
Learning from All Vehicles

Dian Chen Philipp Krähenbühl
UT Austin

Abstract

In this paper, we present a system to train driving policies
from experiences collected not just from the ego-vehicle, but
all vehicles that it observes. This system uses the behav-
iors of other agents to create more diverse driving scenarios
without collecting additional data. The main difficulty in
learning from other vehicles is that there is no sensor in-
formation. We use a set of supervisory tasks to learn an
intermediate representation that is invariant to the viewpoint
of the controlling vehicle. This not only provides a richer sig-
nal at training time but also allows more complex reasoning
during inference. Learning how all vehicles drive helps pre-
dict their behavior at test time and can avoid collisions. We
evaluate this system in closed-loop driving simulations. Our
system outperforms all prior methods on the public CARLA
Leaderboard by a wide margin, improving driving score by
25 and route completion rate by 24 points.

1. Introduction

Autonomous driving has been one of the most anticipated
technologies since the advent of modern-day artificial in-
telligence. However, even after decades of exploration, we
have yet to see self-driving cars deployed at scale. One
main reason is the generalization. The world and its drivers
are more diverse than current planning approaches can han-
dle. Hand-designed classical planning [3, 16, 29, 45] does
not generalize gracefully to unseen or unfamiliar scenarios.
Learning based methods [4, 9, 11, 14, 37] fare better, but
suffer from a long tail of driving scenarios. The majority
of driving data consist of easy and uninteresting behaviors.
After all, humans drive thousands of hours before observing
a traffic accident [43], especially when driving an expensive
autonomous test vehicle. How do we tame the long-tail of
driving scenes? While many approaches rely on carefully
crafted safety-critical scenarios in simulation [33, 36, 42], or
collect massive data in the real world [4, 41], in this paper
we focus on an orthogonal direction.

We observe that, although many of us have not experi-
enced traffic accidents ourselves, everyone has at least ob-
served several accidents throughout our driving career. The

Change
Lane Right

? ?Left
Straight

Figure 1. We present LAV, a mapless, learning-based end-to-end
driving system. LAV takes as input multi-modal sensor readings
and learns from all nearby vehicles in the scene for both perception
and planning. At test time, LAV predicts multi-modal future trajec-
tories for all detected vehicles, including the ego-vehicle. Picture
credit – Waymo open dataset [41].

same applies to safety-critical driving scenarios: While the
data-collecting ego-vehicle might not experience accident-
prone situations itself, it is likely its driving logs contain
states that are interesting or safety-critical, but experienced
by other vehicles. Training on other vehicles’ trajectories
helps not only with sample efficiency, but also greatly in-
crease the chance that the model sees interesting scenarios.
Moreover, knowing other vehicles’ future trajectories helps
the ego-vehicle avoid collisions.

The main challenge with training on all vehicles lies in
the partial observability of other vehicles. Unlike the ego-
vehicle, other vehicles have only partially observed motion
trajectories, exposing no control commands or higher-level
goals. This makes direct training [10, 11, 12, 14, 38] on
other vehicles’ traces close to impossible. More importantly,
other vehicles have no accessible sensors. To learn from
other vehicles, a model has to infer their surrounding state
using the ego-vehicle’s sensors.

Our framework, Learning from All Vehicles (LAV), han-
dles the partial observability of both perception and motion
in one joint recognition, prediction, and planning stack. We
decouple the partial observability challenge of perception
and action using a privileged distillation approach [11]. LAV
first learns a perception model that outputs a viewpoint in-
variant representation using auxiliary supervision from 3D
detection and segmentation tasks. By definition, this auxil-

17222

iary task does not distinguish between the ego-vehicle and
other vehicles in the scene and thus learns a viewpoint in-
variant representation. It handles the partial observability of
sensors. In parallel, LAV learns a privileged motion plan-
ner [11]. Instead of predicting steering and acceleration,
which are only available for the ego-vehicle, we use future
waypoints to represent the motion plan. We use ground-truth
computer-vision labels as inputs to the privileged motion
planner. Computer-vision labels ensure viewpoint invari-
ance, waypoints provide an invariant representation of mo-
tion. The privileged motion planner predicts trajectories of
all nearby vehicles and infers their high-level commands.
Finally, we combine the two models in a joint framework
using privileged distillation [11]. This final distillation learns
a motion prediction model from all vehicles using the view-
point invariant vision features of the perception model. The
distilled policy drives from raw sensor inputs alone.

We validate our method in the CARLA driving simu-
lator [17]. At the time of submission, our method ranks
first on the CARLA public leaderboard1. It attains a 61.85
driving score and a 94.46 route completion rate. Both
are the highest among all methods and outperform the
prior state-of-the-art method by a wide margin, increas-
ing driving score and route completion rate by 25 and 24
points respectively. Our method has also won the 2021
CARLA Autonomous Driving challenge2. Code available at
https://github.com/dotchen/LAV.

2. Related Work

Perception for autonomous driving is driven by ad-
vances in visual understanding and recognition. The percep-
tion system of a self-driving vehicle understands the scene by
inferring its nearby objects and surrounding road structures.
A typical perception system takes as input LiDAR scans and
performs object detection and tracking [19, 27, 47, 52, 54].
Liang et al. [32], Vora et al. [46] fuse RGB camera and
LiDAR scans for richer semantic information. For roads,
perception systems are categorized based on whether they
require pre-recorded HD-Map: map-based systems local-
ize themselves in the pre-recoded maps [30, 35, 51]; map-
less systems either perform online mapping [6, 21, 22], or
they implicitly predict road-related affordances [9, 40, 44].
Bansal et al. [4], Zeng et al. [48] represent the perception
outputs as bird’s-eye-viewed (BEV) spatial grids; more re-
cently, Gao et al. [20], Li et al. [31] represent perception
outputs in a parameterized vector space for a more compact
representation. Our approach takes multi-modal sensor data
as input and performs online mapping and object detection.
However, we do not directly use the predicted map to per-
form classical planning. Instead, we learn a planner from

1https://leaderboard.carla.org/leaderboard/
2https://ml4ad.github.io/

data using imitation learning. This planner uses every ve-
hicle it encounters on the road as a supervisory signal to
enhance the diversity of the training data.

