 [6] to extract frame-level RGB and optical
flow features for THUMOS’ 14 and TVSeries. We concate-
nate the RGB and optical flow features along channel di-
mension before feeding to the linear encoding layer in Gate-
HUB. For HDD, we directly feed the sensor data as input to
GateHUB. To fully leverage the proposed FaH, the feature
extraction backbone needs to support multi-frame input.
Since TSN only supports single-frame input, we explore
spatio-temporal TimeSformer [3] (pretrained on Kinetics-
600 using 96 x 4 frame sampling) that supports multiple-
frame input. We set the time duration for past ¢,,s and future
ty frames under FaH to be Is and 2s respectively. We use
TimeSformer to extract RGB features and use TSN-based
optical flow features as TimeSformer only supports RGB.
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We also demonstrate FaH using RGB features from 13D [6]
with results in the supplementary. For our flow-free version,
we replace optical flow features with features obtained from
an additional multi-frame input of RGB frames uniformly
sampled from a duration of 2s. Please refer to supplemen-
tary for additional details.

Training. We train GateHUB for 10 epochs using Adam
optimizer [26], weight decay of 5e~°, batch size of 50,
OneCycleLR learning rate schedule of PyTorch [34] with
pct_start of 0.25, D = 1024, latent encoding size L = 16,
number of self-attention layers in History Decoder N = 2,
Npeaas = 16 for each attention layer and vy, = 0.6,7v, =
0.2 for background suppression.

Evaluation Metrics We follow the protocol of per-frame
mean average precision (mAP) for THUMOS and HDD and
calibrated average precision (mcAP) [12] for TVSeries.

4.3. Comparison with State-of-the-Art

Method Feature Backbone THUMOS 14
RGB Optical Flow mAP (%)
FATS [25] 59.0
IDN [14] 60.3
TRN [48] 62.1
PKD [52] 64.5
OadTR [16] TSN TSN 65.2
WOAD [19] 67.1
LSTR [49] 69.5
GateHUB (Ours) 70.7
TRN [48] 68.5
Eg%l;R[ [ ! 1 TimeSformer TSN ggg
GateHUB (Ours) 72.5

Table 1. Online action detection results on THUMOS’ 14 compar-
ing GateHUB with SoTA methods on mAP (%) when the RGB-
based features are extracted from either TSN or TimeSformer. Op-
tical flow-based features are extracted from TSN in all settings.

Table 1 compares GateHUB with existing state-of-the-
art (SoTA) online action detection methods on THU-
MOS’14 for two different setups, one using RGB fea-
tures from TSN [43] and the other using RGB features
from TimeSformer [3]. Both setups use optical flow fea-
tures from TSN. WOAD [19] uses RGB features from
I3D (equivalent to TSN). For TSN RGB features, all mAP
in Table 1 are as reported in the references. For TimeS-
former RGB features, we use the official code for TRN,
OadTR and LSTR for fair comparison. From the table, we
can observe that GateHUB outperforms all existing meth-
ods by at least 1.2% when using RGB features from TSN.
Moreover, GateHUB outperforms existing methods by a
larger margin of at least 2.9% using RGB features from
TimeSformer. GateHUB is also the first approach to sur-
pass 70% on THUMOS’ 14 benchmark. This validates that
GateHUB, comprising GHU, Background Suppression and
FaH to holistically leverage the long history more informa-
tively, outperforms all SOTA on THUMOS’ 14.

We further compare GateHUB with SoTA on TVSeries
and HDD in Table 2a and 2b, respectively. Following pro-
tocol, we use RGB and optical flow features from TSN for
TVSeries and sensor data for HDD. All results from SoTA
are as reported in the references. We can observe that Gate-
HUB outperforms all SoTA on both TVSeries and HDD.
The large improvement on HDD using sensor data validates
that GateHUB is also effective on data modalities other than
RGB or optical flow.

