
MixFormer: Mixing Features across Windows and Dimensions

Qiang Chen1*, Qiman Wu1∗, Jian Wang1∗, Qinghao Hu2†, Tao Hu1

Errui Ding1, Jian Cheng2, Jingdong Wang1

1Baidu VIS
2NLPR, Institute of Automation, Chinese Academy of Sciences

{chenqiang13,wuqiman,wangjian33,hutao06,dingerrui,wangjingdong}@baidu.com
huqinghao2014@ia.ac.cn, jcheng@nlpr.ia.ac.cn

Abstract

While local-window self-attention performs notably in
vision tasks, it suffers from limited receptive field and weak
modeling capability issues. This is mainly because it per-
forms self-attention within non-overlapped windows and
shares weights on the channel dimension. We propose Mix-
Former to find a solution. First, we combine local-window
self-attention with depth-wise convolution in a parallel de-
sign, modeling cross-window connections to enlarge the re-
ceptive fields. Second, we propose bi-directional interac-
tions across branches to provide complementary clues in
the channel and spatial dimensions. These two designs are
integrated to achieve efficient feature mixing among win-
dows and dimensions. Our MixFormer provides compet-
itive results on image classification with EfficientNet and
shows better results than RegNet and Swin Transformer.
Performance in downstream tasks outperforms its alterna-
tives by significant margins with less computational costs
in 5 dense prediction tasks on MS COCO, ADE20k, and
LVIS. Code is available at https://github.com/
PaddlePaddle/PaddleClas.

1. Introduction
The success of Vision Transformer (ViT) [10, 36] in im-

age classification [8] validates the potential to apply Trans-
former [38] to vision tasks. Challenges remain for down-
stream tasks, especially the inefficiency in high-resolution
vision tasks and the ineffectiveness in capturing local rela-
tions. One possible solution is to use local-window self-
attention. It performs self-attention within non-overlapped
windows and shares weights on the channel dimension. Al-
though this process improves efficiency, it poses the issues
of limited receptive field and weak modeling capability.

*Equal Contribution.
†Corresponding author.
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Figure 1. The Mixing Block. We combine local-window self-
attention with depth-wise convolution in a parallel design. The
captured relations within and across windows in parallel branches
are concatenated and sent to the Feed-Forward Network (FFN)
for output features. In the figure, the blue arrows marked with
Channel Interaction and Spatial Interaction are the proposed bi-
directional interactions, which provide complementary clues for
better representation learning in both branches. Other details in
the block, such as module design, normalization layers, and short-
cuts, are omitted for a neat presentation.

A common approach to expand receptive field is to cre-
ate cross-window connections. Windows are connected by
shifting [30], expanding [37, 49], or shuffling [22] opera-
tions. Convolution layers are also employed as they capture
natural local relations. Researches [22, 53] combine local-
window self-attention with depth-wise convolution base on
this and provide promising results. Still, the operations cap-
ture intra-window and cross-window relations in successive
steps, leaving these two types of relations less interweaved.
Besides, neglect of modeling weakness in these attempts
hinders further advances in feature representation learning.
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We propose Mixing Block to address both these is-
sues (Figure 1). First, we combine local-window self-
attention with depth-wise convolution, but in a parallel
way. The parallel design enlarges the receptive fields by
modeling intra-window and cross-window relations simul-
taneously. Second, we introduce bi-directional interactions
across branches(illustrated as blue arrows in Figure 1). The
interactions offset the limits caused by the weight sharing
mechanism1, and enhance the modeling ability in channel
and spatial dimensions by providing complementary clues
for local-window self-attention and depth-wise convolution
respectively. The above designs are integrated to achieve
complementary feature mixing across windows and dimen-
sions.

We present MixFormer to verify the block’s efficiency
and effectiveness. A series of MixFormers with com-
putational complexity ranging from 0.7G (B1) to 3.6G
(B4) are built to perform distinguished in multiple vi-
sion tasks, including image classification, object detection,
instance segmentation, semantic segmentation, etc. On
ImageNet-1K [8], we achieve competitive results with Ef-
ficientNet [35], surpassing RegNet [32] and Swin Trans-
former [30] by a large margin. MixFormer markedly out-
performs its alternatives in 5 dense prediction tasks with
lower computational costs. With Mask R-CNN [16](1×)
on MS COCO [29], MixFormer-B4 shows a boost of 2.9
box mAP and 2.1 mask mAP on Swin-T [30] while requir-
ing less computational cost. Substituting the backbone in
UperNet [46], MixFormer-B4 delivers a 2.2 mIoU gain over
Swin-T [30] on ADE20k [55]. Plus, MixFormer is effective
in keypoint detection [29] and long-tail instance segmenta-
tion [13]. In brief, our MixFormer achieves state-of-the-art
performance on multiple vision tasks as an efficient general-
purpose vision transformer.

2. Related Works
Vision Transformers. The success of the pioneering work,
ViT [10, 36], shows great potentials to apply transformer to
the computer vision community. After that, various meth-
ods [2, 14, 25, 36, 51, 56] are proposed to improve the per-
formance of vision transformers, demonstrating competi-
tive results on the image classification task. As the self-
attention [38] is different from the convolution in nature:
self-attention models long-range dependencies while con-
volution captures relations in local windows, there are also
works aiming for integrating convolution and vision trans-
former. Works like PVT [41] and CvT [45] insert spatial
reduction or convolution before global self-attention, yield-
ing the merits of self-attention and convolution.

