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Abstract

Vision-and-language Navigation (VLN) task requires an
embodied agent to navigate to a remote location following
a natural language instruction. Previous methods usually
adopt a sequence model (e.g., Transformer and LSTM) as
the navigator. In such a paradigm, the sequence model pre-
dicts action at each step through a maintained navigation
state, which is generally represented as a one-dimensional
vector. However, the crucial navigation clues (i.e., object-
level environment layout) for embodied navigation task is
discarded since the maintained vector is essentially un-
structured. In this paper, we propose a novel Structured
state-Evolution (SEvol) model to effectively maintain the
environment layout clues for VLN. Specifically, we utilise
the graph-based feature to represent the navigation state
instead of the vector-based state. Accordingly, we devise
a Reinforced Layout clues Miner (RLM) to mine and de-
tect the most crucial layout graph for long-term navigation
via a customised reinforcement learning strategy. More-
over, the Structured Evolving Module (SEM) is proposed
to maintain the structured graph-based state during nav-
igation, where the state is gradually evolved to learn the
object-level spatial-temporal relationship. The experiments
on the R2R and R4R datasets show that the proposed SEvol
model improves VLN models’ performance by large mar-
gins, e.g., +3% absolute SPL accuracy for NvEM and +8%
for EnvDrop on the R2R test set.

1. Introduction
In recent years, Embodied-AI (E-AI) that requires em-

bodied agents to complete tasks has arrested extensive inter-
ests of both computer version and natural language process-
ing community. Numerous datasets [3, 31] have been con-
structed to simulate realistic environments to support vari-
ous embodied tasks such as navigation [31, 42], interactive
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Figure 1. At each step t, (a) previous methods predict action at

based on a vector-based navigation state st while the object-level
layout memory is discarded; (b) we propose SEvol to maintain a
graph-based navigation state st, which can effectively record the
layout memory via the structured state-evolution.

learning [6, 33] and multi-agent cooperation [25], etc.
One of the most attractive application scenarios of E-

AI is the Vision-and-Language Navigation (VLN) task [2],
where the goal is for an embodied agent in a 3D environ-
ment to navigate to the specific location following the nat-
ural language instruction. As shown in Figure 1(a), previ-
ous methods [8, 21, 22, 34] usually adopt sequence model
(e.g., Transformer and LSTM) to model the sequential de-
cision process. At each step t, the action is predicted ac-
cording to the navigation state st, which maintains the his-
torical and current environment information. Commonly,
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the navigation state is maintained in the form of unstruc-
tured one-dimensional vector. The environment clues at
each step, i.e., visual and orientation features, are all com-
pressed and pooled into this unstructured vector. Therefore,
the structured object-level environment layout information
is discarded during this process. However, the environment
layout clues are crucial for the embodied VLN task. As
shown in Figure 1(a), to fulfill the instruction like ‘go inside
the door opposite the bathtub’, the agent of previous meth-
ods is confused at step t since the landmark object ‘bathtub’
can not be observed, and the agent needs to utilise the his-
torical layout clues (i.e., the door is opposite the bathtub) at
step t− 1 to make the right action.

Therefore, we aim to improve the VLN paradigm via
maintaining a structured navigation state, in which three im-
portant factors need to be considered. (i) How to represent
the navigation state to contain structured layout memory.
(ii) How to mine the pivotal layout information for the cur-
rent and future decisions according to the instruction. (iii)
How to store and update a structured state while satisfying
the property of long short-term memory.

To achieve the aforementioned objectives, we propose a
Structured state-Evolution (SEvol) model as shown in Fig-
ure 1(b), where multi-fold innovations are made. (i) Instead
of the vector-based feature, we propose to adopt the graph-
based feature as the navigation state, which is capable of
holding a structured layout memory. (ii) We design a Rein-
forced Layout clues Miner (RLM) to mine the most crucial
layout information. RLM learns to detect and sample the es-
sential subgraph from the whole layout graph, conditioned
on both the current navigation state and the instruction, e.g.,
sampling subgraph <door, opposite, bathtub> according
to the language ‘go inside the door opposite the bathtub’.
In RLM, we customise a reinforcement learning strategy to
make the miner focus on both the immediate interests and
the long-term influence of the subgraph sampling. (iii) To
effectively store and update a structured graph-based state
during the whole navigation process, we devise a Structured
Evolving Module (SEM). Specifically, SEM takes the cur-
rent graph features from RLM as input to evolve the naviga-
tion state at each step. The evolution of the navigation state
is achieved by interacting with a learnable matrixD (shown
in Figure 1(b)), which stores the structured layout memory.
D is updated through a matrix version of recurrent neural
network. Thus the navigation state contains object-level
spatial-temporal relationship that assists the action decision,
e.g., the relation ‘door opposite bathtub’ in Figure 1(b).
Experiments on Room-to-Room (R2R) [2] and Room-for-
Room (R4R) show that the proposed SEvol model improves
VLN models’ performance by large margins.