Method mcAP (%) Method mAP (%)
FATS [25] 84.6

CNN [12] 22.7
IDN [14] 86.1

LSTM [36] 23.8
TRN [48] 86.2

RED [17] 27.4
PKD [52] 86.4

TRN [48] 29.2
OadTR [46] 87.2 0adTR [16] 0.8
LSTR [49] 89.1 ’

GateHUB (Ours) 89.6 GateHUB (Ours) 32.1
(a) (b)
Table 2. Online action detection results comparing GateHUB with
state-of-the-art methods on (a) TVSeries using RGB + Optical
Flow data as input on mcAP metric and (b) HDD using sensor
data as input on mAP metric.

4.4. GateHUB: Ablation Study

In this section, we conduct an ablation study to highlight
the impacts of the novel components of GateHUB. Unless
stated otherwise, all experiments are on THUMOS’ 14 using
RGB and optical flow features from TSN.

Impact of Gated History Unit (GHU). We conduct an
experiment where we test different variants of our Gated
History Unit (GHU) by removing one or more of its
design elements. Table 3a summarizes the results of
this experiment. In the table, ‘w/o GHU’ refers to re-
placing GHU with vanilla cross-attention from Perceiver
10 [23] and LSTR [49], i.e., CrossAttention(Q, K, V) =
SoftMax(QKT/+/d). In ‘w/ GHU enhance only’, we re-
move log(z8) from Eqn. 2 that suppresses history frames,
i.e. G = z8 Conversely, in ‘w/ GHU suppress only’,
we remove z& from Eqn. 2 that enhances history frames,
ie. G = log(z®). In ‘w/ GHU w/o position guidance’,
we operate on frame features before subjecting them to
learned position encoding, i.e. G = log(z®) + z& where
z&8 = ¢(h)E. We also compare with ‘w/ GHU per head’
where G is learned separately for each cross-attention head.

Table 3a shows that our implementation of GHU signif-
icantly outperforms all other variants of GHU and cross-
attention. We can observe that ‘w/o GHU’ performs 1.1%
worse than ‘w/ GHU’. This is because, without explicit gat-
ing, vanilla cross-attention fails to learn attention weights
for history frames that correlate with how informative his-
tory frames are to current frame prediction (also depicted in
Figure 1). Moreover, the lower performances of ‘w/ GHU
suppress only’ and ‘w/ GHU enhance only’ validate that
we need to both enhance the informative history frames and
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Method mAP (%) -

w/ GHU (Ours) 70.7 Method mAP (%) M/etl;o;i{ Futare Duration mA7P1’ g%)
w/o GHU 69.6 Ours v, > 70.7 ki 0-5 71.1
w/ GHU suppress only 70.5 Ours v, < Y 70.2 lls 72.0
w/ GHU enhance only 70.5 w/ cross-entropy 69.9 w/ FaH 25 72' 5
w/ GHU w/o position-guidance 70.3 w/ standard focal loss 70.2 4s 7]. 4
w/ GHU per head 68.0 - .

(a)

(b)

(©)

Table 3. Ablation study comparing different variants of (a) Gated History Unit (GHU), (b) background suppression objective and (c)
Future-augmented History (FAH). Ablation in (a) and (b) is conducted with RGB features from TSN and in (c) are conducted with RGB
features from TimeSformer. Optical flow features from TSN are used in all settings.

suppress the uninformative ones to achieve the best perfor-
mance. Without the ability to both enhance and suppress,
the model may encode uninformative history frames into
the latent encoding or inadequately emphasize the informa-
tive ones, leading to worse performance. The performance
is also lower when using history frame features without po-
sition encoding (‘w/ GHU w/o position guidance’). This
is because without position guidance, the model cannot as-
sess the relative position of a particular history frame w.r.t.
the current frame which is an important factor in deciding
how informative a history frame is to current frame predic-
tion. We also find having separate G per head (‘w/ GHU
per head) performs much worse than sharing G across heads
due to overfitting from Npeqqs times more parameters.