1Local-window self-attention shares weights on the channel dimension
while depth-wise convolution shares weights on the spatial one [15]. From
the weight sharing perspective, sharing weights results in limited modeling
ability in the correspond dimension.

Window-based Vision Transformers. Although global
Vision Transformer shows its success on image classifica-
tion; challenges remain for downstream tasks. For high-
resolution vision tasks, the computation cost of the Vision
Transformer is quadratic to image size, making it unafford-
able for real-world applications. Recently, researchers have
proposed plenty of methods [6, 9, 30, 41, 45, 48] to make
vision transformers become general-purpose backbones as
ConvNets [17,19,47]. Among them, Window-based Vision
Transformer [6, 22, 30] adopts the local window attention
mechanism, making its computational complexity increase
linearly to image size.

Receptive Fields. Receptive fields are important for the
downstream vision tasks. However, Window-based Vi-
sion Transformer computes self-attention within non-
overlapping local windows, which limits the receptive fields
in local windows. To solve the problem, researchers pro-
pose to use shifting [30], expanding [37, 49], or shuf-
fling [22] operations to connect nearby windows.There are
also works [22,53] using convolutions to enlarge the recep-
tive fields efficiently. Convolution layers are used to cre-
ate connections because they capture local relations in na-
ture. We combine local-window self-attention and depth-
wise convolution in our block design.

Dynamic Mechanism. Dynamic networks here [7, 21, 24,
28,38,44] refer to networks whose parts of weights or paths
are data-dependent. Generally speaking, the dynamic net-
work achieves higher performance than its static alternative
as it is more flexible in modeling relations. In ConvNets, the
dynamic mechanism is widely used to better extract cus-
tomized features given different inputs. There are various
types of dynamic networks that focus on the channel [21,28]
and the spatial dimension [7, 24, 44]. These works promote
many tasks to new state-of-the-art. For Transformer [38],
the self-attention module is a dynamic component, which
generates attention maps based on the inputs. In this pa-
per, we also adopt the dynamic mechanism in the network
design, while our application is based on the finding that
the two efficient components share their weights on differ-
ent dimensions [15]. To construct a powerful block while
maintaining efficiency, we introduce dynamic interactions
across two branches, which are light-weighted and improve
the modeling ability in both channel and spatial dimensions.

3. Method

3.1. The Mixing Block

Our Mixing Block (Figure 1) adds two key designs upon
the standard window-based attention block: (1) adopt a
parallel design to combine local-window self-attention and
depth-wise convolution, (2) introduce bi-directional inter-
actions across branches. They are proposed to address the
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Attention W-Attention Conv DwConv
Sharing Weights Channel Dim Channel Dim Spatial Dim Spatial Dim

FLOPs 2NCH2W 2 2NCHWK22NCHWK22NCHWK2 NC2HWK2 NCHWK2NCHWK2NCHWK2

Table 1. Sharing Weights Dimensions and FLOPs. We provide comparison among four operations: global self-attention(Attention), local
window self-attention(W-Attention), convolution(Conv) and depth-wise convolution(DwConv). In the table, we provide the dimension of
weight sharing for all components in the first row. Besides, the FLOPs is calculated with a N × C ×H ×W input and a output with the
same shape. The K in the table represents the window size in local-window self-attention or convolution. Note that the Attention operator
adopts a window size of H ×W as it models global dependencies in the spatial dimension.
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Figure 2. Detailed design of the Bi-directional Interactions. The channel/spatial interaction provides channel/spatial context extracted
by depth-wise convolution/local-window self-attention to the other path.

limited receptive fields and weak modeling ability issues in
local-window self-attention. We first present these two de-
signs then integrate them to build the Mixing Block. Details
are described next.

The Parallel Design. Although performing self-attention
inside non-overlapped windows brings computational effi-
ciency2, it results in a limited receptive field due to no cross-
window connections being extracted. Several methods re-
sort to shift [30], expand [37, 49], shuffle [22], or convolu-
tion [22, 53] to model connections across windows. Con-
sidering that convolution layers are designed to model lo-
cal relations, we choose the efficient alternative (depth-wise
convolution) as a promising way to connect windows.

Attention then moves to adopt a proper way to com-
bine local-window self-attention and depth-wise convolu-
tion. Previous methods [22, 30, 37, 49, 53] fill the goal by
stacking these two operators successively. However, captur-
ing intra-window and cross-window relations in successive
steps make these two types of relations less interweaved.

In this paper, we propose a parallel design that enlarges
the receptive fields by simultaneously modeling intra-
window and cross-window relations. As illustrated in Fig-
ure 1, local-window self-attention and depth-wise convolu-
tion lie in two parallel paths. In detail, they use different
window sizes. A 7× 7 window is adopted in local-window
self-attention, following previous works [20, 30, 37, 54].
While in depth-wise convolution, a smaller kernel size 3×3
is applied considering the efficiency3. Moreover, as their

2It has linear computational complexity concerning image size, as
shown in Table 1.

