This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Projective Manifold Gradient Layer for Deep Rotation Regression

Jiayi Chen!?  Yingda Yin' Tolga Birdal**
ICFCS, Peking University
3Stanford University

Abstract

Regressing rotations on SO(3) manifold using deep neu-
ral networks is an important yet unsolved problem. The
gap between the Euclidean network output space and the
non-Euclidean SO(3) manifold imposes a severe challenge
for neural network learning in both forward and back-
ward passes. While several works have proposed differ-
ent regression-friendly rotation representations, very few
works have been devoted to improving the gradient back-
propagating in the backward pass. In this paper, we pro-
pose a manifold-aware gradient that directly backpropa-
gates into deep network weights. Leveraging Riemannian
optimization to construct a novel projective gradient, our
proposed regularized projective manifold gradient (RPMG)
method helps networks achieve new state-of-the-art perfor-
mance in a variety of rotation estimation tasks. Our pro-
posed gradient layer can also be applied to other smooth
manifolds such as the unit sphere. Our project page is at
https://jychenl8.github.io/RPMG.

1. Introduction

Estimating rotations is a crucial problem in visual per-
ception that has broad applications, e.g., in object pose esti-
mation, robot control, camera relocalization, 3D reconstruc-
tion and visual odometry [8, 12, 15,21, 34]. Recently, with
the proliferation of deep neural networks, learning to ac-
curately regress rotations is attracting more and more atten-
tion. However, the non-Euclidean characteristics of rotation
space make accurately regressing rotation very challenging.

As we know, rotations reside in a non-Euclidean man-
ifold, SO(3) group, whereas the unconstrained outputs of
neural networks usually live in Euclidean spaces. This gap
between the neural network output space and SO(3) man-
ifold becomes a major challenge for deep rotation regres-
sion, thus tackling this gap becomes an important research
topic. One popular research direction is to design learning-
friendly rotation representations, e.g., 6D continuous rep-
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resentation from [42] and 10D symmetric matrix represen-
tation from [26]. Recently, Levinson et al. [24] adopted
the vanilla 9D matrix representation discovering that simply
replacing the Gram-Schmidt process in the 6D representa-
tion [42] with symmetric SVD-based orthogonalization can
make this representation superior to the others.

Despite the progress on discovering better rotation rep-
resentations, the gap between a Euclidean network output
space and the non-Euclidean SO(3) manifold hasn’t been
completely filled. One important yet long-neglected prob-
lem lies in optimization on non-Euclidean manifolds [1]: to
optimize on SO(3) manifold, the optimization variable is
a rotation matrix, which contains nine matrix elements; if
we naively use Euclidean gradient, which simply computes
the partial derivatives with respect to each of the nine ma-
trix elements, to update the variable, this optimization step
will usually lead to a new matrix off SO(3) manifold. Un-
fortunately, we observe that all the existing works on rota-
tion regression simply rely upon vanilla auto-differentiation
for backpropagation, exactly computing Euclidean gradient
and performing such off-manifold updates to predicted ro-
tations. We argue that, for training deep rotation regression
networks, the off-manifold components will lead to noise in
the gradient of neural network weights, hindering network
training and convergence.

To tackle this issue, we draw inspiration from differen-
tial geometry, where people leverage Riemannian optimiza-
tion to optimize on the non-Euclidean manifold, which finds
the direction of the steepest geodesic path on the manifold
and take an on-manifold step. We thus propose to lever-
age Riemannian optimization and delve deep into the study
of the backward pass. Note that this is a fundamental yet
currently under-explored avenue, given that most of the ex-
isting works focus on a holistic design of rotation regres-
sion that is agnostic to forward/backward pass. However,
incorporating Riemannian optimization into network train-
ing is highly non-trivial and challenging. Although meth-
ods of Riemannian optimization allow for optimization on
SO(3) [5,29], matrix manifolds [1] or general Riemannian
manifolds [32,40], they are not directly applicable to update
the weights of the neural networks that are Euclidean. Also,
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approaches like [16] incorporate a Riemannian distance as
well as its gradient into network training, however, they do
not deal with the representation issue.

In this work, we want to propose a better manifold-
aware gradient in the backward pass of rotation regression
that directly updates the neural network weights. We begin
by taking a Riemannian optimization step and computing
the difference between the rotation prediction and the up-
dated rotation, which is closer to the ground truth. Back-
propagating this “error”, we encounter the mapping func-
tion (or orthogonalization function) that transforms the raw
network output to a valid rotation. This projection, which
can be the Gram-Schmidt process or SVD orthogonaliza-
tion [24], is typically a many-to-one mapping. This non-
bijectivity provides us with a new design space for our gra-
dient: if we were to use a gradient to update the raw output
rotation, many gradients would result in the same update in
the final output rotation despite being completely different
for backpropagating into the neural network weights. Now
the problem becomes: which gradient is the best for back-
propagation when many of them correspond to the same up-
date to the output?

