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Figure 1. An agent is required to navigate in unseen environments to reach target locations according to language instructions. It only
obtains local observations of the environment and is allowed to make local actions, i.e., moving to neighboring locations. In this work,
we propose to build topological maps on-the-fly to enable long-term action planning. The map contains visited nodes Q and navigable
nodes @ that can be reached from the previously visited nodes. Our method predicts global actions, i.e., all navigable nodes in the map,
and trades off complexity by combining a coarse-scale graph encoding with a fine-scale encoding ©) of observations at the current node @.

Abstract

Following language instructions to navigate in unseen
environments is a challenging problem for autonomous em-
bodied agents. The agent not only needs to ground lan-
guages in visual scenes, but also should explore the envi-
ronment to reach its target. In this work, we propose a
dual-scale graph transformer (DUET) for joint long-term
action planning and fine-grained cross-modal understand-
ing. We build a topological map on-the-fly to enable ef-
ficient exploration in global action space. To balance the
complexity of large action space reasoning and fine-grained
language grounding, we dynamically combine a fine-scale
encoding over local observations and a coarse-scale encod-
ing on a global map via graph transformers. The proposed
approach, DUET, significantly outperforms state-of-the-art
methods on goal-oriented vision-and-language navigation
(VLN) benchmarks REVERIE and SOON. It also improves
the success rate on the fine-grained VLN benchmark R2R.

1. Introduction

Autonomous navigation is an essential ability for intel-
ligent embodied agents. Given the convenience of natu-

ral language for human-machine interaction, autonomous
agents should also be able to understand and act accord-
ing to human instructions. Towards this goal, Vision-and-
Language Navigation (VLN) [1] is a challenging problem
that has attracted a lot of recent research [2-9]. VLN re-
quires an agent to follow language instructions and to navi-
gate in unseen environments to reach a target location. Ini-
tial approaches to VLN [2—4] use fine-grained instructions
providing step-by-step navigation guidance such as “Walk
out of the bedroom. Turn right and walk down the hallway.
At the end of the hallway turn left. Walk in front of the couch
and stop”. This fine-grained VLN task enables grounding of
detailed instructions but is less practical due to the need of
step-by-step guidance. A more convenient interaction with
agents can be achieved by goal-oriented instructions [7, 8]
such as “Go into the living room and water the plant on
the table”. This task, however, is more challenging as it re-
quires both the grounding of rooms and objects as well as
the efficient exploration of environments to reach the target.

In order to efficiently explore new areas, or correct pre-
vious decisions, an agent should keep track of already
executed instructions and visited locations in its mem-
ory. Many existing VLN approaches [2, ] implement
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memory using recurrent architectures, e.g. LSTM, and con-
dense navigation history in a fixed-size vector. Arguably,
such an implicit memory mechanism can be inefficient to
store and utilize previous experience with a rich space-
time structure. A few recent approaches [15, 16] propose
to explicitly store previous observations and actions, and
to model long-range dependencies for action prediction via
transformers [17]. However, these models only allow for
local actions, i.e., moving to neighboring locations. As a
result, an agent has to run its navigation model [N times to
backtrack N steps, which increases instability and compute.

A potential solution is to build a map [ 8] that explicitly
keeps track of all visited and navigable locations observed
so far. The map allows an agent to make efficient long-
term navigation plans. For example, the agent is able to
select a long-term goal from all navigable locations in the
map, and then uses the map to calculate a shortest path to
the goal. Topological maps have been explored by previous
VLN works [8, 19, 20]. These methods, however, still fall
short in two aspects. Firstly, they rely on recurrent architec-
tures to track the navigation state as shown in the middle of
Figure 2, which can greatly hinder the long-term reasoning
ability for exploration. Secondly, each node in topologi-
cal maps is typically represented by condensed visual fea-
tures. Such coarse representations reduce complexity but
may lack details to ground fine-grained object and scene
descriptions in instructions.

Our approach addresses both of these shortcomings, the
first one based on a transformer architecture and the second
one with a dual-scale action planning approach. We propose
a Dual-scale graph Transformer (DUET) with topological
maps. As illustrated in Figure 1, our model consists of
two modules: topological mapping and global action plan-
ning. In topological mapping, we construct a topological
map over time by adding newly observed locations to the
map and updating visual representations of nodes. Then at
each step, the global action planning module predicts a next
location in the map or a stop action. To balance fine-grained
language grounding and reasoning over large graphs, we
propose to dynamically fuse action predictions from dual
scales: a fine-scale representation of the current location
and a coarse-scale representation of the map. In particu-
lar, we use transformers to capture cross-modal vision-and-
language relations, and improve the map encoding by in-
troducing the knowledge of graph topology into transform-
ers. We pretrain the model with behavior cloning and aux-
iliary tasks, and propose a pseudo interactive demonstra-
tor to further improve policy learning. DUET significantly
outperforms state-of-the-art methods on goal-oriented VLN
benchmarks REVERIE and SOON. It also improves success
rate on fine-grained VLN benchmark R2R. In summary, the
contributions of our work are three-fold:

* We propose a dual-scale graph transformer (DUET)
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Figure 2. Method comparison. HAMT [15] stores navigation and
visual memories to capture long-range dependency in action pre-
diction, but is limited to a local action space. Graph-based ap-
proaches [8, 19,20] use topological maps to support a global ac-
tion space, but suffer from a recurrent navigation memory and a
coarse-scale visual representation. Our DUET model overcomes
previous limitations with a dual-scale encoding over the map.

with topological maps for VLN. It combines coarse-
scale map encoding and fine-scale encoding of the cur-
rent location for efficient planning of global actions.

e We employ graph transformers to encode the topolog-
ical map and to learn cross-modal relations with the
instruction, so that action prediction can rely on a long-
range navigation memory.

* DUET achieves state of the art on goal-oriented VLN
benchmarks, with more than 20% improvement on
success rate (SR) on the challenging REVERIE and
SOON datasets. It also generalizes to fine-grained
VLN task, i.e., increasing SR on R2R dataset by 4%.

2. Related work

Vision-and-language navigation (VLN). Navigation tasks
involving instruction following [2-0, 9, 21-23] have be-
come increasingly popular. Initial VLN methods mainly
adopt recurrent neural networks with cross-modal atten-
tion [2, 10, 13,24,25]. More recently, transformer-based ar-
chitectures have been shown successful in VLN tasks [26],
notably by leveraging pre-trained architectures. For exam-
ple, PRESS [27] adopts BERT [28] for instruction encod-
ing. Different variants of VILBERT are used in [29, 30]
to measure compatibility between instructions and visual
paths, but cannot be used for sequential action prediction.
Recurrent VLN-BERT [14] addresses the limitation by in-
jecting a recurrent unit in transformer architectures for ac-
tion prediction. Instead of relying on one recurrent state,
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E.T. [16] and HAMT [15] directly use transformers to cap-
ture long-range dependency to all past observations and ac-
tions (see first row in Figure 2).

Maps for navigation. The work on visual navigation has
a long tradition of using SLAM [31] to construct metric
maps [32] of the environment, using non-parametric meth-
ods [33], neural networks [34,35], or a mixture of both [36].
Anderson et al. [37] employ such metric maps for VLN
tasks. However, it is challenging and requires accurate de-
termination to construct metric map in real-time naviga-
tion. Therefore, several works [38,39] propose to represent
the map as topological structures for pre-exploring environ-
ments [40], or for back-tracking to other locations, trading-
off navigation accuracy with the path length [10, 24]. A
few recent VLN works [8, 19, 20] used topological maps
to support global action planning, but they suffer from us-
ing recurrent architectures for state tracking and also lack a
fine-scale representation for language grounding as shown
in Figure 2. We address the above limitations via a dual-
scale graph transformer with topological maps.

Training algorithms for sequential prediction. Behav-
ior cloning is the most widely used training algorithm for
sequential prediction. Nevertheless, it suffers from distri-
bution shifts between training and testing. To address the
limitation, different training algorithms have been proposed
such as scheduled sampling [4 1], DAgger [42], reinforce-
ment learning (RL) [43]. Most VLN works [13, 14] com-
bine behavior cloning and A3C RL [44]. Wang et al. [45]
propose to learn rewards via soft expert distillation. Due to
the difficulty of using RL in tasks with sparse rewards, we
instead use an interactive demonstrator to mimic an expert
and provide supervision in sequential training.

3. Method

Problem formulation. In the standard VLN setup for dis-
crete environments [2, 7, 8], the environment is an undi-
rected graph G = {V, €}, where V = {V;}£, denotes
K navigable nodes, and £ denotes connectivity edges. An
agent is equipped with an RGB camera and a GPS sensor,
and is initialized at a starting node in a previously unseen
environment. The goal of the agent is to interpret natural
language instructions and to traverse the graph to the tar-
get location and find the object specified by the instruction.
W = {w; }L | are word embeddings of the instruction with
L words. At each time step ¢, the agent receives a panoramic
view and position coordinates of its current node V;. The
panorama is split into n images R; = {r;}}_,, each rep-
resented by an image feature vector r; and a unique orien-
tation. To enable fine-grained visual perception, m object
features O, = {o;}2, are extracted in the panorama using
annotated object bounding boxes or automatic object detec-
tors [46]. In addition, the agent is aware of a few naviga-