3The results in Table 8 show that 3 × 3 is a good choice to achieve
balance in accuracy and efficiency.

FLOPs are different, we adjust the number of channels ac-
cording to the FLOPs proportion in Table 1. Then, their out-
puts are normalized by different normalization layers [1,23]
and merged by concatenation. The merged feature is sent
to the successive Feed-Forward Network (FFN) to mix the
learned relations across channels, generating the final out-
put feature.

The parallel design benefits two-folds: First, combin-
ing local-window self-attention with depth-wise convolu-
tion across branches models connections across windows,
addressing the limited receptive fields issue. Second, paral-
lel design models intra-window and cross-window relations
simultaneously, providing opportunities for feature inter-
weaving across branches and achieving better feature rep-
resentation learning.

Bi-directional Interactions. In general, sharing weights
limits the modeling ability in the shared dimension. A com-
mon way to solve the dilemma is to generate data-dependent
weights as done in dynamic networks [4, 21, 26, 44]. Local-
window self-attention computes weights on the fly on the
spatial dimension while sharing weights across channels,
resulting in the weak modeling ability issue on the channel
dimension. We focus on this issue in this subsection.

To enhance the modeling capacity of local-window self-
attention on the channel dimension, we try to generate
channel-wise dynamic weights [21]. Given that depth-wise
convolution shares weights on the spatial dimension while
focusing on the channel. It can provide complementary
clues for local-window self-attention and vice versa. Thus,
we propose bi-directional interactions (in Figure 1 and Fig-
ure 2) to enhance modeling ability in the channel and spa-
tial dimension for local-window self-attention and depth-
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Figure 3. Overall Architecture of MixFormer. There are four parts in MixFormer: Convolution Stem, Stages, Projection Layer, and
Classification Head. In Convolution Stem, we apply three successive convolutions to increase the channel from 3 to C. In Stages, we stack
our Mixing Block in each stage and use stride convolution (stride = 2) to downsample the feature map. For Projection Layer, we use a
linear layer with activation to increase the channels to 1280. The Classification Head is for the classification task.

wise convolution respectively. The bi-directional interac-
tions consist of the channel and spatial interaction among
the parallel branches. The information in the depth-wise
convolution branch flows to the other branch through the
channel interaction, which strengthens the modeling ability
in the channel dimension. Meanwhile, the spatial interac-
tion enables spatial relations to flow from the local-window
self-attention branch to the other. As a result, the proposed
bi-directional interactions provide complementary clues for
each other. Next, we present the designs of the channel and
spatial interactions in detail.

For the channel interaction, we follow the design of the
SE layer [21], as shown in Figure 2. The channel interac-
tion contains one global average pooling layer, followed by
two successive 1× 1 convolution layers with normalization
(BN [23]) and activation (GELU [18]) between them. At
last, we use sigmoid to generate attention in the channel di-
mension. Although our channel interaction shares the same
design with the SE layer [21], they differ in two aspects: (1)
The input of the attention module is different. The input of
our channel interaction comes from another parallel branch,
while the SE layer is performed in the same branch. (2) We
only apply the channel interaction to the value in the local-
window self-attention instead of applying it to the module’s
output as the SE layer does.

For the spatial interaction, we also adopt a simple de-
sign, which consists of two 1 × 1 convolution layers with
followed BN [23] and GELU [18]. The detailed design is
presented in Figure 2. These two layers reduce the num-
ber of channels to one. At last, a sigmoid layer is used to
generate the spatial attention map. Same as we did in the
channel interaction, the spatial attention is generated by an-
other branch, where the local-window self-attention module
is applied. It has a larger kernel size (7× 7) than the depth-
wise 3×3 convolution and focuses on the spatial dimension,
which provides strong spatial clues for the depth-wise con-
volution branch.

The Mixing Block. Thanks to the above two designs, we
mitigate two core issues in local-window self-attention. We

integrate them to build a new transformer block, Mixing
Block, upon the standard window attention block. As
shown in Figure 1, the Mixing Block consists of two ef-
ficient operations in a parallel design, bi-directional in-
teractions (Figure 2), and an FFN (Feed-Forward Net-
works) [38]. It can be formulated as follow:

X̂ l+1 = MIX(LN(X l),W-MSA,CONV) +X l, (1)

X l+1 = FFN(LN(X̂ l+1)) + X̂ l+1 (2)

Where MIX represents a function that achieves feature mix-
ing between the W-MSA (Window-based Multi-Head Self-
Attention) branch and the CONV (Depth-wise Convolution)
branch. The MIX function first projects the input feature to
parallel branches by two linear projection layers and two
norm layers. Then it mixes the features by following the
steps shown in Figure 1 and Figure 2. For FFN, we keep it
simple and follow previous works [30,36], which is an MLP
that consists of two linear layers with one GELU [18] be-
tween them. Moreover, we also try to add depth-wise con-
volution as done in PVTv2 [40] and HRFormer [53], which
does not give many improvements over the MLP design (Ta-
ble 9). Thus, to keep the block simple, we use MLP in FFN.