To summarise, we make the following contributions:

• We propose a simple yet effective SEvol model that
provides new insights to the VLN community. The

structured navigation state is leveraged to maintain
the object-level environment layout during navigation.
SEvol achieves state-of-the-art performance on R2R.

• We design a Reinforced Layout clues Miner (RLM) to
learn how to detect and sample the most critical sub-
graph features from the layout graph for current and
future action decisions.

• We devise a Structured Evolving Module (SEM) to
gradually evolve the structured navigation-state along
with the navigation process, maintaining a long short-
term layout memory.

2. Related Work

Vision-and-Language Navigation (VLN). Learning to
conduct navigation in a simulated photo-realistic environ-
ment following the human-annotated nature language in-
struction, i.e., VLN task [2,18], has drawn significant inter-
ests from both academic and industry fields in recent years.
Numerous methods [4,8,12,14,15,21,22,29,34,37–39,47]
have been proposed for the VLN task. Early work Speaker-
Follower [8] designs an instructions argumentation strategy,
and EnvDrop [34] increases the visual diversity of the syn-
thesised training samples. Besides, [21, 47] introduce aux-
iliary losses to further improve the ability of cross-modal
understanding, and [7, 37] employ trajectory-graph to keep
the global navigation memory.

Recently, most VLN works focus on how to utilise a
more powerful transformer-based vision-language model
to improve performance. CKR [9] adopts the trans-
former decoder to model the sequential navigation pro-
cess. VLN-BERT [23] and Airbert [11] leverage the
vision-language transformer pre-trained on other large-
scale vision-language datasets [32] to conduct instruction-
trajectory matching. Other works [14, 39] focus on cus-
tomising a transformer-based model, which is specifically
tailored for the VLN task and can inherit the capability from
pre-training models. However, the previous VLN methods
pay less attention to the issue of unstructured navigation
state, which unintentionally reduces the crucial navigation
clues, i.e., object-level environment layout.
Dynamic Graph Neural Networks. In the field of data
mining, the dynamic graph neural network is an effective
tool to mine the information from a sequence of graph-
based data that changes over time (e.g., social networks).
Some approaches [28,45] are designed to extract the spatial-
temporal relationship from the dynamic graph. [10,35] take
the dynamic graph as the continuous changes over the ini-
tial graph, which are advantageous for the event time pre-
diction. Besides, [7, 44] take several frames of the graph
and leverage GCN [19]/sequential model [5] to extract fea-
tures from the graph that changes fast over time. Inspired
by the area of data mining, we propose SEM to maintain
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Figure 2. The Overall Pipeline. (a) The typical paradigm of VLN methods. (b) The proposed SEvol contains two components, i.e.,
RLM and SEM. RLM digs out the pivotal layout graph according to the instruction via a customised reinforcement learning strategy. SEM
evolves the structured navigation state to maintain the crucial layout memory during navigation.

and update a graph-based navigation state, where different
object-level layouts can be extracted dynamically.

3. Method

3.1. Problem Setup and Overview

Problem Setup. In VLN [2], the agent is required to reach
the described locations following the instruction. At each
step t, the agent observes a panoramic RGB view, which
is further divided into 36 discrete views {vt,i}36i=1. Each
view is represented via a RGB image vt,i with its orienta-
tion information (heading θt,i, elevation ψt,i), where i is the
view index. Generally, each view’s feature ft,i is obtained
through ft,i = [F(vt,i), E(θt,i, ψt,i)]

⊤, where [·, ·] denotes
concatenation, F(·) is the image feature extractor and E(·)
represents the orientation embedding function [34], which
is defined as [cos(θt,i), sin(θt,i), cos(ψt,i), sin(ψt,i)]. Be-
sides, there are Kt candidate views at each step t that are
navigable. The agent needs to take an action at, i.e., select-
ing one from Kt candidates to move to that location.