We observe that this problem is somewhat similar to
some problems with ambiguities or multi-ground-truth is-
sues. One example would be the symmetry issue in pose
estimation: a symmetric object, e.g. a textureless cube, ap-
pears the same under many different poses, which needs
to be considered when supervising the pose predictions.
For supervising the learning in such a problem, Wang et.
al. [36] proposed to use min-of-N loss [13], which only pe-
nalizes the smallest error between the prediction and all the
possible ground truths. We therefore propose to find the gra-
dient with the smallest norm that can update the final output
rotation to the goal rotation. This back-projection process
involves finding an element closest to the network output in
the inverse image of the goal rotation and projecting the net-
work output to this inverse image space. We therefore coin
our gradient projective manifold gradient. One thing to note
is that this projective gradient tends to shorten the network
output, causing the norms of network output to vanish. To
fix this problem, we further incorporate a simple regular-
ization into the gradient, leading to our full solution regu-
larized projective manifold gradient (RPMG).

Note that our proposed gradient layer operates on the raw
network output and can be directly backpropagated into the
network weights. Our method is very general and is not tied
to a specific rotation representation. It can be coupled with
different non-Euclidean rotation representations, including
quaternion, 6D representation [42], and 9D rotation matrix
representation [24], and can even be used for regressing
other non-manifold variables.

We evaluate our devised projective manifold gradi-
ent layers on a diverse set of problems involving rota-

tion regression: 3D object pose estimation from 3D point
clouds/images, rotation estimation problems without using
ground truth rotation supervisions, and please see supple-
mentary material Section 5 for more experiments on cam-
era relocalization. Our method demonstrates significant and
consistent improvements on all these tasks and all different
rotation representations tested. Going beyond rotation esti-
mation, we also demonstrate performance improvements on
regressing unit vectors (lie on a unit sphere) as an example
of an extension to other non-Euclidean manifolds.
We summarize our contribution as below:

* We propose a novel manifold-aware gradient layer,
namely RPMG, for the backward pass of rotation re-
gression, which can be applied to different rotation
representations and losses and used as a “plug-in” at
no actual cost.

* Our extensive experiments over different tasks and ro-
tation representations demonstrate the significant im-
provements from using RPMG.

e Our method can also benefit regression tasks on other
manifolds, e.g. S2.

2. Related Work

Both rotation parameterization and optimization on
SO(3) are well-studied topics. Early deep learning mod-
els leverage various rotation representations for pose esti-

mation, e.g., direction cosine matrix (DCM) [18, 39], axis-
angle [11, 14,33], quaternion [10,20,22,38,41] and Euler-
angle [23,28,31]. Recently, [42] points out that Euler-angle,

axis-angle, and quaternion are not continuous rotation rep-
resentations, since their representation spaces are not home-
omorphic to SO(3). As better representations for rotation
regression, 6D [42], 9D [24], 10D [26] representations are
proposed to resolve the discontinuity issue and improve
the regression accuracy. A concurrent work [7] examines
different manifold mappings theoretically and experimen-
tally, finding out that SVD orthogonalization performs the
best when regressing arbitrary rotations. Originating from
general Riemannian optimization, [29] presents an easy ap-
proach for minimization on the SO(3) group by construct-
ing a local axis-angle parameterization, which is also the
tangent space of SO(3) manifold. They backpropagate gra-
dient to the tangent space and use the exponential map to
update the current rotation matrix. Most recently, [30] con-
structs a PyTorch library that supports tangent space gra-
dient backpropagation for 3D transformation groups, (e.g.,
SO(3), SE(3), Sim(3)). This proposed library can be used
to implement the Riemannian gradient in our layer.

3. Preliminaries
3.1. Riemannian Geometry

Following [3, 4], we define an m-dimensional Rieman-
nian manifold embedded in an ambient Euclidean space
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X = R? and endowed with a Riemannian metric G =
(Gx)xem to be a smooth curved space (M, G). A vec-
tor v € X is said to be tangent to M at x iff there ex-
ists a smooth curve v : [0,1] — M st. (0) = x
and 4(0) = v. The velocities of all such curves through
x form the tangent space TxM = {%(0)|y : R
M is smooth around 0 and v(0) = x}.

Definition 1 (Riemannian gradient). For a smooth function
f: M= RandV(x,v) € TM, we define the Riemannian
gradient of f as the unique vector field grad f satisfying [0]:

Df(x)[v] = (v, gradf(x))x (1)
where D f(x)[v] is the derivation of f by v. It can further
be shown (see supplementary material Section 2.1) that an
expression for gradf can be obtained through the projec-
tion of the Euclidean gradient orthogonally onto the tangent
space

gradf(x) = Vf(x)) = Ix (Vf(x)). )
where Iy : X — TxM C X is an orthogonal projector
with respect to (-, ).