3.2. MixFormer

Overall Architecture. Based on the obtained block, we
design an efficient and general-purpose vision transformer,
MixFormer, with pyramid feature maps. There are four
stages with downsampling rates of {4, 8, 16, 32} respec-
tively. MixFormer is a hybrid vision transformer, which
uses convolution layers in both stem layers and downsam-
pling layers. Besides, we introduce a projection layer in the
tail of the stages. The projection layer increases the fea-
ture’s channels to 1280 with a linear layer followed by an
activation layer, aiming to preserve more details in the chan-
nel before the classification head. It gives a higher perfor-
mance in classification, especially works well with smaller
models. Same design can be found in previous efficient net-
works, such as MobileNets [19, 33] and EfficeintNets [35].
The sketch of our MixFormer is given in Figure 3.

5252



Models #Channels #Blocks #Heads
MixFormer-B1 C = 32 [1, 2, 6, 6] [2, 4, 8, 16]

MixFormer-B2 C = 32 [2, 2, 8, 8] [2, 4, 8, 16]

MixFormer-B3 C = 48 [2, 2, 8, 6] [3, 6, 12, 24]

MixFormer-B4 C = 64 [2, 2, 8, 8] [4, 8, 16, 32]

Table 2. Architecture Variants. Detailed configurations of archi-
tecture variants of MixFormer.

Architecture Variants. We stack the blocks in each stage
manually and format several models in different sizes,
whose computational complexities ranges from 0.7G (B1)
to 3.6G (B4). The number of blocks in different stages is
set by following a recipe: putting more blocks in the last
two stages, which is roughly verified in Table 10. As shown
in Table 2, we present the detailed settings of the models.

4. Experiments
We validate MixFormer on ImageNet-1K [8], MS

COCO [29], and ADE20k [55]. We first present the accu-
racy on image classification. Then we do transfer learning
to evaluate the models on three main tasks: object detection,
instance segmentation, and semantic segmentation. Be-
sides, ablations of different design modules in MixFormer
and results with more vision tasks are provided.

4.1. Image Classification

Setup. We first verify our method by classification on
ImageNet-1K [8]. To make a fair comparison with previ-
ous works [30, 36, 41], we train all models for 300 epochs
with an image size of 224×224 and report Top-1 validation
accuracy. We apply an AdamW optimizer using a cosine
decay schedule. By following the rule that smaller models
need less regularization, we adjust the training settings gen-
tly when training models in different sizes. Details are in
Appendix.

Results. Table 3 compares our MixFormer with efficient
ConvNets [32, 35] and various Vision Transformers [22,
27, 30, 36, 41, 45, 49]. MixFormer performs on par with
EfficientNet [35] and outperforms RegNet [32] by signif-
icant margins under various computational budgets (from
B1 to B4). We note that it is nontrivial to achieve such
results for vision transformer-based models, especially on
small models (FLOPs < 1.0G ). Previous works such as
DeiT [36] and PVT [41] show dramatic performance drops
when reducing model complexities (−7.7% from DeiT-S to
DeiT-T and −4.7% from PVT-S to PVT-T). Compared with
Swin Transformer [30] and its variants [22, 27, 49], Mix-
Former shows better performance with less computational
costs. In detail, MixFormer-B4 achieves 83.0% Top-1 accu-
racy with only 3.6G FLOPs. It outperforms Swin-T [30] by
1.7% while saving 20% computational costs and gives com-
parable results with Swin-S [30] but being 2.4× efficient.

Method #Params FLOPs Top-1

ConvNets

RegNetY-0.8G [32] 6M 0.8G 76.3
RegNetY-1.6G [32] 11M 1.6G 78.0
RegNetY-4G [32] 21M 4.0G 80.0
RegNetY-8G [32] 39M 8.0G 81.7

EffNet-B1 [35] 8M 0.7G 79.1
EffNet-B2 [35] 9M 1.0G 80.1
EffNet-B3 [35] 12M 1.8G 81.6
EffNet-B4 [35] 19M 4.2G 82.9

Vision Transformers
DeiT-T [36] 6M 1.3G 72.2
DeiT-S [36] 22M 4.6G 79.9
DeiT-B [36] 87M 17.5G 81.8
PVT-T [41] 13M 1.8G 75.1
PVT-S [41] 25M 3.8G 79.8
PVT-M [41] 44M 6.7G 81.2
PVT-L [41] 61M 9.8G 81.7
CvT-13 [45] 20M 4.5G 81.6
CvT-21 [45] 32M 7.1G 82.5
TwinsP-S [6] 24M 3.8G 81.2

DS-Net-S [31] 23M 3.5G 82.3
Swin-T [30] 29M 4.5G 81.3
Swin-S [30] 50M 8.7G 83.0
Twins-S [6] 24M 2.9G 81.7
LG-T [27] 33M 4.8G 82.1

Focal-T [49] 29M 4.9G 82.2
Shuffle-T [22] 29M 4.6G 82.5

MixFormer-B1 (Ours) 8M 0.7G 78.9
MixFormer-B2 (Ours) 10M 0.9G 80.0
MixFormer-B3 (Ours) 17M 1.9G 81.7
MixFormer-B4 (Ours) 35M 3.6G 83.0

Table 3. Classification accuracy on the ImageNet validation
set. Performances are measured with a single 224 × 224 crop.
“Params” refers to the number of parameters. “FLOPs” is calcu-
lated under the input scale of 224× 224.