Behavior prediction focuses on forecasting the future
state of driving scenes. In autonomous driving, a behav-
ior predictor takes as either the input representations ob-
tained from perception or raw sensor data; it predicts tra-
jectories of the dynamic objects in the driving scene. Luo
et al. [34], Zeng et al. [48] predict single, deterministic future
trajectories of the detected vehicles. Casas et al. [5], Zhao
et al. [50] model multi-modal future trajectories by using
conditional models. Chai et al. [7] predicts trajectories as
Gaussian mixtures to represent uncertainty in the euclidean
space. Cui et al. [15], Lee et al. [28] use latent variables
and VAEs to model actor and scene specific uncertainties.
Recently, Casas et al. [6], Hu et al. [23], Kamenev et al. [25]
combine perception and behavior prediction by directly pre-
dicting the occupancy maps. Our approach is highly related
to the task of behavior prediction, as it also trains on all
nearby vehicles’ trajectories. Our approach consists of a be-
havior predictor. In particular, it applies a conditional motion
planner on all nearby vehicles, including the ego-vehicle.

Learning-based motion planning uses imitation learn-
ing or reinforcement learning to plan future trajectories.
Pioneered by Pomerleau [37], imitation learning for au-
tonomous driving regresses sensor inputs to controls by imi-
tating the recorded expert trajectories. Codevilla et al. [14]
use conditional branching and high-level commands to ex-
tend imitative models for urban driving. Zeng et al. [48]
use imitation learning to train a cost volume predictor for
planning; Chen et al. [9], Sauer et al. [40] predict actions
from the learned affordances. Chen et al. [11] uses on-policy
distillation to handle distribution shift as well as to provide
stronger imitative supervision signals. Reinforcement learn-
ing, on the other hand, trains policies from a user-defined
reward function. Kendall et al. [26] train a lane following
driving policy using DDPG; Toromanoff et al. [44] use dis-
tributed Rainbow-IQN to train an urban driving policy with
competitive performance. Recently, Chen et al. [10] use
model-based reinforcement learning and distillation to train
a driving policy in an offline manner. Our approach builds
upon Chen et al. [11] and trains a motion planner using imi-
tation learning and distillation. However, unlike most prior
methods, we train motion planning on data from all nearby
vehicles in addition to the ego-vehicle.

Our idea of training the ego motion planner using data
from all vehicles is closely related to Filos et al. [18]
and Zhang and Ohn-Bar [49]. Filos et al. [18] extends offline
reinforcement learning to learn from other agents’ behaviors.
Zhang and Ohn-Bar [49] train a privileged imitation learning
policy that learns from other vehicles in a scene. Their policy

17223

Affordances
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑔𝑙𝑒 = 0.01 𝑟𝑎𝑑
𝐶𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒= 0.15 𝑚
𝑅𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 = 𝐹𝑎𝑙𝑠𝑒
…

Neural
Network

Video Input

Directional Input

Control
Commands

Controller
Brake = 0.0

3D
Backbone

Steering

Acceleration
Affordances

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑔𝑙𝑒 = 0.01 𝑟𝑎𝑑
𝐶𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒= 0.15 𝑚
𝑅𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 = 𝐹𝑎𝑙𝑠𝑒
…

Neural
Network

Video Input

Directional Input

Control
Commands

Controller
Brake = 0.0

Affordances
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑔𝑙𝑒 = 0.01 𝑟𝑎𝑑
𝐶𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒= 0.15 𝑚
𝑅𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 = 𝐹𝑎𝑙𝑠𝑒
…

Neural
Network

Video Input

Directional Input

Control
Commands

Controller
Brake = 0.0

Motion
Planning

LiDAR

RGB Controller

High-level
Commands

Speed

(a) Overview of the inference pipeline.

3D
Backbone

Motion
Planning

Ego-Vehicle

Other Vehicles

RoI Align

Future Positions

Motion
Planning

LiDAR

RGB

(b) Overview of the training pipeline for the motion planning module.

Figure 2. Overview of the agent’s pipeline. A 3D Backbone fuses LiDAR measurements and semantic segmentation from RGB cameras to
produce a 2D spatial feature map. This shared feature map serves as an input to a motion planner. At inference time (a), we use the central
crop to predict the ego-vehicles trajectory. At training time (b), we additionally use ground-truth detections of nearby vehicles to train
a motion planner from all visible vehicles. Detection results use rotated regions of interest (RoIs) of the shared feature map. Finally, at
inference time, a controller aggregates multiple motion predictions into a single steering and acceleration command.

side-steps partial observability by training a policy that acts
only on the ground truth state of the simulator. It assumes
perfect perception or access to other agents’ sensors. LAV,
on the other hand, operates on raw sensor inputs and learns
a viewpoint invariant intermediate representation.

3. Learning from All Vehicles

We aim to build a deterministic driving model π that at
each timestep t maps sensor readings, high-level navigational
command, and vehicle state to raw control command at.
We opt for an end-to-end differentiable three-stage modular
pipeline: A perception module, a motion planner, and a
low-level controller. See Figure 2a for an overview.

The perception module is trained from massive labeled
supervision with two goals in mind: To create a robust and
generalizable representation of the surrounding world, and
to build vehicle-invariant features that help supervise the
motion planner. Section 3.1 describes the overall architecture
and training setup of the perception module. It maps raw
sensor readings to a map-view feature representation.