Overview. The basic pipeline of VLN methods [1, 34] is
shown in Figure 2(a). The proposed SEvol (shown in Fig-
ure 2(b)) is set as an additional branch for providing a struc-
tured navigation state. SEvol consists of two components,
i.e., Reinforced Layout clues Miner (RLM) and Structured
Evolving Module (SEM).

The basic VLN pipeline (Figure 2(a)) leverages a bi-
directional LSTM [16] to encode the instruction, and ob-
tains the word-level language feature {wl}Ll=1, where L is
length. wL is the sentence level feature and serves as the ini-
tial hidden state of the LSTM decoder. At each navigation
step t, current visual feature {ft,i}36i=1 is fed to the LSTM

decoder to update its hidden state ht ∈ RNh×1:{
f̃t = attn(ht−1, {ft,i}36i=1);

ht = LSTM([f̃t, at−1], ht−1).
(1)

Note that we represent the normal attention mechanism
as attn(·, ·) in the paper. For example, attn(x, Y ) =
softmax(x⊤WaY

⊤)Y , where x ∈ RN1×1, Y ∈ RN2×N3 ,
and Wa ∈ RN1×N3 are trainable parameters.

At each step t, SEvol firstly produces layout graph Gt

from the visual observation. As shown in Figure 2(a), then
RLM aims to utilise the language feature {wl}Ll=1 (e.g., ‘go
inside the door opposite the bathtub’) to mine the key sub-
graph G′

t (e.g., ‘bathtub’ and ‘door’) from Gt. The whole
process is optimised through a customised reinforced learn-
ing strategy since the RL-based objective can make the
miner consider both current and future influences. The re-
ward rt for the RLM is based on whether the agent moves
close or reaches the target position. Next, SEM takes cur-
rent G′

t from RLM and layout memory Dt−1 as inputs to
evolve the structured navigation state St, where Dt−1 is an
iterable matrix that is used to record the historical layout
memory. The evolved St is further adopted to predict the
final action at. In the following, we detailly introduce RLM
in Section 3.2 and SEM in Section 3.3, respectively.

3.2. Reinforced Layout clues Miner

Layout Graph Generation. To extract the object-level en-
vironment layout, at each step t, we detect top K salient
objects Ot = {ot,k}Kk=1 via the Faster R-CNN [30], where
ot,k represents the object entity. We generate a fully con-
nected layout graph Gt = {Ot,At} base on the object set,
where At is the edge set of Gt. To encode the object node
set Ot into a node feature matrix Ot, we consider the se-
mantic and relation position information. The k-th object
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feature Ot,k is defined as:

Ot,k = [G(ot,k), E(θot,k , ψot,k)]
⊤, (2)

where G(·) donates the GloVe [27] embedding of the ob-
ject’s label. θot,i and ψot,i are the heading and elevation of
the object relative to the current direction of agent. E(·) is
the orientation embedding function defined in Section 3.1.
Then based on the spatial relationships between objects, we
define the adjacency matrix At as:

At,[i,j] = d(θot,i − θot,j ), (3)

where d(·) is a decrease function of the heading difference
and is defined in Section 4.1.
Subgraph Mining. The generated layout graph Gt contains
noise (e.g., navigation-irrelevant object relations). There-
fore, to focus on the most pivotal layout information, we
propose the RLM to sample a representative subgraph con-
taining M object nodes, as shown in Figure 2(b). Intu-
itively, the mining process should be dependent on the in-
struction. Thus we leverage the language-aware feature
h̃t = attn(ht, {wl}Ll=1) to compute the object importance
for the subgraph mining:

pot = softmax(hot
⊤W2Ot

⊤), hot = δ(W1h̃t), (4)

where W1 ∈ RN×Nh and W2 ∈ RN×No are learnable pa-
rameters. N = 100 denotes the hidden size and δ(·) is
the ReLU activation function. pot ∈ R1×K indicates the
object’s importance during navigation process. Sampling
the subgraph G′

t = {O′
t,A′

t} from Gt includes two steps.
Firstly, we select the top M object nodes according to pot .
Thus we get the sub set of Ot: O′

t = {ot,m}Mm=1 and the
importance scores of the selected objects pot

′ ∈ R1×M .
Secondly, we obtain the edge set A′

t via keeping the cor-
responding edges between selected objects:

A′
t = {et,ij |ot,i ∈ O′

t ∧ ot,j ∈ O′
t ∧ et,ij ∈ At}. (5)