Definition 2 (Riemannian optimization). We consider gra-
dient descent to solve the problems of minye v f(x). Fora
local minimizer or a stationary point x* of f, the Rieman-
nian gradient vanishes grad f(x*) = 0 enabling a simple
algorithm, Riemannian gradient descent (RGD):

Xi+1 = Ry, (—7r grad f(xx)) 3)

where Ty, is the step size at iteration k and Ry, is the retrac-
tion usually chosen related to the exponential map.

3.2. Rotation Representations

There are many ways of representing a rotation: clas-
sic rotation representations, e.g. Euler angles, axis-angle,
and quaternion; and recently introduced regression-friendly
rotation representations such as e.g. 5D [42], 6D [42],
9D [24] and 10D [26] representations. A majority of deep
neural networks can output an unconstrained, arbitrary n-
dimensional vector x in a Euclidean space X = R". For
Euler angle and axis-angle representations which use a vec-
tor from R3 to represent a rotation, a neural network can
simply output a 3D vector; however, for quaternions, 6D,
9D or 10D representations that lies on non-Euclidean man-
ifolds, manifold mapping function 7 : R™ +— M is gener-
ally needed for normalization or orthogonalization purposes
to convert network outputs to valid elements belonging to
the representation manifold. This network Euclidean out-
put space X is where the representation manifolds reside
and therefore are also called ambient space.

Definition 3 (Rotation representation). One rotation repre-
sentation, which lies on a representation manifold M, de-
fines a surjective rotation mapping ¢ : X € M — ¢(X) €
SO(3) and a representation mapping function i : R €
SO(3) = ¥(R) € M, such that (1)) = R € SO(3).

Definition 4 (Manifold mapping function). From an ambi-
ent space X to the representation manifold M, we can de-
fine a manifold mapping function : x € X — w(x) € M,
which projects a point x in the ambient, Euclidean space to
a valid element X = w(x) on the manifold M.

We summarize the manifold mappings, the rotation
mappings and representation mappings for several non-
Euclidean rotation representations below.

Unit quaternion. Unit quaternions represent a rotation us-
ing a 4D unit vector g € S double covering the non-
Euclidean 3-sphere i.e. q and —q identify the same rotation.
A network with a final linear activation can only predict
x € R* The corresponding manifold mapping function
is usually chosen to be a normalization step, which reads
mq(x) = x/||x||. For rotation and representation mapping,
we leverage the standard mappings between rotation and
quaternion (see supplementary material Section 7).
6D representation and Gram-Schmidt orthogonaliza-
tion. 6D rotation representation [42], lying on Stiefel man-
ifold V5 (IR3), uses two orthogonal unit 3D vectors (€1, €2)
to represent a rotation, which are essentially the first two
columns of a rotation matrix. Its manifold mapping 7gp
is done through Gram-Schmidt orthogonalization. Its ro-
tation mapping ¢g¢p is done by adding the third column
C3 = €1 X Cg. Its representation mapping vgp is simply
getting rid of the third column ¢35 from a rotation matrix.
9D representation and SVD orthogonalization. To map
a raw 9D network output M to a rotation matrix, [24]
use SVD orthogonalization as the manifold mapping func-
tion mgp, as follows: mgp first decomposes M into its
left and right singular vectors {U, V T} and singular val-
ues ¥, M = UXVT: then it replaces ¥ with ¥/ =
diag(1,1,det(UV ")) and finally, computes R = UX'V "
to get the corresponding rotation matrix R € SO(3). As
this representation manifold is SO(3), both the rotation and
representation mapping functions are simply identity.
10D representation. [26] propose a novel 10D represen-
tation for rotation matrix. The manifold mapping function
mop maps 8 € R0 to q € S? by computing the eigen-
vector corresponding to the smallest eigenvalue of A(8),
expressed as T1op (X) = Hel}sns q' A(x)q, in which

q
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Since the representation manifold is 83, the rotation and
representation mapping are the same as unit quaternion.
3.3. Deep Rotation Regression

We conclude this section by describing the ordinary for-
ward and backward passes of a neural network based rota-
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Figure 1. Projective Manifold Gradient Layer. In the forward pass, the network predicts a raw output x, which is then transformed into
a valid rotation R = ¢(m(x)). We leave this forward pass unchanged and only modify the backward pass. In the backward pass, we first
use Riemannian optimization to get a goal rotation R, and map it back to %X, on the representation manifold M. After that we find the
element x4, which is closest to the raw output in the inverse image of X4, and finally get the gradient grpn We want.

tion regression, as used in [24,42].

Forward and backward passes. Assume, for a rotation
representation, the network predicts x € X, then the mani-
fold mapping 7 will map x to X = 7(x) € M, followed by
a rotation mapping ¢ that finally yields the output rotation
R = ¢(x) = ¢(m(x)). Our work only tackles the back-
ward pass and keeps the forward pass unchanged, as shown
in the top part of Figure 1. The gradient in the backward-
pass is simply computed using Pytorch autograd method,
thatis g = f'(R)¢' (x)7' (x).