The motion planner uses the map-view features of the
perception model to produce a series of waypoints describ-
ing the future trajectory of the vehicles. Motion planners
commonly use supervision from just the ego-vehicle for this
prediction [11]. This supervision is quite sparse and pro-
vides the motion planner with just a single series of labels
per collected data point. In our framework, we learn mo-
tion planning from all vehicles that surround the ego-vehicle.
This is possible because our perception system produces
vehicle-invariant features as inputs; it is also because the
outputs of the motion planner, the future trajectories, can be
easily obtained from ground truth driving logs. Figure 2b
shows an overview of the motion planner training. Sec-
tion 3.2 describes the motion planner and its training setup.

Finally, a low-level controller converts motion plans into
actual steering and acceleration commands that are executed
on the vehicle. At test time, the low-level controller consid-

ers other vehicles’ motion plans to make emergency stop
decisions. Section 3.3 describes the controller.

3.1. A vehicle-independent perception model

The core objective of any perception module is to build
an intermediate representation that readily generalizes from
training to test conditions. In our setup, a secondary goal is
to build input features to the motion planner that are indistin-
guishable between the current vehicle and nearby vehicles.
The closer the output representations of the ego-vehicle and
other vehicles are, the better motion plans transfer between
those vehicles. Here, we opt for a metric map-based output
representation. In a metric map, rotated ROI pooling extracts
fixed-sized feature representations for training vehicles.

Specifically, we use three RGB cameras It = {I1t , I2t , I3t }
surrounding the vehicle and one LiDAR sensor Lt as an
input. We combine the color and LiDAR inputs using point-
painting [46] from RGB inputs and a light-weight Center-
Point [47] with PointPillars [27] 3D backbone. The back-
bone provides us with a map-view feature representation
f ∈ RW×H×C of width W and height H with C channels.

We train the backbone network using a combination of se-
mantic segmentation and detection losses. See Figure 3a for
an overview. For every pixel in map-view, we predict a road
mask, solid and broken lane boundaries. We use a binary
classifier, and binary cross-entropy loss, as road and lane-
marking can overlap. In addition, we train a CenterPoint-
style detector [47] for pedestrians and vehicles. Most im-
portantly, we explicitly label the ego-vehicle in this detector.
This minimizes the feature distance between ego-vehicle
and other vehicles and enables better transfer. We pre-train
the perception model using fully labeled data and use rota-
tion augmentations around the ego-vehicle to increase the
robustness of the learned model.

Supervised pre-training has two advantages. It general-
izes better to unseen test conditions. It also learns a similar
feature representation for all vehicles. This feature represen-
tation is next used in the motion planner.

17224

RGB

Mapping

Detection

3D
Backbone

LiDAR

(a) Perception training.

Ego

Others

Future Positions

Expert
Mot. Plan.

Expert
Mot. Plan.

(b) Privileged motion models training.

3D
Backbone

Ego

Others

Motion
Planning

Motion
Planning

Expert
Mot. Plan.

Expert
Mot. Plan.

(c) Final distillation.

Figure 3. Overview of our training pipeline. (a) We train a 3D perception model using detection and semantic mapping as the supervision
signal. Both tasks help learn a viewpoint-invariant spatial representation. Detection additionally predicts other vehicles’ poses which we
use to forecast their future trajectories at inference. The perception module produces a vehicle-independent feature representation used in
motion planning. (b) In parallel, we train a motion planner over ground truth perception. We train the model using traces from all nearby
vehicles using their future trajectory as supervision. (c) Finally, we combine the models learned in (a) and (b) using distillation. This model
learns how all vehicles plan in an end-to-end manner using only the ego-vehicles sensor inputs.

3.2. Learning to plan motion from all vehicles

The motion planner uses the output of the perception
system to predict a series of future waypoints describing po-
sitions the vehicles should steer towards. Here, we propose
a novel two-stage motion planner that combines geometric
GPS targets and discrete high-level commands. We use a
standard RNN formulation [28, 38] to predict n = 10 future
waypoints y1, . . . , yn ∈ R2. The motion planner uses a high-
level command c and intermediate GNSS coordinate goal
g ∈ R2 to perform different driving maneuvers. In CARLA,
GNSS goals are sampled every 50-100 meters and contain
a measurement error of around one meter. Possible high-
level commands c include turn-left, turn-right, go-straight,
follow-lane, change-lane-to-left, change-lane-to-right.

Let M(f̂ , c) :→ Rn×2 be the motion planner conditioned
on high-level command c and warped features f̂ for the
Region of Interest (RoI) at the location and orientation of
the vehicle in question. For all vehicles, we observe their
future trajectory to obtain supervision for future waypoints
y. For the ego-vehicle, the simulator provides a ground truth
high-level command ĉ and provides sufficient supervision to
train the motion planner

Lego
M = Ef̂ ,y,ĉ

[
∥y −M(f̂ , ĉ)∥1

]
. (1)

However, other vehicles do not expose their high-level com-
mands. While it may be possible to infer this command from
future trajectories alone, any rule-based inference will be
ambiguous and noisy. We instead allow the model to infer
the high-level command directly and optimize the plan for
the most fitting high-level command.

Lother
M = Ef̂ ,y

[
min
c

∥y −M(f̂ , c)∥1
]
. (2)

At training time we optimize both losses Lego
M + Lother

M

jointly.

The resulting motion planner M finds good coarse trajec-
tories for a wide range of traffic scenarios. It learns to plan
for all vehicles it sees. However, the resulting motion plan
may be noisy as high-level commands c are ambiguous.