Impact of Background Suppression. We compare our
background suppression objective with standard cross-
entropy loss (i.e., v, = v, = 0) and standard focal loss(i.e.,
Yo = Y # 0) [29] as shown in Table 3b. First, com-
pared to our background suppression objective, both stan-
dard cross-entropy and focal loss achieve lower accuracy.
This validates that it is important to put separate empha-
sis on the low-confident action and background predictions
to effectively differentiate action frames and closely resem-
bling background frames. Furthermore, we find that across
different combinations of -y, and -y, choosing a pair where
Yo > b leads to higher accuracy. Specifically, we find
ve = 0.05 and v, = 0.025 to give the highest accuracy.
This can be attributed to the high data imbalance. Action
frames are much lower in number than background frames
and therefore require a stronger emphasis than background.
Impact of Future-augmented History (FaH). Table 3c
shows the ablation on FaH. Since the TSN backbone is not
compatible with multi-frame input, we conduct this study
using RGB features from TimeSformer. The table shows
that with 2s of future information incorporated into history
features, we achieve the best accuracy which is 1% higher
than without future-augmented history (‘w/o FaH’). The ac-
curacy is also improved with 1s of future information incor-
porated into history features. We further observe that the
accuracy drops when future duration is much longer e.g. 4s
or much shorter e.g. 0.5s. This shows that making a history
frame aware of its future enables it to be more informative
for current frame prediction. At the same time, future du-

ration up to a certain extent (in our case, 2s) can encode
meaningful future into history frames. Much beyond that,
the future changes enough to be of little use for a given his-
tory frame, while much shorter future duration may also add
noise rather than information. We wish to emphasize that all
future duration are bound by the frames observed so far and
do not extend into inaccessible future frames.

GateHUB Present Decoder. Table 4a shows the abla-
tion study on our Present Decoder by altering different as-
pects of the design. Unlike the original PerceiverlO [23],
where the output queries are independent, we model the
present (equivalent of output queries in our method) via a
causal self-attention and cross-attend it with history encod-
ing multiple times (inspired by Perceiver [24]). We can
observe in Table 4a that treating present frames indepen-
dently (‘i.e. w/o self-attention’) and having only one cross-
attention (‘i.e. w/ cross-attention only at first layer’) both
reduce the accuracy considerably. Unlike LSTR [49] that
uses a FIFO queue with disjoint long-term and short-term
memory, in our design, the sequences of history and present
frames fully overlap. Table 4a shows that having disjoint
history and present frames (i.e., ‘w/ disjoint history and
present’) leads to a 1.3% lower performance, further vali-
dating our design of Present Decoder and GateHUB overall.

4.5. GateHUB Efficiency

For online action detection setting, model efficiency is
an important metric. We compare GateHUB with exist-
ing methods w.r.t. parameter count, GFLOPs, and inference
speed in terms of FPS as shown in Table 4b. We first ob-
serve that GateHUB achieves the highest accuracy with the
least number of model parameters compared to all existing
methods. We also note that while methods like OadTR [46]
and TRN [48] are more efficient in terms of GFLOPs, their
accuracy is much lower. GateHUB achieve a more fa-
vorable accuracy-efficiency trade-off with fewer GFLOPs
than the existing best method LSTR [49] while obtaining a
higher accuracy. All aforementioned methods require op-
tical flow computation which is time-consuming, therefore
the inference speed of these methods is governed by the op-
tical flow computation speed of 8.1 FPS. Meanwhile, our
flow-free model obviates optical flow computation by us-
ing RGB features from TimeSformer at two different frame
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Model Inference Speed (FPS) mAP(%)
Method Parameter GFLOPs Optical Flow RGB Feature Flow Feature Model | Overall
Method mAP (%) Count Computation  Extraction Extraction
Ours 70.7 TRN [50] 402.9M 1.46 8.1 70.5 14.6 123.3 8.1 62.1
w/o self-attention 67.7 OadTR [46] 75.8M 2.54 8.1 70.5 14.6 110.0 8.1 65.2
w/ cross-attention only at layer 1 | 68.6 LSTR [49](Flow-free) | 54.2M 6.33 - 22.7 - 99.2 22.7 63.5
w/ disjoint history and present 69.4 LSTR [49] 58.0M 7.53 8.1 70.5 14.6 91.6 8.1 69.5
Ours (Flow-free) 41.8M 3.47 - 22.7 - 83.3 22.7 66.5
Ours 45.2M 6.98 8.1 70.5 14.6 71.2 8.1 70.7