Loss function. The most common choice for supervis-
ing rotation matrix is L2 loss, |R — Ry||% , as used by
[24,42]. This loss is equal to 4 —4 cos(< R, Ry >), where
< R, R, > represents the angle between R and R ;.

4. Method

Overview. In this work, we propose a projective manifold
gradient layer, without changing the forward pass of a given
rotation regressing network, as shown in Figure 1. Our fo-
cus is to find a better gradient g of the loss function £ with
respect to the network raw output x for backpropagation
into the network weights.

Let’s start with examining the gradient of network output
x in a general case — regression in Euclidean space. Given a
ground truth x4 and the L2 loss ||x — x4 |? that maximizes
the likelihood in the presence of Gaussian noise in x, the
gradient would be g = 2(x — x4¢).

In the case of rotation regression, we therefore propose
to find a proper x* € X for a given ground truth R, or a
computed goal rotation R, when the ground truth rotation
is not available, and then simply use x — x* as our gradient
to backpropagate into the network.

Note that finding such an x* can be challenging. Assum-
ing we know R, finding an x* involves inverting ¢ and 7
since the network output R = ¢(m(x)). Furthermore, we
may not know Ry under indirect rotation supervision (e.g.,

flow loss as used in PoseCNN [38]) and self-supervised ro-
tation estimation cases (e.g., 2D mask loss as used in [35]).

In this work, we introduce the following techniques to
mitigate these problems: (i) we first take a Riemannian gra-
dient to compute a goal rotation R, € SO(3), which does
not rely on knowing R, as explained in Section 4.1; (ii)
we then find the set of all possible x4s that can be mapped to
R, orin other words, the inverse image of R, under 7 and
@; (iii) we find x4, which is the element in this set closest
to x in the Euclidean metric and set it as “x*”. We will con-
struct our gradient using this x*, as explained in 4.2. (iv) we
add a regularization term to this gradient forming grpyra
as explained in 4.3. The whole backward pass leverag-
ing our proposed regularized projective manifold gradient
is shown in the lower half of Figure 1.

4.1. Riemannian Gradient and Goal Rotation

To handle rotation estimation with/without direct rota-
tion supervision, we first propose to compute the Rieman-
nian gradient of the loss function £ with respect to the out-
put rotation R and find a goal rotation R4 that is presum-
ably closer to the ground truth rotation than R.

Assume the loss function is in the following form
L(f(R)), where R = 7(¢(x)) is the output rotation
and f constructs a loss function that compares R to the
ground truth rotation Ry directly or indirectly. Given
R(x) and £(f(R(x))), we can perform one step of Rie-
mannian optimization yielding our goal rotation R, <
Rr(—7grad L(f(R))), where 7 is the step size of Rie-
mannian gradient and can be set to a constant as a hy-
perparameter or varying during the training. For L2 loss
R — Ry¢||%, the Riemannian gradient is always along the
geodesic path between R and R,; on SO(3) [19]. In this
case, R, can generally be seen as an intermediate goal be-
tween R and R, dependent on 7. Gradually increasing
7 from 0 will first make R, approach R starting with
R, = R, and then reach Ry; where we denote 7 = 74, and
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finally going beyond R.;. Although, when R; is available,
one can simply set Ry, = Ry, we argue that this is just a
special case under 7 = 74. For scenarios where Rg; is
unavailable, e.g., in self-supervised learning cases (see in
Section 5.3), we don’t know R; and 74, thus we need to
compute R, using Riemannian optimization. In the sequel,
we only use R, for explaining our methods without loss of
generality. See Section 4.3 for how to choose 7.

4.2. Projective Manifold Gradient

Given R,4, we can use the representation mapping v to
find the corresponding X, = ¥(R,) on the representation
manifold M. However, further inverting 7 and finding the
corresponding X, € X is a non-trivial problem, due to the
projective nature of 7. In fact, there are many x,s that sat-
isfy m(x4) = Xg4. It seems that we can construct a gradient
g = (x — x4) using any x, that satisfies 7(x4) = X,. No
matter which x, we choose, if this gradient were to update
x, it will result in the same R . But, when backpropagating
into the network, those gradients will update the network
weights differently, potentially resulting in different learn-
ing efficiency and network performance.

Formally, we formulate this problem as a multi-ground-
truth problem for x: we need to find the best x* to super-
vise from the inverse image of X, under the mapping w. We
note that similar problems have been seen in pose supervi-
sion dealing with symmetry as in [36], where one needs to
find one pose to supervise when there are many poses un-
der which the object appears the same. [36] proposed to use
a min-of-N strategy introduced by [13]: from all possible
poses, taking the pose that is closest to the network predic-
tion as ground truth. A similar strategy is also seen in su-
pervising quaternion regression, as q and —q stand for the
same rotation. One common choice of the loss function is
therefore min{£(q, qg:), £(q, —qg:)} [26], which penal-
izes the distance to the closest ground truth quaternion.