Therefore, the node feature and the adjacency matrix of M -
order graph G′

t are O′
t ∈ RM×No and A′

t ∈ RM×M .
Since navigation is a long-term planning task, RLM

should also consider future navigation decisions. Thus we
customise a reinforcement learning strategy to guide the
subgraph sampling process. The reward for the object’s
node selection is based on the navigation action feedback
from environments as shown in Figure 2(b). At each step
t, the agent’s action reward is defined as: (i) If the agent’s
distance from destination decreases, the reward rt will be
1. Otherwise, it will be −1. (ii) When the agent success-
fully finishes the navigation task, it will gain a large reward
rT = 4, and if the agent stops at the wrong position, it will
get a negative reward value rT = −2. The navigation re-
ward can be seen as the reward for the RLM. At each step t,
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Figure 3. Illustration of our SEM module. SEM takes the layout
graph G′

t from RLM to update the layout memory Dt and generate
the structured navigation state St.

the critic network critic(·) estimates the state value vt, and
each action reward rt for RLM is:

rt = γ(T−t)vT + rt, vt = critic(hot ), (6)

where γ is the decay rate, T denotes the total steps of the
trajectory. Therefore, the advantage of each action reward
against state value is ςt = rt − vt. The action of subgraph
miner is to choose M objects from Ot, and the objective
functions based on A2C [24] is formulated as:

Lsa =

T∑
t=0

M∑
m=0

−ςt log pot
′
,m;

Lsc =

T∑
t=0

ς2t ;

Lsd =

T∑
t=0

K∑
k=0

−pot,k log pot,k;

Ls = λ1Lsa + λ2Lsc + λ3Lsd,

(7)

where Lsa optimises the object selection, Lsc optimises
the critic model, and Lsd aims to avoid the object im-
portance scores pot degeneration to uniform distribution.
λi(i = 1, 2, 3) is the weighting factor that controls the rela-
tive importance of each term.

3.3. Structured Evolving Module

The object-level layout information is contained in the
generated layout graph. However, the navigation is a
sequential process, where the layout graph dynamically
changes over time. Thue we propose the Structured Evolv-
ing Module (SEM) to dynamically handle the layout graph
G′
t, to update the navigation state St at each step t. As

shown in Figure 3, we adopt a learnable matrixDt to record
the structured layout memory. We leverage the matrix ver-
sion of GRU (MGRU) [26] to handle Dt ∈ RN×N , where

15453



N = 100 is a hyperparameter. The Dt is updated by the
node feature O′

t of the subgraph from RLM. We first re-
peat and mapping O′

t ∈ RM×No to produce a square matrix
Qt ∈ RN×N (M < N ). Then the updating process of
Dt−1 → Dt can be formulated as:

Zt = σ(WzQt + UzDt−1 +Bz);

Rt = σ(WrQt + UrDt−1 +Br);

D̃t = tanh(WhQt + Uh(RtDt−1) +Bh);

Dt = (1− Zt) ◦Dt−1 + Zt ◦ D̃t,

(8)

where ◦ denotes the Hadamard product, σ represents the
sigmoid function and the trainable parameters are all square
matrix of orderN . For the initialisation ofDt, since there is
no history layout information at the first step, theD0 should
condition on the language instruction:

D0 = σ(I0w
⊤
LW3 +Bi), (9)

where I0 ∈ RN×1, Bi ∈ RN×N ,W3 ∈ RNh×N are train-
able parameters. wL ∈ RNh×1 is the sentence level feature.

The obtained history structure memory Dt guides a
graph convolution on the current layout graph to produce
the current structured navigation state:

St = tanh(A′
tσ(O

′
tWm)Dt), (10)

where Wm ∈ RNo×N is learnable. Due to the interaction
between the subgraph G′

t from RLM and the layout memory
matrix Dt, the St carries the layout relation of the current
step with historical memory. We use the language context-
aware feature h̃t to conduct attention pooling on the St to
build a global representation hst for action selection:

hst = σ(W4[s̃t, ht]), s̃t = attn(h̃t, St), (11)

where W4 ∈ R(Nh+No)×Nh is learnable.
Finally, hst serves as the action selector in the action pre-

diction module. For simplicity, the action prediction mod-
ule computes the attention similarity between the hst and the
feature ft = [ft,i]

Kt
i=0 that represents the candidate views:

pt = softmax(hstW5ft), (12)

where W5 ∈ RNh×Nv is the trainable parameter, Nv is the
dimension of visual feature, and ft,0 is a zero vector rep-
resenting the stop action. pt is the action probability dis-
tribution at step t. The agent samples/selects a candidate
view based on pt and move to the viewpoint corresponding
to that view.