In a second stage, we refine the motion plan using an ad-
ditional RNN-based motion planning network M ′(f̂ , g, ỹ) ∈
Rn×2. The motion refinement network uses the same ROI-
warped feature f̂ , the previously predicted motion plan ỹ,
and the more fine-grain GNSS goal g as input. We normalize
g in the ego-vehicle’s coordinate. It then produces a delta
to the original trajectory as output. Since GNSS goals are
only available for the ego-vehicle, we train the refinement
M̂ only on ego-vehicle trajectories

Lrefine
M = Ef̂ ,y,ỹ,ĝ

[
∥ỹ +M ′(f̂ , ĝ, ỹ)− y∥1

]
. (3)

During both training and testing, we roll out the same re-
finement network multiple times to recursively refine the
predicted trajectory. The above loss then applies to each step
of the rollout.

In practice, we learn the motion planner in a privileged
distillation framework [11]. See Figure 3b and Figure 3c for
an overview. We first learn motion planning on ground truth
trajectories and ground-truth perception outputs and regions
of interest using the losses (1)-(3). We then use the privileged
motion planner to supervise a motion planner that uses the
inferred perception outputs. During this second stage, we
supervise predictions on all high-level commands which
leads to a richer supervisory signal [11]. We additionally
distill a high-level command classifier for other vehicles
which we use later in the vehicle-aware controller. This
stage trains end-to-end by backpropagating gradients from
motion prediction and planning to the perception backbone,
allowing perception models to attend to low-level details in
the scene. We keep the pre-training perception loss in the
previous stage as an auxilliary supervision to regularize the
features.

17225

3.3. Vehicle-aware control

The controller translates a motion plan into actual driv-
ing commands. We use two PID controllers for latitudinal
(steering) and longitudinal (acceleration) control. Both PID
controllers use basic statistics of the refined motion plan as
an input to produce a continuous output command. The lon-
gitudinal PID controller additionally uses the current speed
as an input to compute acceleration. We overwrite brak-
ing using a separate neural network classifier B in case of
traffic light and hazard stoppages. The classifier uses the
same image inputs as the perception module plus one addi-
tional camera with telephoto lenses to capture distant traffic
lights. The classifier learns the braking behavior of the data-
collecting ego-vehicle using recorded brake actions. Finally,
we reuse the motion plans learned from other vehicles to
detect potential collisions and perform hazard stops. Specifi-
cally, we use the 3D detections of the backbone to find all
nearby vehicles. For each, we use the motion planner M to
produce future trajectories over each high-level command.
We use all motion plans above the high-level command likeli-
hood threshold to check for collisions with the ego-vehicle’s
motion plan.

Perception. We use PointPillars [27] with PointPaint-
ing [46] as our multi-modal 3D perception backbone PB .
In particular, given RGB images captured from three frontal
facing camera {I0t , I1t , I2t } with extrinsic matrices E =
{E0, E1, E2}, we use a ERFNet [39] to compute their se-
mantic segmentation scores St = {S0

t , S
1
t , S

2
t }. We use

five semantic classes: “background”, “vehicles”, “roads”,
“lane markings” and “pedestrians”. For each LiDAR point
l ∈ Lt, we use PointPainting [46] to concatenate its corre-
sponding semantic classes using the segmentation scores:
lst = PointPaint(St, TE , lt). TE is the perspective transform
function.

For PointPillars, we use FC-64-64 with BatchNorm [24]
as its PointNet. We create pillars for LiDAR points for
x ∈ [−10m, 70m] and y ∈ [−40m, 40m]. Each pillar repre-
sents a 0.25m×0.25m spatial region. We use the default 2D
CNNs with multi-scale features to obtain the spatial features
ϕt ∈ R192×160×160 with 0.5× resolution of the original pil-
lars. Unlike the original PointPillars which directly builds
dense pillars specified by the hyperparameters, we sparsely
represent the pillars. We also use a sparse PointNet to pro-
cess the corresponding sparse pillar features. This allows us
to process all pillars efficiently both in space and time.

We use a branching architecture for the detection and
mapping heads. We use a simplified one-stage Center-
Point [47, 53] formulation for BEV object detection. In
particular, we predict two “centerness” maps, one for vehi-
cles and one for pedestrians; we also predict an orientation
and bounding-box maps that are both class-agnostic. For

Ego τego

Camera
RGB

Traffic Light &
Hazard Brake

Others τothers

1 if len()>0:
2 = opt(,)
3
4 steer = LatPID()
5 throttle, brake = LonPID()
6
7 if > brake:
8 throttle, brake = 0,
9 return steer, throttle, brake

τothers
τego τego τothers

τego
τego

̂brake ̂brake

̂brake

Figure 4. Overview of our controller logic. The controller considers
all vehicles and their predicted multi-modal future trajectories. It
additionally uses an image-only brake predictor to handle traffic
sign and hazard stoppages.

mapping, we predict a BEV semantic map for roads, solid
lane markings and broken lane markings. Each map is gen-
erated using a separate 3 × 3 convolution followed by a
3× 3 up-convolution with stride 2, all from the shared back-
bone PB . At test time, we use a 2D max pooling layer as a
simplified version of NMS.

We additionally train a binary brake classifier that takes as
input all the four camera RGB images. We feed the telephoto
lens image and the stitched other three images to a ResNet-
18 followed by a global average pooling layer. This gives us
fixed-sized embeddings of z1, z2 ∈ R512. We concatenate
z1, z2 and feed it to a linear layer to predict the binary brake.

Prediction and Planning. Given the ego-vehicle and a list
of vehicle detection, we use differentiable warping to crop a
rotated region of interest (RoI) f̂ i for each vehicle location
and yaw angle. A CNN followed by global average pooling
takes as input the rotated RoI features and returns a fixed-
sized embedding zi for each vehicle i. zi is shared among M
and M ′. The motion planner M uses a separate GRU [13]
for each high-level command. The GRU is rolled out n times
to produce an offset between consecutive waypoints. The
refinement motion planner M ′ uses two forms of recursions
and rollouts: rollouts along waypoint and rollouts along
refinement iterations. It predicts an offset from the prior
motion plan for each iteration. The refinement motion plan
relies on just a single GRU unit that takes the GNSS goal
g as an additional input. Both motion planners use a linear
layer to transform GRU states into the desired outputs.