The competitive advantage of MixFormer maintains when
it comes to LG-Transformer [27], Focal Transformer [49]
and Shuffle Transformer [22]. Moreover, our MixFormer
also scales well to smaller and larger models. More results
are provided in Appendix.

4.2. Object Detection and Instance Segmentation

Setup. We validate the effectiveness of MixFormer on
downstream tasks. We train Mask R-CNN [16] on the
COCO2017 train split and evaluate the models on the val
split. Two training schedules (1× and 3×) are adopted to
show a consistent comparison with previous methods [17,
27, 30, 36, 49]. For the 1× schedule, we train for 12
epochs with a single size (resizing the shorter side to 800
while keeping its longer side no more than 1333) [16].
While in 3× schedule (36 epochs), we use multi-scale train-
ing by randomly resizing the shorter side to the range of
[480, 800] (See Appendix for more details). Expect for
Mask R-CNN [16], we also provide comparisons with pre-
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Backbones #Params FLOPs Mask R-CNN 1x schedule Mask R-CNN 3x + MS schedule

AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 APm APm
50 APm

75

ResNet18 [17] 31M - 34.0 54.0 36.7 31.2 51.0 32.7 36.9 57.1 40.0 33.6 53.9 35.7
ResNet50 [17] 44M 260G 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1

ResNet101 [17] 63M 336G 40.4 61.1 44.2 36.4 57.7 38.8 42.8 63.2 47.1 38.5 60.1 41.3
ResNeXt101-64×4d [47] 101M 493G 42.8 63.8 47.3 38.4 60.6 41.3 44.4 64.9 48.8 39.7 61.9 42.6

PVT-T [41] 33M - 36.7 59.2 39.3 35.1 56.7 37.3 39.8 62.2 43.0 37.4 59.3 39.9
PVT-S [41] 44M 245G 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
PVT-M [41] 64M 302G 42.0 64.4 45.6 39.0 61.6 42.1 44.2 66.0 48.2 40.5 63.1 43.5
PVT-L [41] 81M 364G 42.9 65.0 46.6 39.5 61.9 42.5 44.5 66.0 48.3 40.7 63.4 43.7

TwinsP-S [6] 44M 245G 42.9 65.8 47.1 40.0 62.7 42.9 46.8 69.3 51.8 42.6 66.3 46.0
DS-Net-S [31] 43M - 44.3 - - 40.2 - - - - - - - -
Swin-T [30] 48M 264G 42.2 64.6 46.2 39.1 61.6 42.0 46.0 68.2 50.2 41.6 65.1 44.8
Twins-S [6] 44M 228G 43.4 66.0 47.3 40.3 63.2 43.4 46.8 69.2 51.2 42.6 66.3 45.8
Focal-T [49] 49M 291G - - - - - - 47.2 69.4 51.9 42.7 66.5 45.9

Shuffle-T [22] 48M 268G - - - - - - 46.8 68.9 51.5 42.3 66.0 45.6
MixFormer-B1(Ours) 26M 183G 40.6 62.6 44.1 37.5 59.7 40.0 43.9 65.6 48.1 40.0 62.9 42.9
MixFormer-B2(Ours) 28M 187G 41.5 63.3 45.2 38.3 60.6 41.2 45.1 66.9 49.2 40.8 64.1 43.6
MixFormer-B3(Ours) 35M 207G 42.8 64.5 46.7 39.3 61.8 42.2 46.2 68.1 50.5 41.9 65.6 45.0
MixFormer-B4(Ours) 53M 243G 45.1 67.1 49.2 41.2 64.3 44.1 47.6 69.5 52.2 43.0 66.7 46.4

Table 4. COCO detection and segmentation with the Mask R-CNN. The performances are reported on the COCO val split under 1×
and 3× schedules. The FLOPs (G) are measured at resolution 800× 1280, and all models are pre-trained on the ImageNet-1K [8]. In the
table, ’-’ means that the result is not reported by the original paper.

Backbones #Params FLOPs AP b AP b
50 AP b

75 APm APm
50 APm

75

ResNet50 [17] 82M 739G 46.3 64.3 50.5 40.1 61.7 43.4
Swin-T [30] 86M 745G 50.5 69.3 54.9 43.7 66.6 47.1

Shuffle-T [22] 86M 746G 50.8 69.6 55.1 44.1 66.9 48.0
MixFormer-B4(Ours) 91M 721G 51.6 70.5 56.1 44.9 67.9 48.7

Table 5. COCO detection and segmentation with the Cascade
Mask R-CNN. The performances are reported on the COCO val
split under a 3× schedule. Results show consistent improvements
of MixFormer over Swin Transformer.