Inspired by these works, we propose to choose our gra-
dient among all the possible gradients with the lowest level
of redundancy, i.e., we require x* to be the one closest to
x, or in other words, the gradient to have the smallest norm,
meaning that we need to find the projection point x4, of x
to all the valid x4:

Xgp = argmin ||x — X4]|2 5)
W(xg):f‘y

We then can construct our projective manifold gradient
(PMG) as gppr = X — Xgp,. We will denote the naive gra-
dient gy = x — X4 as manifold gradient (MG).

Here we provide another perspective on why a network
may prefer PMG. In the case where a deep network is
trained using stochastic gradient descent (SGD), the final
gradient used to update the network weights is averaged
across the gradients of all the batch instances. If gradients

Xgp3 O Xgp2 X4 Xgp1 kx,

Figure 2. Illustration for regularized projective manifold gra-
dient. Left: In the forward pass, we simply project x to X by 7. In
the backward pass, first we compute a Riemannian gradient, which
is shown as the green arrow. After getting a next goal X, € M
by Riemannian optimization, we find the inverse projection x4, of
X4, which leads to our projective manifold gradient, shown as the
blue arrow. With a regularization term, we can get our final regu-
larized projective manifold gradient, as the purple arrow. Right:
Projection point X, in the case of quaternion.

from different batch instances contain different levels of re-
dundancy, then the averaged gradient may be biased or not
even appropriate. This argument is generally applicable to
all stochastic optimizers (e.g., Adam [2])

Inverting 7. There are many ways to solve this projection
problem for different manifold mapping functions 7. For
example, we can formulate this as a constrained optimiza-
tion problem. For the manifold mapping functions we con-
sider, we propose the following approach: we first solve for
the inverse image 7~ '(X,) of X, in the ambient space X
analytically, which reads 771 (%,) = {x, € X | m(x,) =
X4 }; we then project x onto this inverse image space. Note
that, sometimes only a superset of this inverse image can be
found analytically, requiring certain constraints on Xg,, to
be enforced.

Here we list the inverse image 7~ !(%,) and the projec-
tion point x,, for different rotation representations and their
corresponding manifold mapping 7. Please refer to supple-
mentary material Section 2.2 for detailed derivations.
Quaternion. With 7,(x) = x/||x||, x € R* and %, € S*:
T, (Xg) = {x | x = kX4, k € Rand k > 0}, which is a
ray in the direction of X, starting from the origin. Without
considering the constraint of £ > 0, an analytical solution
to this projection point x4, of x onto this line can be de-
rived: xg, = (X - Xg)Xg.
6D representation. With 7mgp as Gram-Schmidt process,
x = [u,v] € RS and X, € Wa(R®): 7h(%,) =
{[klﬁg,kgﬁg + kg\A/'q] | ki,ko, ks € R and ki,ks > 0}
(the former is a ray whereas the latter spans a half plane).
Without considering the constraint of k1, k3 > 0, the pro-
jection point x4, can be analytically represented as X, =
[(u-0g)ty, (v 0y)0y + (v Vg) V]
9D representation. With m9p(x) as SVD orthogonaliza-
tion, x € R3*3, and X4 € SO(3), the analytical expression
for 7y, Dl is available when we ignore the positive singular
value constraints, which gives 7y, (%X,) = {S%, | S =
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ST}. We can further solve the projection point Xgp With
xf{T—&-f{ng
an elegant representation Xz, = —%—5—"—.
10D representation. Please refer to supplementary mate-

rial Section 2.2 for the derivation and expression of xg,.

4.3. Regularized Projective Manifold Gradient

Issues in naive projective manifold gradient. In the right
plot of Figure 2, we illustrate this projection process for sev-
eral occasions where x takes different positions relative to
Xg4. We demonstrate that there are two issues in this process.

First, no matter where x is in, the projection operation
will shorten the length of our prediction because ||x,|| <
|Ix|| is always true for all of 4D/6D/9D/10D representation.
This will cause the length norm of the prediction of the net-
work to become very small as the training progresses (see
Figure 3). The shrinking network output will keep increas-
ing the effective learning rate, preventing the network from
convergence and leading to great harm to the network per-
formance (see Table 2 and Figure 3 for ablation study).

Second, when the angle between x and X, becomes
larger than 7/2 (in the case of x = x3), the naive projec-
tion x4, will be in the opposite direction of X4 and can not
be mapped back to X, under 74, resulting in a wrong gradi-
ent. The same set of issues also happens to 6D, 9D and 10D
representations. The formal reason is that the analytical so-
lution of the inverse image assumes certain constraints are
satisfied, which is usually true only when either X, is not
far from x or the network is about to converge.
Regularized projective manifold gradient. To solve the
first issue, we propose to add a regularization term x,, — X,
to the projective manifold gradient, which can avoid the
length vanishing problem. The regularized projective man-
ifold gradient then reads:

grRPM = X — Xgp + A(Xgp — Xg), (6)

where ) is a regularization coefficient. See the left plot of
Figure 2 for an illustration.