3.4. Training Loss

Our training objective is composed of three different
parts: the imitation learning loss LI , the reinforcement

learning for action prediction Lr and the subgraph extrac-
tion loss Ls mentioned before. During the training process,
we implement the student-force training strategy, in which
the agent takes action that is predicted by itself. With the agt
as the shortest path to the destination, the imitation learning
loss is defined as:

LI = λ

T∑
t=0

ag
t logPt. (13)

The reinforcement learning uses the A2C [24] strategy:

Lr =

T∑
t=0

−at log(Pt)advt, (14)

where the advt is the advantage at step t in A2C algorithm.
The overall training loss can be defined as:

L = Ls + λILI + λrLr, (15)

where λI , λr are coefficients for balancing the loss terms.

4. Experiments
4.1. Experimental Setup

Datasets. We adopt Room-to-Room(R2R) dataset [2] and
Room-for-Room dataset [18] to validate our method. In the
R2R dataset, there are 7, 189 trajectories and three natural
language instructions describe each. It is divided into train,
validation seen (val-seen), validation unseen (val-unseen),
and test sets. The environments of val-unseen and test are
not in the train set. The R4R dataset contains longer and
twistier paths, which is the extended version of R2R. The
R4R dataset is divided into train, validation seen and val-
idation unseen sets. The R2R and R4R are built on the
Matterport3D simulator [2, 3], which consists of 10, 567
panoramic views in 90 real word indoor environments.
Evaluation Metrics. To compare with the existing meth-
ods, we report the commonly used evaluation metrics on
the R2R dataset, i.e., Trajectory Length (TL), Navigation
Error (NE), Success Rate (SR), and Success Rate weighted
by Path Length (SPL). Following [1,17,18] three more eval-
uations are used for R4R, i.e., normalized Dynamic Time
Warping (nDTW), Success rate weighted normalized Dy-
namic Time Warping (sDTW) and Coverage weighted by
Length Score (CLS).
Implementation Details. We use a 2-layer bi-directional
LSTM with a cell size of 256 in each direction for the lan-
guage encoder and use GloVe [27] for word embedding. We
use the CLIP-ViT-B-32 as our visual encoder. The LSTM
decoder is with a cell size of 512. The SEvol can be seen
as an additional branch for the LSTM based VLN model.
More specifically, hst produced by SEvol can replace ht,
the output of the LSTM. At each step, we detect 400 ob-
jects to build Gt. The object detector is Faster R-CNN [30]
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Val Seen Val Unseen Test Unseen

Agent TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑
Random 9.58 9.45 0.16 - 9.77 9.23 0.16 - 9.89 9.79 0.13 0.12
Human - - - - - - - - 11.85 1.61 0.86 0.76

Pretrain Model:
PRESS [43] 10.57 4.39 0.58 0.55 10.36 5.28 0.49 0.45 10.77 5.49 0.49 0.45
PREVALENT [12] 10.32 3.67 0.69 0.65 10.19 4.71 0.58 0.53 10.51 5.30 0.54 0.51
VLNBERT (init. OSCAR) [14] 10.79 3.11 0.71 0.67 11.86 4.29 0.59 0.53 12.34 4.59 0.57 0.53
VLNBERT (init. PREVALENT) [14] 11.13 2.90 0.72 0.68 12.01 3.93 0.63 0.57 12.35 4.09 0.63 0.57
VLNBERT+REM [4] 10.88 2.48 75.4 71.8 12.44 3.89 0.64 0.60 13.11 3.87 0.65 0.59
ORIST (init. UNITER) [39] - - - - 10.90 4.72 0.57 0.51 11.31 5.10 0.57 0.52