Backbone Method #Params FLOPs mIoUss mIoUms

ResNet-101 [17] DANet [11] 69M 1119G 43.6 45.2
ResNet-101 [17] DLab.v3+ [5] 63M 1021G 45.1 46.7
ResNet-101 [17] ACNet [12] - - 45.9 -
ResNet-101 [17] DNL [50] 69M 1249G 46.0 -
ResNet-101 [17] OCRNet [52] 56M 923G - 45.3
ResNet-101 [17] UperNet [46] 86M 1029G 43.8 44.9
HRNet-w48 [39] OCRNet [52] 71M 664G - 45.7

DeiT-S [36]† UperNet [46] 52M 1099G 44.0 -
TwinsP-S [6] UperNet [46] 55M 919G 46.2 47.5
Swin-T [30] UperNet [46] 60M 945G 44.5 45.8
Twins-S [6] UperNet [46] 54M 901G 46.2 47.1
LG-T [27] UperNet [46] 64M 957G - 45.3

Focal-T [49] UperNet [46] 62M 998G 45.8 47.0
Shuffle-T [22] UperNet [46] 60M 949G 46.6 47.6

MixFormer-B1(Ours) UperNet [46] 35M 854G 42.0 43.5
MixFormer-B2(Ours) UperNet [46] 37M 859G 43.1 43.9
MixFormer-B3(Ours) UperNet [46] 44M 880G 44.5 45.5
MixFormer-B4(Ours) UperNet [46] 63M 918G 46.8 48.0

Table 6. ADE20K semantic segmentation. We report mIoU on
the ADE20K [55] val split with single scale (ss) testing and multi-
scale (ms) testing . A resolution 512 × 2048 is used to measure
the FLOPs (G) in various models.

vious works based on a stronger model, Cascade Mask R-
CNN [3, 16], where a 3× schedule is conducted.

Comparison on Mask R-CNN. Table 4 shows that Mix-
Former consistently outperforms other competitors [17,
27, 30, 41, 45, 49] under various model sizes with Mask
R-CNN [16]. In particular, MixFormer-B4 achieves
+2.92.92.9(+1.61.61.6) higher box mAP and +2.12.12.1(+1.41.41.4) higher mask
mAP than the Swin-T [30] baseline with 1× (3×) schedule.
Moreover, MixFormer keeps its efficiency in detection and
instance segmentation, enabling higher performance with
less computational costs than other networks [17,30]. It is a
surprise that our MixFormer-B1 (only with 0.7G) performs
strongly with Mask R-CNN (1×), which exceeds ResNet-
50 (with 4.1G) [17] by 2.3 box mAP and 2.9 mask mAP.
The results suggest that implications for designing high-
performance small models on detection are highlighted in
MixFormer.

Comparison on Cascade Mask R-CNN. We also evaluate
MixFormer with Cascade Mask R-CNN [3, 16], which is
a stronger variant of Mask R-CNN [16]. MixFormer-B4
provides robust improvements over Swin-T [30] (Table 5)
regardless of different detectors, as it shows similar gains
(+1.1/1.2 box/mask mAP v.s. +1.6/1.4 box/mask mAP) with
the ones on Mask R-CNN (3×) (Table 4).

4.3. Semantic Segmentation

Setup. Our experiments are conducted on ADE20K [55]
using UperNet [46]. For training recipes, we mainly follow
the settings in [30]. We report mIoU of our models in single
scale testing (ss) and multi-scale testing (ms). Details are
provided in Appendix.

Results. In Table 6, MixFormer-B4 consistently achieves
better mIoU performance than previous networks. It seems
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Parallel
Interactions ImageNet COCO ADE20k

Channel Spatial Top-1 Top-5 APbox APmask mIoU
77.4 93.8 38.2 35.7 38.9

✓ 78.1 94.1 39.4 36.6 39.8
✓ ✓ 78.3 94.1 40.1 37.1 40.6
✓ ✓ 78.3 94.1 39.7 36.6 40.5
✓ ✓ ✓ 78.4 94.3 40.3 37.3 40.9

∆ +1.0 +0.5 +2.1 +1.6 +2.0

Table 7. Parallel Design with Bi-directional Interactions. The
baseline model in this table adopts a successive design and has no
interactions in the block.

Window Sizes
ImageNet COCO ADE20k

Top-1 Top-5 APbox APmask mIoU
1× 1 77.1 93.6 36.3 34.3 37.6
3× 33× 33× 3 78.4 94.3 40.3 37.3 40.9
5× 5 78.4 94.3 40.3 37.2 40.8

Table 8. Window Sizes in DwConv. We investigate various win-
dow sizes for DwConv. MixFormer uses the 3 × 3 window size
for DwConv by default.

that the connections across windows and dimensions in the
Mixing Block provide more benefits on semantic segmenta-
tion as the gains are larger than the ones on detection tasks
(Table 4,Table 5) with the same backbones. In particular,
MixFormer-B4 outperforms Swin-T [30] by 2.22.22.2 mIoU.

Moreover, other variants of MixFormer (from B1 to B3)
also achieve higher performance while being more effi-
cient than previous networks. Notably, MixFormer-B3 ob-
tains 45.5 mIoU (comparable with Swin-T [30] but less
FLOPs), which achieves on par results with OCRNet [52]
with HRNet-W48 [39] (45.7 mIoU). Note that HRNet [39]
is carefully designed to aggregate the features in different
stages, while MixFormer simply constructs pyramid feature
maps, indicating the strong potential for further improve-
ments on dense prediction tasks.