(a)

(b)

Table 4. (a) Ablation study for Present Decoder. (b) Efficiency comparison of GateHUB using RGB and optical flow features and our

optical flow-free version with existing methods. GateHUB using RGB

and optical flow has the least parameter count compared to existing

methods, and higher accuracy and lower GFLOPs than the existing best method. Moreover, our flow-free version attains higher or close
accuracy compared to existing methods that require RGB and optical flow features at 2.8 x faster inference speed.

rates, and attains higher or close accuracy compared to ex-
isting work at 2.8 x faster inference speed. When compared
with flow-free LSTR, GateHUB achieves 3% higher mAP,
thus providing a significantly better speed-accuracy tradeoff
than the existing best method.

Xk
Suppressed Hgtory? Enhanced History Frames

Figure 3. Examples of the most suppressed and most enhanced

history frames as per the gating score learned by GHU. Frames in

the same row belong to the same video.

4.6. Qualitative Evaluation

Gated History Unit (GHU). We qualitatively assess the
effect of GHU by visualizing examples of the most sup-
pressed and most enhanced history frames in a streaming
video when ordered as per the gating scores GG learned by
GHU in Eqn. 2. Fig. 3 shows examples from three videos
where frames in the same row belong to the same video.
From the figure, we can observe that GHU learns to sup-
press frames that exhibit no discernible action from the C'
action classes. The suppressed frames either have people
arbitrarily moving or are uninformative background frames
(e.g. crowd cheering) that convey no useful information to
predict action for the current frame. On the other hand,
GHU learns to maximize emphasis on history frames with
action from the C' classes and on background frames that
provide meaningful context to determine the current frame
action (e.g. long jump athlete running toward the pit).

Current Frame Prediction. We visualize GateHUB’s cur-
rent frame prediction in Fig. 4. The confidence in the range
[0, 1] on y-axis denotes the probability of predicting the cor-
rect action (i.e. High Jump in Fig. 4). We can observe that
GateHUB with GHU (red) is effective in reducing false pos-
itives for background frames that closely resemble action
frames compared to without GHU (orange). Please refer
to supplementary material with visualizations highlighting

HighJump Background ]

1.0 =

" = wio GHU TSN £ v
05 w/ GHU TSN

0.0
0 10 20 30 40 50

confidence

Figure 4. Visualization of GateHUB’s online prediction. The
curves indicate the predicted confidence of the ground-truth class
(High Jump) using TSN backbone with and without GHU.

more online action detection scenarios.

5. Conclusion and Future Work

We present GateHUB for online action detection in
untrimmed streaming videos. It consists of novel designs
including Gated History Unit (GHU), Future-augmented
History (FaH), and a background suppression loss to more
informatively leverage history and reduce false positives for
current frame prediction. GateHUB achieves higher accu-
racy than all existing methods for online action detection,
and is more efficient than the existing best method. More-
over, its optical flow-free variant is 2.8 x faster than previ-
ous methods that require both RGB and optical flow while
obtaining higher or close accuracy.

While GateHUB outperforms all existing methods, there
is ample room for improvement. Although GateHUB can
leverage long history, the length is still finite and may not
be adequate when actions occur infrequently over long du-
ration. It would be worthwhile to investigate ways to lever-
age history sequences of any length. Another challenge is
slow motion action which is uncommon and can have con-
siderably different temporal distribution, making it difficult
to predict as accurately as common actions.
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