Discussion on the hyperparameters )\ and 7. Our method
apparently introduces two additional hyperparameters, A
and 7, however, we argue that this doesn’t increase the
searching space of hyperparameters for our method.

For A, the only requirement is that A is small (we simply
set to 0.01), because: (1) we want the projective manifold
gradient (x — X,,,) to be the major component of our gradi-
ent; (2) since this regularization is roughly proportional to
the difference in prediction length and a constant, a small
lambda is enough to prevent the length from vanishing and,
in the end, the prediction length will stay roughly constant
at the equilibrium under projection and regularization. In
the ablation study of Section 5.1, we show that the perfor-
mance is robust to the change of . Note that, on the other
extreme, when A\ = 1, grpps becomes gjy.

For 7, we propose a ramping up schedule which is well-
motivated. To tackle the second problem of reversed gra-
dient, we need a small 7;,;; to keep R, close to R at the
beginning of training. But when the network is about to
converge, we will prefer a T.onverge Which can keep Ry
close to R; for better convergence. We cannot directly set
Teonverge 10 Tgt, Which is introduced in 4.1, because 74y is
not a constant and cannot be used in Riemannian Optimiza-
tion. However, if we want to tackle the problem of reversed
gradient, we must need Riemannian Optimization and 7;,,;;.
Thus we need a constant approximation of 7, when the an-
gle between R and Ry; converges to 0. Note that Teonyerge
can be derived analytically when the loss function is the
most widely used L2 loss or geodesic loss(please refer to
supplementary material Section 2.1 for details), and there-
fore doesn’t need to be tuned. Therefore we propose to in-
crease 7 from a small value 7;,;, leading to a slow warm-up
and, as the training progresses, we gradually increase it to
the final 7 = Tcopyerge Dy ten uniform steps. This strategy
further improves our performance.

5. Experiments

We investigate popular rotation representations and find
our methods greatly improve the performance in different
kinds of tasks. For our regularized projective manifold gra-
dient (RPMG), we apply it in the backpropagation pro-
cess of Quaternion, 6D, 9D and 10D, without changing
the forward pass, leading to three new methods RPMG-
Quat, RPMG-6D, RPMG-9D and RPMG-10D. We com-
pare the following seven baselines: KEuler angle, axis-
angle, Quaternion, 6D [42], 9D [24], 9D-Inf [24] and 10D
[26]. We adopt three evaluation metrics: mean, median, and
5° accuracy of (geodesic) errors between predicted rotation
and ground truth rotation. For most of our experiments, we
set the regularization term A = 0.01 and increase 7 from
Tinit = 0.05 10 Teonverge = 0.25 by ten uniform steps. We
further show and discuss the influence of different choices
of these two hyperparameters in our ablation studies.

5.1. 3D Object Pose Estimation from Point Clouds

Experimental setting. As in [9], we use the complete point
clouds generated from the models in ModelNet-40 [37]. We
use the same train/test split as in [9] and report the results
of airplane, chair, sofa, toilet and bed those five categories
because they exhibit less rotational symmetries. Given one
shape point clouds of a specific category, the network learns
to predict the 3D rotation of the input point clouds from the
predefined canonical view of this category [36]. We replace
the point clouds alignment task used in [24,42] (which has
almost been solved) by this experiment since it is more chal-
lenging and closer to real-world applications (no canonical
point clouds is given to the network).

We use a PointNet++ [27] network as our backbone, su-
pervised by L2 loss between the predicted rotation matrix
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M \ Airplane | Chair | Sofa | Toilet | Bed
ethods 30

‘ Mn| Md| Acct ‘ Mn| Md] Acct ‘ Mn| Md| Acct ‘ Mn| Md| Acct ‘ Mn| Md] Acct — x;::‘n@“:n
Euler 125 131 0 | 136 90 17 | 120 125 0 | 127 133 0 | 113 122 0 » — &
Axis-Angle 108 82 2 | 164 109 9 |241 146 6 [219 130 9 |255 110 16 e
Quaternion 9.7 7.6 27 | 167 114 12 |204 127 10 | 160 93 17 |278 113 14 E£7° 100
6D 55 47 54 | 98 64 35 | 146 95 15 | 93 68 33 | 247 96 17 § ~-- RPMG-Quat
9D 47 39 67 | 79 54 44 | 157 100 14 | 103 69 30 | 223 85 20 § e
9D-Inf (MG-9D) | 3.1 25 9 | 53 37 69 | 78 50 50 |42 33 75 | 129 46 55 £ - RPMG10D
10D 53 42 61 | 89 60 38 | 151 103 13 [107 65 35 |231 87 19 ——
RPMG-Quat 32 2.4 8 | 63 37 67 |81 45 57 |49 35 74 |133 36 70 s —~—
RPMG-6D 2.6 2.1 94 | 50 31 74 |66 36 70 | 38 29 83 | 135 27 8l =
RPMG-9D 25 20 94 | 51 31 76 | 61 31 77 |43 27 83 | 109 25 86 0 s W e 20k 2k 30k
RPMG-10D 28 2.2 93 | 51 32 75 | 65 32 72 |49 28 82 | 135 27 8 Iteration