4.4. Ablation Study

Setup. We provide ablations with respect to our designs
on MixFormer-B1. We report all variations of different
designs on ImageNet-1K [8] classification, COCO [29]
detection and segmentation, and ADE20K [55] semantic
segmentation. To make quick evaluations, we only train
MixFormer-B1 for 200 epochs on ImageNet-1K [8]. Then,
the pre-trained models are adopted by Mask R-CNN [16]
(1×) on MS COCO [29] and UperNet [46] (160k) on
ADE20K [55]. Note that, the differences in pre-train mod-
els provide slightly different results with the ones in Table 4
and Table 6.

Ablation: Parallel or Not. Table 7 provides the compar-
ison of the ways (successive design or parallel design) to
combine local-window self-attention and depth-wise con-
volution. Our parallel design consistently outperforms the

Techniques
ImageNet COCO ADE20k

Top-1 Top-5 APbox APmask mIoU
MixFormer-B1(Ours) 78.4 94.3 40.3 37.3 40.9

+shifted windows 78.3 94.1 40.5 37.3 40.7
+DwConv in FFN 78.6 94.4 40.5 37.4 40.9

Table 9. Other Techniques. We combine two techniques with our
MixFormer. When inserting DwConv in FFN, we only consider
3× 3 DwConv.

#Blocks
FLOPs

ImageNet COCO ADE20k
#Channels Top-1Top-5 APbox APmask mIoU
[2, 2, 8, 2]

0.9G 77.7 93.9 40.1 37.3 40.6
[32, 64, 160, 256]

[2, 2, 6, 4]
0.9G 77.5 93.7 39.6 36.7 39.8

[32, 64, 128, 256]

[1, 2, 6, 2]
0.8G 77.2 93.5 39.3 36.6 40.4

[32, 64, 160, 320]

[1, 2, 6, 6]
0.7G0.7G0.7G 78.4 94.3 40.3 37.3 40.9

[32, 64, 128, 256]

Table 10. Number of Blocks in Stages. In the table, the first
two models and the last two models share similar computational
complexities with each other.

successive design across various vision tasks, which verifies
the hypothesis that the parallel design enables better feature
representation learning in Section 1. The models below use
parallel design by default.

Ablation: Bi-directional Interactions. Table 7 shows the
results of the proposed interactions. According to the re-
sults, we see that both channel and spatial interactions out-
perform the model without interactions across all different
vision tasks. Combining two interactions promotes better
performance, resulting in consistent improvements by 0.3%
Top-1 accuracy on ImageNet-1K, 0.9/0.7 box/mask mAP
on COCO, and 1.1 mIoU on ADE20K. Given that we only
use simple and light-weighted designs for bi-directional
interactions, the gains are nontrivial, which indicates the
effectiveness of providing complementary clues for local-
window self-attention and depth-wise convolution.

Ablation: Window Sizes in DwConv. Table 8 shows that
the performance will drop significantly on various vision
tasks (−1.3 Top-1 accuracy on ImageNet-1K, −4.0/ − 3.0
box/mask mAP on COCO, and −3.3 mIoU on ADE20K) if
we reduce the window size of the depth-wise convolution
from 3× 3 to 1× 1. This phenomenon means that it’s nec-
essary for depth-wise convolution to use a window size (at
least 3× 3) with the ability to connect across-window. Be-
sides, when we increase the window size to 5 × 5, no clear
further gains are observed. Thus, we use a window size of
3× 3 regarding the efficiency.

Ablation: Other Techniques. We also investigate other
designs in MixFormer, including applying shifted windows
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Backbones
COCO keypoint detection

APkp APkp
50 APkp

75

ResNet50 [17] 71.8 94.9 49.2
Swin-T [30] 74.2 92.5 82.5

HRFormer-S [30] 74.5 92.3 82.1
MixFormer-B4(Ours) 75.3 (+1.1) 93.5 (+1.0) 83.5 (+1.0)

Backbones
LVIS Instance Segmentation

APmask APmask
50 APmask

75

ResNet50 [17] 21.7 34.3 23.0
Swin-T [30] 27.6 43.0 29.3

MixFormer-B4(Ours) 28.6 (+1.0) 43.4 (+0.4) 30.5 (+1.2)

Table 11. More Downstream Tasks. We compare our MixFormer
with ResNet50 [17] and Swin Transformer [30] on keypoint detec-
tion and long-tail instance segmentation.

and inserting 3 × 3 depth-wise convolution in FFN, which
play significant roles in previous works [30, 53]. As pre-
sented in Table 9, shifted window fails to provide gains over
MixFormer. We hypothesize that the depth-wise convolu-
tion builds connections among windows, removing the need
for shift operation. Besides, although inserting 3× 3 depth-
wise convolution in FFN can provide further gains, the
room for improvements is limited with MixFormer. Thus,
we use MLP in FFN by default.

Ablation: Number of Blocks in Stages. Previous works
usually put more blocks in the third stage and greatly in-
crease the number of blocks in that stage when scaling mod-
els [17,30,41]. We show an alternative way that can achieve
the goal. We roughly conduct experiments on the way of
stacking blocks. In Table 10, we achieve slightly higher
performance on various vision tasks under less computa-
tional complexities by putting more blocks in both the last
two stages. We follow this recipe to build our MixFormer.