Control. The controller C takes as input refined ego-
trajectory τ = M ′(f̂ , ỹ, ĝ). See Figure 4 for an overview. If
predicted trajectory τ leads to a collision with other traffic
participants, we adjust it. For now we perform a hard stop
using a hard-coded braking logic. If the predicted trajectory
is collision free, we follow it directly. We use two PID con-
trollers for latitudinal and longitudinal control respectively.
For latitudinal control, we use the 5-th point in τ5 as the aim

17226

Rank Method
Driving
Score

Route
Completion

Infraction
Score

1 LAV 61.85 94.46 0.64
2 GRIAD [8] 36.79 61.85 0.60
3 TransFuser+ [2] 34.58 69.84 0.56
4 Rails [10] 31.37 57.65 0.56
5 IARL [44] 24.98 46.97 0.52
6 NEAT [12] 21.83 41.71 0.65
7 TransFuser [38] 16.93 51.82 0.42
8 LBC [11] 8.94 17.54 0.73

Table 1. Comparison of the driving score (main metric), route com-
pletion and infraction score on the public CARLA leaderboard [1]
(accessed March 2022). All three metrics are higher the better. De-
tailed infraction numbers reported in the supplement for reference.

point to compute the steering error. For longitudinal con-
trol, we use the difference between target speed inferred from
∥τk+1−τk∥ and the current speed vt to compute acceleration.
We use KP = 1.0,KI = 0.5,KD = 0.2 for the latitudinal
PID controller, and we use KP = 5.0,KI = 0.5,KD = 1.0
for the longitudinal PID controller. We overwrite the brake
control with the predicted brake score if it is larger than the
brake computed from the longitudinal controller.

4. Experiments
We evaluate our method on the CARLA simulator [17]

using closed-loop driving. We compare our approach with
the state-of-the-art methods on the public leaderboard, and
we perform ablation study on the effect of our design choices
locally. For our online leaderboard submission, we train on
all the 8 publicly available towns using a dataset of 400K
frames, collected with the CARLA behavior agent under
randomized weathers. For ablations, we only train on 4 out
of the 8 towns, resulting in a dataset of 186K frames. We test
on two other unseen towns. Details of the dataset statistics
are provided in the supplement for reference.

4.1. Comparison with state-of-the-art

Table 1 compares our method with prior state-of-the-
art methods on the CARLA public leaderboard [1]. The
CARLA leaderboard evaluates autonomous driving systems
under unseen and partially adversarial conditions. Vehicles
are tasked to complete a set of predefined routes in new
towns. For each route, the simulator adds dangerous sce-
narios such as suddenly crossing pedestrians or aggressive
lane-changing vehicles. These scenarios are modeled after
the NHTSA typology [1]. The leaderboard measures how
far self-driving vehicles proceed along a route within a fixed
time budget, and how often they cause traffic infractions.
In Table 1, we list three key metrics of the leaderboard: Driv-
ing Score, Route Completion, and Infraction Score. Route

Completion measures the distance percentage an agent is
able to complete; Infraction Score measures how often an
agent drives without causing infractions; Driving Score mea-
sures route completion rate weighted by infractions per route.
Driving Score and Route Completion are the two main met-
rics of comparison. A vehicle standing perfectly still will
receive an infraction score of 1. All three metrics are higher
the better. We refer readers to the official leaderboard [1] for
a more detailed description of the metrics.

We compare to the top entries on the leaderboard.
GRIAD [8] is the prior state-of-the-art. Rails [10] is a model-
based reinforcement-learning method that trains vision-
based driving policies from offline driving logs. IARL [44] is
based on state-of-the-art model-free reinforcement-learning
with distributed training. NEAT [12] uses imitation-learning
with attention and implicit functions. Transfuser [38]
uses imitation-learning with attention-based sensor fusion.
LBC [11] relies on knowledge distillation with imitation
learning. LBC is the closest comparison to our approach, as
we also use knowledge distillation and imitation learning as
a supervisory signal. However, LAV additionally uses other
observed vehicles to train the control policy.

LAV ranks first on the leaderboard, and it outperforms
the prior leading entry by a wide margin. It achieves 61.85
driving score, the highest among all methods, and 25 points
higher than on the previous leading method GRIAD. It also
achieves a 94.46 Route Completion, the highest among all
methods and 24 points higher than the next best method, and
32 points higher than the previous state-of-the-art. Moreover,
previous top methods, such as Rails and IARL, require 1M
and 40M frames to train the policies. Our method uses
only 400K training frames. Our approach has a relatively
high infraction score; however, we note that higher Route
Completion naturally leads to more infractions. A vehicle
that drives slowly or stands still causes fewer infractions but
struggles to complete its routes. See LBC for example.