Table 1. Pose estimation from ModelNet40 point clouds. Left: a comparison of methods by mean, median, and 5° accuracy of (geodesic)
errors after 30k training steps. Mn, Md and Acc are abbreviations of mean, median and 5° accuracy. Right: median test error of airplane

in different iterations during training.

lambda=0 lambda=0.01

—— RPMG_4D

RPMG_6D
—— RPMG_9D
—— RPMG_10D

—— RPMG_4D

RPMG_6D
—— RPMG_9D
—— RPMG_10D

~N
~N

L2 norm

-

L2 norm
-

0 10k 20k 30k 0 10k 20k 30k
Iterations Iterations

Figure 3. Average L2 norm of the network raw output x during
training. Left: PMG-4D/6D/9D/10D (w/o reg. A = 0). Right:
RPMG-4D/6D/9D/10D (w/ reg. A = 0.01)

R and the ground truth rotation matrix Rg;. To facilitate
a fair comparison between multiple methods, we use the
same set of hyperparameters in all the experiments. Please
see supplementary material Section 6.1 for more details.
Analysis of results. The results are shown in Table 1. We
see a great improvement of our methods in all three rotation
representations. In this experiment, one may find 9D-Inf
also leads to a good performance, which is actually a spe-
cial case of our method with A = 1, or in other words, it
is MG with 7 = 74. Nonetheless, in Table 3, we can ob-
serve a larger gap. Also, this simple loss may lead to bad
performance when R4 is unavailable in Section 5.3.
Ablation study on ). As mentioned in Section 4.3, naively
using PMG without any regularization, corresponding to
setting A = 0, will lead to length vanishing; To maintain
the length of prediction roughly constant, we only need to
add a small A\. In Figure 3, We show the length vanishing
problem without regularization and stabilized length with a
small regularization. In Table 1, we show that the network
performs much better when we have a small A (RPMG)
than A = 0 (PMG) or A = 1 (MG), which deviates too far
away from the desired projective manifold gradient. As for
the exact value of A, our experiments show that our method
is robust to the choice of A as long as it is small. Table
2 also shows that A = 0.01,0.005,0.05 all lead to similar
performance, thus freeing us from tuning the parameter A.
Ablation study on 7. For the choices of 7, Table 2 shows

that our proposed strategy, which ramps up 7 from a small
Tinit 1O Tconverge> WOTKs the best. The reason is that: a big
7, when training begins, may cause the problem of reversed
gradient discussed in Section 4.3. On the other side, a small
T at the end of training will slow down the training process
and can do harm to convergence. Note that, the performance
is not very sensitive to the exact value, which means we
don’t require a parameter tuning for 7 even in general cases.
We are good even with simply setting 7 = 7.

Methods Mean (°), Med (°), 5°Acc (%)t

L2 6D 5.50 4.67 544
3 _ Teonverge 3.51 2.95 85.2
MG-6D A=l Tyt 3.19 2.72 87.8
; _ Teonverge 57.65 45.22 0.2
PMG-6D A=0 Tgt 133 136 0.0
Timit 2.67 2.18 93.1
T 271 2.14 93.2

=001 converge
§ Tat 3.02 2.14 89.5
RPMG-6D Tinit — Tconverge 2.59 2.07 93.6
A=0.05 - 2.73 223 92.9
A =0.005 it = Teonverge 2.52 2.05 943

Table 2. Ablation study of pose estimation from airplane point
clouds. Here MG stands for manifold gradient x — %X, corre-
sponding to set A = 1; PMG stands for projective manifold gradi-
ent X — Xg4p, corresponding to set A = 0.

5.2. 3D Rotation Estimation from ModelNet Images

In this experiment, we follow the setting in [24] to es-
timate poses from 2D images. Images are rendered from
ModelNet-10 [37] objects from arbitrary viewpoints [25].
A MobileNet [17] is used to extract image features and three
MLPs to regress rotations. We use the same categories as in
Experiment 5.1 except airplane, since ModelNet-10 doesn’t
have this category. We didn’t quote the numbers from [24]
since we conduct all the experiments using the same set of
hyperparameters to ensure a fair comparison. Please see
supplementary material Section 6.2 for more details.

The results are shown in Table 3. Our RPMG layer
boosts the performance of all three representations signif-
icantly. See the curves with the same color for comparison.