New Observation  ;

Figure 3. Illustration of graph updating at time step ¢. Given a
new action d — e, an agent receives new observations at node e.
It then adds new nodes and updates node representations.

ble views corresponding to its neighboring nodes N (V;) as
well as their coordinates. The navigable views of N(V}) are
a subset of R;. The possible local action space A; at step ¢
contains navigating to V; € N (V;) and stopping at V;. Af-
ter the agent decides to stop at a location, it needs to predict
the location of the target object in the panorama.
Exploration and language grounding are two essential
abilities for VLN agents. However, existing works ei-
ther only allow for local actions A; [13—15] which hinders
long-range action planning, or lack object representations
O, [8, 19,20] which might be insufficient for fine-grained
grounding. Our work addresses both issues with a dual-
scale representation and global action planning.
Overview. As illustrated in Figure 1, our model consists
of two learnable modules, namely topological mapping and
global action planning. The topological mapping module
gradually constructs a topological map over time. The
global action planning module then performs dual-scale
reasoning based on coarse-scale global observations and
fine-scale local observations. In the following, we introduce
topological mapping in Sec. 3.1 and global action planning
in Sec. 3.2. We end this section by presenting our approach
to train our model and use it for inference in Sec. 3.3.

3.1. Topological Mapping

The environment graph G is initially unknown to the
agent, hence, our model gradually builds its own map us-
ing observations along the path. Let G, = {V;, &} with K,
nodes, G; C G be the map of the environment observed after
t navigation steps. There are three types of nodes in V; (see
Figure 1): (i) visited nodes Q); (ii) navigable nodes Q; and
(iii) the current node @. The agent has access to panoramic
views for visited nodes and the current node. Navigable
nodes are unexplored and are only partially observed from
already visited locations, hence, they have different visual
representations. At each step ¢, we add the current node V;
and its neighboring unvisited nodes N'(V;) to V;_1, and up-
date &, _1 accordingly as illustrated in Figure 3. Given the
new observation at V;, we also update visual representations
of the current node and navigable nodes as follows.

Visual representations for nodes. At time step ¢, the agent
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receives image features R; and object features O, of node
V;. We use a multi-layer transformer [ 7] to model spatial
relations among images and objects. The core of the trans-
former is the self-attention block:

[ ;7 OH = SelfAttn ([Rh OtD ) (D
XW,(XWe)T
Vd

where W, € R%¥? are parameters and biases are omitted.
For ease of notation, we still use R;, O; in the following
instead of R}, O; to denote the encoded embeddings.

Then we update visual representation of the current
node @ by average pooling of R; and O;. As the agent also
partially observes N'(V;) at V;, we accumulate visual rep-
resentations of these navigable nodes Q based on the cor-
responding view embedding in R;. If a navigable node has
been seen from multiple locations, we average all the par-
tial view embeddings as its visual representation. We use v;
to denote the pooled visual representation for each node V.
Such a coarse-scale representation enables efficient reason-
ing over large graphs, but may not provide sufficient infor-
mation for fine-grained language grounding especially for
objects. Therefore, we keep R¢, O; as a fine-grained visual
representation @ for the current node V; to support detailed
reasoning at a fine-scale.

SelfAttn(X) = Softmax ( ) XW,, 2

3.2. Global Action Planning

Figure 4 illustrates the global action planning module.
The coarse-scale encoder makes predictions over all previ-
ously visited nodes, but uses a coarse-scale visual represen-
tation. The fine-scale encoder instead predicts local actions
given fine-grained visual representations of the current lo-
cation. The dynamic fusion of both encoders combines pre-
dictions of global and local actions.

3.2.1 Text Encoder

To each word embedding in WV is added a positional em-
bedding [28] corresponding to the position of the word
in the sentence and a type embedding for text [47]. All
word tokens are then fed into a multi-layer transformer
to obtain contextual word representations, denoted here as
W = {wn, -, L}

3.2.2 Coarse-scale Cross-modal Encoder

The module takes the coarse-scale map G; and encoded in-
struction WV to make navigation predictions over a global
action space (Uf_;A;).

Node embedding. To the node visual feature v; is added a
location encoding and a navigation step encoding. The lo-
cation encoding embeds the location of a node in the map
in an egocentric view, which is the orientation and distance
relative to the current node. The navigation step encoding
embeds the latest visited time step for visited nodes and O

for unexplored nodes. In this way, visited nodes are en-
coded with a different navigation history to improve align-
ment with the instruction. We add a ‘stop’ node vg in the
graph to denote a stop action and connect it with all other
nodes.