4.2. Ablation study

We answer few important questions on our design choices.
We again evaluate on Driving Score, Route Completion and
Infraction Score. However, we cannot use the online leader-
board directly for these additional experiments. We instead
use a local setup with similar characteristics to the Leader-
board. In particular, we train on 4 out of 8 towns (Town01,
Town03, Town04 and Town06), and evaluate on 2 unseen
towns (Town02 and Town05). We select 4 representative
routes, 2 from each town, and we evaluate each route with 4
weathers: “Clear Noon”, “Cloudy Sunset”, “Soft Rain Dawn”
and “Hard Rain Night”. We evaluate each setup for 3 runs
and report the mean and standard deviation. This results in
48 trials for each model. All ablated models use a similar
but slightly outdated setup as our leaderboard entry. The
only differences are: 1. the ablated models use U-Net as the

17227

Driving
Score

Route
Completion

Infraction
Score

Vehicle
Collisions

Pedestrian
Collisions

Layout
Collisions

Red light
Violations

LAV 45.20 ± 6.35 91.55 ± 5.61 0.49± 0.06 0.92 ± 0.42 0.00± 0.00 0.33 ± 0.50 0.28± 0.28

Ego-vehicle only 38.56± 1.86 84.76± 5.12 0.46± 0.02 1.17± 0.50 0.00± 0.00 1.82± 0.06 0.34± 0.20
No distillation 28.23± 2.27 81.05± 6.04 0.36± 0.04 2.08± 0.34 0.00± 0.00 7.87± 0.15 0.21 ± 0.04

Table 2. Driving performance ablation of the key components of our approach on test towns. Infractions are measured as number of
occurrences per kilometer traveled. Mean and standard deviation are computed over three runs.

semantic segmentation backbone 2. the ablated models use
FC-32-32 in PointPillars and 3. slightly different controller
hyperparameters.

Table 2 studies the effects of our key design choices.
We compare to two variants of our approach: 1) One that
only trains on ego-vehicle data, 2) One that does not per-
form privileged distillation. We find that training on other
vehicles’ trajectories and viewpoints results in lower perfor-
mance on both route completion and infraction. The perfor-
mance degradation is smaller than expected likely because
our auxiliary perception supervision makes the motion mod-
els generalize well to distribution shifts, caused by both test
time errors and viewpoints changes. Not using privileged
distillation results in a larger performance drop. Without
distillation, the motion models need to train from both noisy
inputs and labels, thus tackling a much harder learning prob-
lem. Our full model achieves the highest scores in all three
metrics.

Table 3 studies the degree to which training on other
vehicles’ experiences affect the driving performance. We
evaluate three standards, where we only train vehicles within
5, 15 and 25 meters within the ego-vehicle, with 15 meters
being our default value. ≤ 5m and ≤ 15m performs equally
well, while ≤ 25m is slightly worse. We think this is due to
the fact that vehicles at range have too different of an appear-
ance in the sensor inputs which the auxiliary supervision is
unable to correct for. The LiDAR sensor in CARLA mimics
the Velodyne-64 rays model, which produces at most a few
dozen measurements for cars at a distance of 25m.

Table 4 studies different perception training schemes. We
compare the default staged training scheme (staged) with two
variants of joint training: 1) No perception pre-training (No
Pretrain.), and joint perception and motion training (Joint).
The first variant only optimizes the distillation loss, and the
latter optimize perception and distillation simultaneously.
Both variants do not freeze the 3D backbone. As expected,
models without perception training perform poorly. They suf-
fer from the distribution shifts caused by viewpoint changes.
Joint training also performs worse than staged straining, be-
cause solving perception and planning simultaneously is
harder than solving them in a disentangled manner, as also
observed by Chen et al. [11].

Table 5 studies the effect of our iterative refinement mod-

Vehicles
Range

Driving
Score

Route
Completion

Infraction
Score

≤ 5m 46.06 ± 1.70 88.77± 1.01 0.51± 0.02
≤ 15m 45.20± 6.35 91.55 ± 5.61 0.49± 0.06
≤ 25m 37.42± 3.09 89.56± 5.61 0.61 ± 0.12

Table 3. Driving performance in test towns of models trained with
different range of other vehicles. All models are the same except
for other vehicles’ maximum range used during training.

Perception
Training

Driving
Score

Route
Completion

Infraction
Score

No Pretrain. 8.47± 0.83 9.34± 0.35 0.90 ± 0.07
Joint 28.36± 2.11 79.58± 4.99 0.34± 0.02

Staged 45.20 ± 6.35 91.55 ± 5.61 0.49± 0.06

Table 4. Driving performance in test towns of models with different
perception training scheme. All models are the same except for
perception training.

Refinement
Iteration

Driving
Score

Route
Completion

Infraction
Score

K = 0 12.69± 2.86 35.85± 2.91 0.42± 0.03
K = 1 21.30± 1.10 85.90± 2.46 0.25± 0.01
K = 5 45.20 ± 6.35 91.55 ± 5.61 0.49 ± 0.06

Table 5. Driving performance ablation on the effect of motion re-
finement. All models are the same except for number of refinement
iterations.

ule. K = 0 means we directly use the trajectories predicted
by the motion planner Mf to drive. The default option
K = 5 performs the best, showing the benefits of iterative
motion refinement. Iterative refinement allows the model to
elastically figure out what residuals to learn. It also natu-
rally combines the semantic information from the high-level
command and the geometric information from the goals.

Detailed infraction numbers for Table 3, Table 4 and Ta-
ble 5 are provided in the supplement for reference.

4.3. Qualitative analysis

Figure 5 provides a qualitative analysis of our system.
It shows the combined input images, LiDAR point cloud,

17228

Figure 5. Visualizations of the outputs from our system. Each row visualizes RGB camera inputs, predicted road geometries, and detection
and motion predictions respectively. Detection and motion prediction are used during inference; mapping is used for training only. For
mapping, we predict road, broken and solid (white) lane markings. For detection, we predict pedestrians’ and vehicles’ poses and bounding
boxes. We forecast multi-modal future trajectories with their corresponding likelihoods. Best viewed on screen.

the auxiliary segmentation predictions, detections, and pre-
dicted plans for all vehicles in the scene. The ego-vehicles
plan uses the provided high-level command, while all other
vehicles predict a distribution over possible future plans.
Note how all vehicles predict a reasonable and consistent
set of future plans aligning well with the inferred map-view
representation of the road and the potential other vehicles.