4.5. Generalization

More Downstream Tasks. In Table 11, we conduct exper-
iments on two more downstream tasks: keypoint detection
and long-tail instance segmentation. Detailed experimental
settings are provided in Appendix.

COCO keypoint Detection: In Table 11, MixFormer-B4
outperforms baseline models [17,30] by significant margins
in all metrics. Moreover, MixFormer also shows clear ad-
vantages compared with HRFormer [53], which is specifi-
cally designed for dense prediction tasks.

LVIS 1.0 Instance Segmentation: This task has ∼ 1000
long-tailed distribution categories, which relies on the dis-
criminative feature learned by the backbone. Results in Ta-
ble 11 show that MixFormer outperforms the Swin-T [30]
by 1.0 APmask, which demonstrates the robustness of the
learned representation in MixFormer.

Summary: Considering the promising results given by
MixFormer in previous tasks: object detection, instance
segmentation, and semantic segmentation, MixFomer can

Models FLOPs Top-1 Top-5
ResNet50 [36] 4.1G 78.4 -
ResNet50 [43] 4.1G 79.8 -

ResNet50∗ 4.1G 79.0 94.3
ResNet50 + Mixing Block 3.9G 80.6 (+1.6) 95.1 (+0.8)

MobileNetV2 [33] 0.3G 72.0 -
MobileNetV2∗ 0.3G 71.7 90.3

MobileNetV2+SE+Non-Local∗ 0.3G 72.5 91.0
MobileNetV2 + Mixing Block 0.3G 73.6 (+1.9) 91.6 (+1.3)

Table 12. Apply Mixing Block to ConvNets on ImageNet-1K.
We introduce our Mixing Block to typical ConvNets, ResNet [17]
and MobileNetV2 [33]. As different training recipes give variant
accuracy [43], we also train ResNet50 [17] and MobileNetV2 [33]
with the same setting as ours, denoted with ∗ in the Table.

serve as a general-purpose backbone and outperform its al-
ternatives in 5 dense prediction tasks.

Apply Mixing Block to ConvNets. We apply our Mix-
ing Block to typical ConvNets, ResNet50 [17] and Mo-
bileNetV2 [33]. Following [34], we replace all the blocks in
the last stage with our Mixing Block in ConvNets. To make
a fair comparison, we adjust the number of blocks to main-
tain the overall computational cost. Table 12 shows that
the Mixing Block can provide gains on ConvNets [17, 33]
as a alternative to ConvNet blocks. Specifically, Mixing
Block brings 1.9% and 1.6% Top-1 accuracy on ImageNet-
1K [8] over MobileNetV2 [33] and ResNet50 [17]. More-
over, we also provide the result of MobileNetV2 [33] with
SE layer [21] and Non-Local [42] in Table 12. It gives in-
feriror performance than our mixing block.

5. Conclusion
In this paper, we propose MixFormer as an efficient

general-purpose vision transformer. Addressing issues in
Window-based Vision Transformer, we seek to alleviate
limited receptive fields and weak modeling capability on
the channel dimension. Our MixFormer enlarges recep-
tive fields efficiently without shifting or shuffling win-
dows, thanks to a parallel design coupling local window
and depth-wise convolution. The bi-directional interactions
boost modeling ability in the channel and spatial dimension
for local-window self-attention and depth-wise convolution,
respectively. Extensive experiments show that MixFormer
outperforms its alternatives on image classification and var-
ious downstream vision tasks. We expect the designs in
MixFormer to serve as a base setup for designing efficient
networks.
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strikes back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476, 2021. 8

[44] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 2, 3

[45] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introduc-
ing convolutions to vision transformers. arXiv preprint
arXiv:2103.15808, 2021. 2, 5, 6

[46] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 418–434, 2018. 2, 6, 7

[47] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 2, 6

[48] Haotian Yan, Zhe Li, Weijian Li, Changhu Wang, Ming
Wu, and Chuang Zhang. Contnet: Why not use convo-
lution and transformer at the same time? arXiv preprint
arXiv:2104.13497, 2021. 2

[49] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai,
Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal self-attention
for local-global interactions in vision transformers. arXiv
preprint arXiv:2107.00641, 2021. 1, 2, 3, 5, 6

[50] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang,
Stephen Lin, and Han Hu. Disentangled non-local neural net-
works. In European Conference on Computer Vision, pages
191–207. Springer, 2020. 6

[51] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zihang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers
from scratch on imagenet. arXiv preprint arXiv:2101.11986,
2021. 2

[52] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16,
pages 173–190. Springer, 2020. 6, 7

[53] Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao
Zhang, Xilin Chen, and Jingdong Wang. Hrformer: High-
resolution transformer for dense prediction. Advances in

5258



Neural Information Processing Systems, 2021. 1, 2, 3, 4,
8

[54] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Explor-
ing self-attention for image recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10076–10085, 2020. 3

[55] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 127(3):302–321, 2019. 2, 5, 6,
7

[56] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xi-
aochen Lian, Zihang Jiang, Qibin Hou, and Jiashi Feng.
Deepvit: Towards deeper vision transformer. arXiv preprint
arXiv:2103.11886, 2021. 2

5259