w/ Data Augmentation:
Speaker-Follower [8] - 3.36 0.66 - - 6.62 0.35 - 14.82 6.62 0.35 0.28
SM [21] - 3.22 0.67 0.58 - 5.52 0.45 0.32 18.04 5.67 0.48 0.35
RCM+SIL [40] 10.65 3.53 0.67 - 11.46 6.09 0.43 - 11.97 6.12 0.43 0.38
Regretful [22] - 3.23 0.69 0.63 - 5.32 0.50 0.41 13.69 5.69 0.48 0.40
IL+RL+REM [4] 10.18 4.61 0.58 0.55 9.40 5.59 0.48 0.44 9.81 5.67 0.48 0.45
SSM [37] 14.70 3.10 0.71 0.62 20.70 4.32 0.62 0.45 20.40 4.57 0.61 0.46
VLNBERT (no init.) [14] 9.78 3.92 0.62 0.59 10.31 5.10 0.50 0.46 11.15 5.45 0.51 0.47
EnvDrop [34] 11.00 3.99 0.62 0.59 10.70 5.22 0.52 0.48 11.66 5.23 0.51 0.47
EnvDrop+REM [4] 11.13 3.14 0.70 0.66 14.84 4.99 0.53 0.48 10.73 5.40 0.54 0.50
AuxRN [47] - 3.33 0.70 0.67 - 5.28 0.55 0.50 - 5.15 0.55 0.51
RelGraph [13] 10.13 3.47 0.67 0.65 9.99 4.73 0.57 0.53 10.29 4.75 0.55 0.52
NvEM [1] 11.09 3.44 0.69 0.65 11.83 4.27 0.60 0.55 12.98 4.37 0.58 0.54
EnvDrop+SEvol 12.55 3.70 0.61 0.57 14.67 4.39 0.59 0.53 14.30 3.70 0.59 0.55
NvEM+SEvol 11.97 3.56 0.67 0.63 12.26 3.99 0.62 0.57 13.40 4.13 0.62 0.57

w/o Data Augmentation:
Student-Forcing [2] 11.33 6.01 0.39 - 8.39 7.81 0.22 - 8.13 7.85 0.20 0.18
RPA [41] 8.46 5.56 0.43 - 7.22 7.65 0.25 - 9.15 7.53 0.25 0.23
Regretful [22] - 3.69 0.65 0.59 - 5.36 0.48 0.37 - - - -
EGP [7] - - - - - 5.34 0.52 0.41 - - - -
EnvDrop [34] 10.10 4.71 0.55 0.53 9.37 5.49 0.47 0.43 - - - -
Active Perception [38] 19.80 3.35 0.66 0.51 19.90 4.40 0.55 0.40 21.0 4.77 0.56 0.37
SSM [37] 13.50 3.77 0.65 0.57 18.90 4.88 0.56 0.42 18.50 4.66 0.57 0.44
EnvDrop+SEvol 12.33 4.19 0.59 0.54 13.59 4.72 0.55 0.49 15.48 4.52 0.57 0.52
NvEM+SEvol 12.07 3.96 0.63 0.59 12.45 4.15 0.61 0.55 13.10 4.25 0.60 0.55

Table 1. Comparisons on R2R dataset. Comparison of single run performance with the state-of-the-art methods on R2R. The proposed
SEvol boosts the performance in terms of all the key metrics on the unseen environments.

Val Seen Val Unseen

Agent NE↓ SR↑ SPL↑ CLS↑ nDTW↑ sDTW↑ NE↓ SR↑ SPL↑ CLS↑ nDTW↑ sDTW↑
EnvDrop [34] - 0.52 0.41 0.53 - 0.27 - 0.29 0.18 0.34 - 0.09
RCM-b [36] - - - - - - - 0.29 0.21 0.35 0.30 0.13
OAAM [46] - 0.56 0.49 0.54 - 0.32 - 0.31 0.23 0.40 - 0.11
RelGraph [13] 5.14 0.55 0.50 0.51 0.48 0.35 7.55 0.35 0.25 0.37 0.32 0.18
NvEM [1] 5.38 0.54 0.47 0.51 0.48 0.35 6.85 0.38 0.28 0.41 0.36 0.20

NvEM+SEvol 5.77 0.50 0.40 0.48 0.45 0.30 6.90 0.39 0.29 0.41 0.36 0.20

Table 2. Comparisons on R4R dataset. Comparison of single run performance with the state-of-the-art methods on R4R.

trained on Visual Genome Dataset [20] which classifies the
100 most frequent objects appearing in the instructions and
environments. The REM module selects 5 objects from Gt

to induces the subgraph G′
t. The edge weight function over

the objects’ angle difference x is d(x) = π
π+6x . Follow-

ing [34], we apply the two-stage training strategy on R2R
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Name SEM RLM Augbp
Val-Seen Val-Unseen