5. Discussion
In this paper, we present a mapless, end-to-end driving

system that trains from the experiences of all nearby vehi-
cles. Our system achieves state-of-the-art performance in
closed-loop driving simulation, and it outperforms prior lead-
ing methods by a wide margin. Limitations and potential
negative social impacts: Our approach is trained and eval-
uated in simulation alone and still incurs traffic infractions.
If directly deployed in the real world, it would most likely

result in traffic accidents (negative social impacts). On the
technical side, our current behavior predictor instantiated
by the conditional motion planner does not consider multi-
modality beyond the high-level commands. Extending our
work with a probabilistic formulation will strengthen its abil-
ity in handling the diverse behaviors of both the ego vehicle
and the other road users. Improving the motion predictor
beyond its raster representation is also an exciting direction.

Acknowlegments

We thank Tianwei Yin for his help on pillar generation
codes, Xingyi Zhou and Jeffrey Zhang for feedback on writ-
ing and figures. We thank TACC for providing part of our
computing resources. This work was supported by the NSF
Institute for Foundations of Machine Learning and NSF
award #1845485.

17229

References
[1] Carla autonomous driving leaderboard (accessed

november 2021). https://leaderboard.
carla.org/leaderboard/, 2021. 6

[2] Expert drivers for autonomous driving. url-
https://kait0.github.io/files/master thesis bernhard jaeger.pdf,
2021. 6

[3] Andrew Bacha, Cheryl Bauman, Ruel Faruque,
Michael Fleming, Chris Terwelp, Charles Reinholtz,
Dennis Hong, Al Wicks, Thomas Alberi, David Ander-
son, et al. Odin: Team victortango’s entry in the darpa
urban challenge. Journal of field Robotics, 2008. 1

[4] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale.
Chauffeurnet: Learning to drive by imitating the best
and synthesizing the worst. RSS, 2019. 1, 2

[5] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intent-
net: Learning to predict intention from raw sensor data.
In CoRL, 2018. 2

[6] Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3:
A unified model to map, perceive, predict and plan. In
CVPR, 2021. 2

[7] Yuning Chai, Benjamin Sapp, Mayank Bansal, and
Dragomir Anguelov. Multipath: Multiple probabilistic
anchor trajectory hypotheses for behavior prediction.
In CoRL, 2019. 2

[8] Raphael Chekroun, Marin Toromanoff, Sascha Hor-
nauer, and Fabien Moutarde. GRI: general rein-
forced imitation and its application to vision-based
autonomous driving. arXiv, 2021. 6

[9] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianx-
iong Xiao. Deepdriving: Learning affordance for direct
perception in autonomous driving. In ICCV, 2015. 1, 2

[10] Dian Chen, Vladlen Koltun, and Philipp Krähenbühl.
Learning to drive from a world on rails. In ICCV, 2021.
1, 2, 6

[11] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
Krähenbühl. Learning by cheating. In CoRL, 2019. 1,
2, 3, 4, 6, 7

[12] Kashyap Chitta, Aditya Prakash, and Andreas Geiger.
Neat: Neural attention fields for end-to-end au-
tonomous driving. In ICCV, 2021. 1, 6

[13] Kyunghyun Cho, Bart van Merriënboer Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares Holger
Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using rnn encoder–decoder for statistical
machine translation. In EMNLP, 2016. 5

[14] Felipe Codevilla, Matthias Müller, Antonio López,
Vladlen Koltun, and Alexey Dosovitskiy. End-to-end
driving via conditional imitation learning. In ICRA,
2018. 1, 2

[15] Alexander Cui, Sergio Casas, Abbas Sadat, Renjie
Liao, and Raquel Urtasun. Lookout: Diverse multi-
future prediction and planning for self-driving. In
ICCV, 2021. 2

[16] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo,
and James Diebel. Practical search techniques in path
planning for autonomous driving. In STAIR, 2008. 1

[17] Alexey Dosovitskiy, German Ros, Felipe Codevilla,
Antonio Lopez, and Vladlen Koltun. Carla: An open
urban driving simulator. In CoRL, 2017. 2, 6

[18] Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine,
Natasha Jaques, and Gregory Farquhar. Psiphi-learning:
Reinforcement learning with demonstrations using suc-
cessor features and inverse temporal difference learn-
ing. arXiv preprint arXiv:2102.12560, 2021. 2

[19] Davi Frossard, Simon Suo, Sergio Casas, James Tu,
Rui Hu, and Raquel Urtasun. Strobe: Streaming object
detection from lidar packets. In CoRL, 2020. 2

[20] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir
Anguelov, Congcong Li, and Cordelia Schmid. Vec-
tornet: Encoding hd maps and agent dynamics from
vectorized representation. In CVPR, 2020. 2

[21] Noa Garnett, Rafi Cohen, Tomer Pe’er, Roee Lahav,
and Dan Levi. 3d-lanenet: end-to-end 3d multiple lane
detection. In CVPR, 2019. 2

[22] Yuliang Guo, Guang Chen, Peitao Zhao, Weide Zhang,
Jinghao Miao, Jingao Wang, and Tae Eun Choe. Gen-
lanenet: A generalized and scalable approach for 3d
lane detection. In ECCV, 2020. 2

[23] Anthony Hu, Zak Murez, Nikhil Mohan, Sofı́a Dudas,
Jeff Hawke, Vijay Badrinarayanan, Roberto Cipolla,
and Alex Kendall. Fiery: Future instance prediction in
bird’s-eye view from surround monocular cameras. In
ICCV, 2021. 2