6652



M | Chair | Sofa | Toilet Bed
ethods

‘ Mn] Md] Acct ‘ Mn] Md] Acct ‘ Mn] Md| Acct ‘ Mn] Md} —— Euler
Euler 205 109 10 | 275 120 9 | 149 85 19 | 276 96  Guormion
Axis-Angle | 257 143 7 303 146 6 |203 130 8 | 363 167 —®
Quaternion | 25.8  15.0 6 |300 157 6 |206 130 8 | 341 155 9D-in
6D 196 9.1 19 | 175 73 27 | 109 62 37 | 323 117 100
9D 175 83 23 | 198 76 25 | 118 65 34 |304 1Ll T et
9D-Inf 121 51 49 | 125 35 70 | 76 37 67 | 225 45 - RPMG-9D
10D 184 90 20 (209 87 20 | 115 59 39 | 299 115 BPMG100 |

—~—

RPMG-Quat | 13.0 59 40 | 130 36 67 | 86 42 61 | 232 49
RPMG-6D | 129 47 53 | 115 28 77 | 78 34 71 | 203 3.6
RPMG-9D 119 4.4 58 10.5 24 82 7.5 32 75 200 29 76 100k 200k 300k 400k 500k 600k
RPMG-10D | 128 45 55 | 112 24 82 72 3.0 76 | 192 29 75 Iteration

Table 3. Pose estimation from ModelNet10 images. Left: a comparison of methods by mean(°), median(°), and 5° accuracy(%) of
(geodesic) errors after 600k training steps. Mn, Md and Acc are abbreviations of mean, median and 5° accuracy. Right: median test error

of chair in different iterations during training.

5.3. Rotation Estimation without Supervision

Self-supervised instance-level rotation estimation from
point clouds. For one complete chair instance Z, given
a complete observation X, we estimate its pose R. We
then use Chamfer distance between Z and R~ X as a self-
supervised loss. The network structure and training set-
tings are all the same as Experiment 5.1, except here we
use 7 = 2. See supplementary material Section 5.2 for how
to find a suitable 7.

The interesting thing here is that vanilla 9D-Inf fails
while our methods still perform very well. We think that
this is because the Chamfer distance loss will greatly en-
large the effect of the noisy part (which is introduced by \)
in gradient, leading to a very bad performance.

Methods Mean (°)) Med (°)] 3°Acc (%)t
Euler 131.9 139.1 0.0
Axis-Angle 45 38 345
Quaternion 4.3 3.5 375
6D 55.1 6.7 20.0
9D 1.8 1.6 88.0
9D-Inf 1182 119.5 0.0
10D 1.6 1.5 91.0
RPMG-Quat 35 2.4 70.0
RPMG-6D 15.0 2.9 55.0
RPMG-9D 1.3 1.2 97.5
RPMG-10D 1.5 1.4 97.0

Table 4. Self-supervised Instance-Level Rotation Estimation
from Point Clouds. We report mean, median and 3° accuracy of
(geodesic) errors after 30K iterations.

5.4. Regression on Other Non-Euclidean Manifolds

In addition to SO(3), our method can also be applied
for regression on other non-Euclidean manifolds as long as
the target manifold meets some conditions: 1) the manifold
should support Riemannian optimization. 2) the inverse
projection 7! should be calculable, although it doesn’t
need to be mathematically complete. Here we show the ex-
periment of Sphere manifold S?.

Unit vector regression. For rotational symmetric cate-

gories (e.g., bottle), the pose of an object is ambiguous.
We’d rather regress a unit vector for each object indicating
the up direction of it. We use the ModelNet-40 [37] bottle
point cloud dataset. The network architecture is the same as
in Experiment 5.1 except the dimension of output is 3.

L2-loss-w/-norm computes L2 loss between the normal-
ized predictions and the ground truth. L2-loss-w/0-norm
computes L2 loss between the raw predictions and the
ground truth, similar to A = 1 and 7 = 74. For MG-
3D, PMG-3D and RPMG-3D, We increase 7 from 0.1 to
0.5 since here Tcopverge = 0.5 (please see supplementary
material Section 3.1 for the derivation).

The results are shown in Table 5. MG-3D performs on
par with L2-loss-w/o-norm, and PMG-3D leads to a large
error since the length vanishing problem similar to Figure
3. RPMG-3D outperforms all the baselines and variants.

Methods Mean (°)] Med (°)] 1°Acc (%)t
L2 loss w/ norm 8.73 2.71 0.0
L2 loss w/o norm 5.71 1.10 374
MG-3D (\=1) 5.37 1.20 222
PMG-3D (A\=0) 21.96 14.79 0.0
RPMG-3D (A\=0.01) 4.69 0.76 72.7

Table 5. Unit vector estimation from ModelNet bottle point
clouds. We report mean, median, and 1° accuracy of (geodesic)
errors after 30K iterations.

6. Conclusion and Future Work

Our work tackles the problem of designing a gradient
layer to facilitate the learning of rotation regression. Our
extensive experiments have demonstrated the effectiveness
of our method coupled with different rotation representa-
tions in diverse tasks dealing with rotation estimation.

The limitation of our methods mainly lies in two fronts:
1) we introduce two new hyperparameters, i.e., 7 and A,
though our performance is not sensitive to them, as long as
they are in a reasonable range; 2) as discussed in Sec 5.4,
our method can only be applied to manifolds with certain
constraints. We leave how to relax those to future works.
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