SR↑ NE↓ TL↓ SPL↑ SR↑ NE↓ TL↓ SPL↑
NvEM [1]* 0.61 4.25 10.85 0.58 0.57 4.62 11.24 0.51

#1 ✓ 0.62 3.79 12.16 0.58 0.60 4.31 12.41 0.54
#2 ✓ ✓ 0.63 3.96 12.07 0.59 0.61 4.15 12.45 0.55
#3 ✓ ✓ 0.64 3.79 11.66 0.59 0.61 4.14 12.40 0.56
#4 ✓ ✓ ✓ 0.67 3.56 11.97 0.63 0.62 3.99 12.26 0.57

Table 3. Ablations. The performance is gradually improved with the continuous addition of proposed modules, especially on val-unseen.
The reproduction result of NvEM [1] w/o data augmentation is shown at the first line. Experiments confirm the effectiveness of RLM/SEM
modules under both the w/ and w/o data augmentation setup. Note that Augbp denotes data augmentation.

Dim(Dt)
Val-Seen Val-Unseen

SR↑ NE↓ SPL↑ SR↑ NE↓ SPL↑
– 0.61 4.25 0.58 0.57 4.62 0.51
50 0.65 3.72 0.60 0.58 4.43 0.52

100 0.63 3.96 0.59 0.61 4.15 0.55
200 0.63 3.89 0.58 0.60 4.33 0.54

(a) Capacity of Layout Memory. The Dimension of Dt in SEM.
Model with dim(Dt) = 100 performs best on val-unseen.

Num
Val-Seen Val-Unseen

SR↑ NE↓ TL↓ SPL↑ SR↑ NE↓ TL↓ SPL↑
0 0.61 4.25 10.85 0.58 0.57 4.62 11.24 0.51
3 0.60 4.21 11.26 0.56 0.57 4.45 11.67 0.52
5 0.63 3.96 12.07 0.59 0.61 4.15 12.45 0.55

20 0.59 4.03 12.28 0.55 0.59 4.33 12.64 0.54

(b) Subgraph Size. The size of subgraph selected by RLM. The model performs
best on val-unseen when the subgraph with size of 5.

Table 4. Ablations. We mainly focus on the key metrics for each ablation setting. Note that the results in this table are obtained under the
w/o data augmentation setting.

m(x)
Val-Seen Val-Unseen

SR↑ NE↓ SPL↑ SR↑ NE↓ SPL↑
x 0.63 3.96 0.59 0.61 4.15 0.55
ex 0.59 4.26 0.55 0.57 4.53 0.53
1 0.61 3.88 0.57 0.58 3.34 0.53

Table 5. Performances with different edge weight generation func-
tions d(m(x)), where x is heading difference between two objects.

dataset. At the first stage, we train the agent on the train set.
At the second stage, the agent is trained with the back trans-
lation based data augmentation method [8] The learning
rate is 10−4. The weighting factor’s values are λ1 = 0.2,
λ2 = 0.1, λ3 = 0.01, λI = 0.2 and λr = 1. The batch size
is 64. We train our model for 8, 000 iterations for stage 1,
and 20, 000 iterations for stage 2 and select the model with
the best performance on val-unseen set.

4.2. Comparison with State-of-the-art Methods

R2R Dataset. As shown in Table 1, under the w/ data argu-
mentation setting, our best model reach the same SR with
the previous best one (SSM [37]), but we achieve a signifi-
cant improvement in SPL (from 0.45 to 0.57) on val-unseen.
The NvEM+SEvol surpasses NvEM [1] with +2% in both
SR and SPL. Besides, we achieve +4% and +3% abso-
lute improvement in SR and SPL than NvEM [1] on test
set. SSM [37] sacrifices the navigation efficiency to achieve
0.61 SR on test set, and we achieve higher SR (+1%) and
higher efficiency (+11% in SPL). The SEvol also boosts the

performance of EnvDrop for a large margin. Under the w/o
data argumentation setting, as shown in Table 1, we achieve
the best performance in terms of SR and SPL on both val-
unseen and test sets, and it is higher than the previous best
methods in a large margin. Even compared with the previ-
ous state-of-the-art NvEM [1] trained with augmented data,
the NvEM+SEvol performs better on both val-unseen and
test set in terms of SR and SPL.
R4R Dataset. As shown in Table 2, we compare the pro-
posed method with the current state-of-the-art methods on
the R4R benchmark. The NvEM+SEvol achieves the best
performance on most of the metrics on val-unseen set. And
it suppresses the NvEM model on both SR and SPL by 1%
and achieves the same accuracy on the trajectory fidelity
metrics. The experiments show that the proposed SEvol
also works on samples with longer navigation trajectories.