[24] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015. 5

[25] Alexey Kamenev, Lirui Wang, Ollin Boer Bohan, Ish-
war Kulkarni, Bilal Kartal, Artem Molchanov, Stan
Birchfield, David Nistér, and Nikolai Smolyanskiy.
Predictionnet: Real-time joint probabilistic traffic pre-
diction for planning, control, and simulation. arXiv
preprint arXiv:2109.11094, 2021. 2

[26] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw
Mazur, Daniele Reda, John-Mark Allen, Vinh-Dieu
Lam, Alex Bewley, and Amar Shah. Learning to drive
in a day. In ICRA, 2019. 2

[27] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing
Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars:
Fast encoders for object detection from point clouds.
In CVPR, 2019. 2, 3, 5

[28] Namhoon Lee, Wongun Choi, Paul Vernaza, Christo-
pher B Choy, Philip HS Torr, and Manmohan Chan-
draker. Desire: Distant future prediction in dynamic
scenes with interacting agents. In CVPR, 2017. 2, 4

[29] John Leonard, Jonathan How, Seth Teller, Mitch
Berger, Stefan Campbell, Gaston Fiore, Luke Fletcher,
Emilio Frazzoli, Albert Huang, Sertac Karaman, et al.

17230

A perception-driven autonomous urban vehicle. Jour-
nal of Field Robotics, 2008. 1

[30] Jesse Levinson, Michael Montemerlo, and Sebastian
Thrun. Map-based precision vehicle localization in
urban environments. In RSS, 2007. 2

[31] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmap-
net: An online hd map construction and evaluation
framework. In CVPR Workshop, 2021. 2

[32] Ming Liang, Bin Yang, Shenlong Wang, and Raquel
Urtasun. Deep continuous fusion for multi-sensor 3d
object detection. In ECCV, 2018. 2

[33] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-
Walz, Jakob Erdmann, Yun-Pang Flötteröd, Robert
Hilbrich, Leonhard Lücken, Johannes Rummel, Peter
Wagner, and Evamarie Wießner. Microscopic traffic
simulation using sumo. In ITSC, 2018. 1

[34] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and
furious: Real time end-to-end 3d detection, tracking
and motion forecasting with a single convolutional net.
In CVPR, 2018. 2

[35] Wei-Chiu Ma, Ignacio Tartavull, Ioan Andrei Bârsan,
Shenlong Wang, Min Bai, Gellert Mattyus, Namdar
Homayounfar, Shrinidhi Kowshika Lakshmikanth, An-
drei Pokrovsky, and Raquel Urtasun. Exploiting sparse
semantic hd maps for self-driving vehicle localization.
In IROS, 2019. 2

[36] Zhenghao Peng, Quanyi Li, Ka Ming Hui, Chunxiao
Liu, and Bolei Zhou. Learning to simulate self-driven
particles system with coordinated policy optimization.
In NeurIPS, 2021. 1

[37] Dean A Pomerleau. Alvinn: An autonomous land
vehicle in a neural network. In NeurIPS, 1989. 1, 2

[38] Aditya Prakash, Kashyap Chitta, and Andreas Geiger.
Multi-modal fusion transformer for end-to-end au-
tonomous driving. In CVPR, 2021. 1, 4, 6

[39] Eduardo Romera, José M Alvarez, Luis M Bergasa, and
Roberto Arroyo. Erfnet: Efficient residual factorized
convnet for real-time semantic segmentation. ITS, 2017.
5

[40] Axel Sauer, Nikolay Savinov, and Andreas Geiger.
Conditional affordance learning for driving in urban
environments. In CoRL, 2018. 2

[41] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aure-
lien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo,
Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scal-
ability in perception for autonomous driving: Waymo
open dataset. In CVPR, 2020. 1

[42] Simon Suo, Sebastian Regalado, Sergio Casas, and
Raquel Urtasun. Trafficsim: Learning to simulate real-
istic multi-agent behaviors. In CVPR, 2021. 1

[43] Brian Tefft. Rates of motor vehicle crashes, injuries
and deaths in relation to driver age, united states, 2014-
2015. In AAA Foundation for Traffic Safety., 2017.
1

[44] Marin Toromanoff, Emilie Wirbel, and Fabien
Moutarde. End-to-end model-free reinforcement learn-
ing for urban driving using implicit affordances. In
CVPR, 2020. 2, 6

[45] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christo-
pher Baker, Robert Bittner, MN Clark, John Dolan,
Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Au-
tonomous driving in urban environments: Boss and the
urban challenge. Journal of Field Robotics, 2008. 1

[46] Sourabh Vora, Alex H Lang, Bassam Helou, and Os-
car Beijbom. Pointpainting: Sequential fusion for 3d
object detection. In CVPR, 2020. 2, 3, 5

[47] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl.
Center-based 3d object detection and tracking. In
CVPR, 2021. 2, 3, 5

[48] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat,
Bin Yang, Sergio Casas, and Raquel Urtasun. End-
to-end interpretable neural motion planner. In CVPR,
2019. 2

[49] Jimuyang Zhang and Eshed Ohn-Bar. Learning by
watching. In CVPR, 2021. 2

[50] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Ben-
jamin Sapp, Balakrishnan Varadarajan, Yue Shen, Yi
Shen, Yuning Chai, Cordelia Schmid, et al. Tnt: Target-
driven trajectory prediction. In CoRL, 2020. 2

[51] Shuran Zheng and Jinling Wang. High definition map-
based vehicle localization for highly automated driving:
Geometric analysis. In ICL-GNSS, 2017. 2

[52] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.
Tracking objects as points. In ECCV, 2020. 2

[53] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl.
Objects as points. arXiv preprint arXiv:1904.07850,
2019. 5

[54] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov,
Jiyang Gao, Tom Ouyang, James Guo, Jiquan Ngiam,
and Vijay Vasudevan. End-to-end multi-view fusion
for 3d object detection in lidar point clouds. In CoRL,
2020. 2

17231