4.3. Ablation Study

In this section, we evaluate the effectiveness of the key
components of our model, i.e., RLM and SEM. Note that
the base model in our experiments is NvEM [1]. We repro-
duce the experiment without data argumentation and add
the key components of our model step by step.
Structured Evolving Module (SEM). As shown in Ta-
ble 3, compare with base agent, ‘#1’ with SEM lifts SR
and SPL from (0.57, 0.51) to (0.60, 0.54) on val-unseen.
It confirms that the layout memory and structured state are
conducive to navigation. Moreover, after training with aug-
mented data (‘#3’), the model still benefits from structured
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state maintaining.
Reinforced Layout clues Miner (RLM). As shown in Ta-
ble 3, comparing to ‘#1’, ‘#2’ confirms the effectiveness
of RLM by boosting SR and SPL from 0.60, 0.54 to 0.61,
0.65. The advantage remains after training with augmenta-
tion data, as shown in ‘#4’. It proves that selecting suitable
objects will help the layout memory to keep useful informa-
tion of the environment and produce better structured navi-
gation state.
Capacity of Structure Memory. As shown in Table 4(a),
we investigate how the capacity of the layout memory in
SEM impacts the performance by changing the dimension
of Dt. Note that dim = 0 represents the base model with-
out the SEvol. We can observe that no matter the dimen-
sion of Dt, the model with SEM performs better than the
baseline model. When the dimension rises from 50 to 100,
SR on val-unseen increases to 0.61 from 0.58, which il-
lustrates that the larger capacity of the structure memory
has better expressiveness. The model performs best when
dim = 100. SR on val-unseen decreases to 0.60 when
dim = 200, which indicates that high-dimensional Dt in-
creases the convergence difficulty.
Subgraph Size. As shown in Table 4(b), we investigate
how the node number of G′

t selected by RLM influences the
performance. We compare the models with different sizes
of subgraph, i.e., node number of 3, 5 and 20. The model
with the subgraph G′

t size of 5 achieves the best perfor-
mance. When the subgraph size increases to 20, SR on val-
unseen decreases, which indicates that a large layout graph
brings more noise.
Layout Graph Construction. We investigate the differ-
ent spatial layout graph construction methods. Specifically,
we choose mapping functions m(·) to influence the decay
speed of edge weights over x, the difference of angle be-
tween objects. As shown in Table 5, x represents the an-
gle difference between two objects. When m(x) = x, the
model has best performance, which is better thanm(x) = 1.
When m(x) = ex, the model has the lowest SR on val-
unseen. Thus the edge weight should not decrease too fast
since the relationships among objects in the different direc-
tions is useful for navigation.

4.4. Visualisation

To demonstrate that the history layout information main-
tained by the SEvol model assists the agent’s decision-
making process, we visualise the trajectories generated by
the agent with or without the SEvol model. In Figure 4, the
agent with SEvol does not stop at the first exit sign, then
gets to the right destination. However, the agent without
SEvol stops at the wrong position. Due to the lack of the
object layout history information, it can not distinguish the
first and the second sign.

Instruction: Walk all the way down the hallway to the second exit sign.

Stop Stop

DestinationSEvolNvEMStart

first exit sign
second exit sign

Figure 4. The decision divergence between the SEvol and baseline
model NvEM [1]. The proposed SEvol obtains more layout clues
than the baseline model.

5. Conclusion and Discussion

The object-level layout information is critical for the
Vision-and-Language Navigation task. To utilise the lay-
out information, we propose a novel model for vision-and-
language navigation, named the Structured state-Evolution
model (SEvol), which maintains a structured memory and
evolves a structured navigation state. We offer RLM to
extract the navigation-related subgraph from the environ-
ment and SEM to maintain a layout memory for evolving
structured navigation. Extensive experiments demonstrate
the effectiveness of our proposed methods. The proposed
SEvol substantially improves VLN performance on the R2R
dataset, proving the importance of layout information in the
VLN task. We believe that this work will bring new insights
to the research around vision-and-language navigation.
Limitations. Although SEvol outperforms previous state-
of-the-art methods by a large margin, the layout informa-
tion in SEvol only contains orientation relations between
objects. Thus how to represent the layout relation con-
taining more valuable clues is worth studying in the fu-
ture. Besides, due to the insufficient environment data on
the R2R dataset, models trained on R2R may have bias over
some typical environments. Thus constructing more diverse
datasets is a primary task for the VLN community. In the fu-
ture, we will continue the research on the VLN task around
the limitations.
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