Graph-aware cross-modal encoding. The encoded node
and word embeddings are fed into a multi-layer graph-
aware cross-modal transformer. Each transformer layer
consists of a cross-attention layer [47] to model relations
between nodes and instructions, and a graph-aware self-
attention layer to encode environment layout. The standard
attention in Eq. (2) only considers visual similarity among
nodes, and thus it might overlook nearby nodes which are
more relevant than distant nodes. To address the problem,
we propose the graph-aware self-attention (GASA) which
further takes into account the structure of the graph to com-
pute attention as follows:

X X T
GASA(X) = Softmax (W + M) XW,, (3)
Vd
M = EW, + b, 4)

where X denotes node representations, F is the pair-wise
distance matrix obtained from &;, and W, b, are two learn-
able parameters. We stack NV layers in the encoder and de-
note the output embedding of node V; as v;.

Global action prediction. We predict a navigation score
for each node V; in G; as below:

s¢ = FEN(,), 5)

where FFN denotes a two-layer feed-forward network. To
be noted, s§ is the stop score. In most VLN tasks, it is not
necessary for an agent to revisit a node, and thus we mask
the score for visited nodes if not specially mentioned.

3.2.3 Fine-scale Cross-modal Encoder

This part attends to the current location V; in the map
to enable fine-scale cross-modal reasoning. The input is
the instruction W, and fine-grained visual representations
{R+, O} of the current node. The module predicts navi-
gation actions in a local action space (A;), and grounds the
object at the final time step.

Visual Embedding. We add two types of location embed-
dings to Ry, O;. The first type is the current location in the
map relative to the start node. This embedding helps un-
derstand absolute locations in instruction such as “go fo the
living room in first floor”. Then for V; € N(V}), we add
a second location embedding, the relative position of each
neighboring node to the current node. It helps the encoder
to realize egocentric directions such as “turn right”. A spe-
cial ‘stop’ token rg is added for stop action.

Fine-grained cross-modal reasoning. We concatenate
[ro; R¢; O] as visual tokens and exploit a standard multi-
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Figure 4. DUET consists of topological mapping (left) and global action planning (right). The mapping module outputs a graph with K
node features {v; K |, and the current panorama encoding with image features {ri}i=, and object features {0; };=,. Node feature v and
image feature ro are used to indicate the ‘stop’ action. The global action planning uses transformers for coarse- and fine-scale cross-modal
encoding and fuses the two scales to obtain a global action score s; for each node.

layer cross-modal transformer [47] to model vision and lan-
guage relations. The output embeddings of visual tokens
are represented as 7', Re, Oy respectively.

Local action prediction and object grounding. We pre-
dict a navigation score sf in local action space .A; similar
to Eq. (5). Moreover, as the goal-oriented VLN task re-
quires object grounding, we further use a FFN to generate
object scores based on O,.

3.2.4 Dynamic Fusion

We propose to dynamically fuse coarse- and fine-scale ac-
tion predictions for better global action prediction. How-
ever, the fine-scale encoder predicts actions in a local ac-
tion space which does not match with the coarse-scale en-
coder. Therefore, we first convert local action scores s{ €
{stop, N (V;)} into the global action space. In order to nav-
igate to other unexplored nodes that are not connected with
the current node, the agent needs to backtrack through its
neighboring visited nodes. Therefore, we sum over scores
of visited nodes in N(V;) as an overall backtrack score
Sback- We keep the values for s{ € {stop, N'(V;)} and use
the constant sp,ck for the others. Hence, the converted global
action scores are:
1 Sback lf‘/z S Vt *N(‘/t)a
s = (6)

1 .
sf otherwise.

79
At each step, we concatenate Uy from coarse-scale encoder
and 7o from fine-scale encoder to predict a scalar for fusion:

o+ = Sigmoid(FEN([d; 7o]))- (7

The final navigation score for V; is:

’

si=0ys+ (1 —oy)s! . (3)

3.3. Training and Inference

Pretraining. As shownin [15,16,26], it is beneficial to pre-
train transformer-based VLN models with auxiliary tasks as
initialization. Therefore, we first pretrain our model based
on off-line expert demonstrations with behavior cloning
and other common vision-and-language proxy tasks. We
use masked language modeling (MLM) [28], masked re-
gion classification (MRC) [48], single-step action predic-
tion (SAP) [15] and object grounding (OG) [49] if object
annotations are available. The SAP and OG loss in behav-
ior cloning given a demonstration path P* is as follows:

T
Lsap = thl —log p(a; W, PZ,) ©)
LOG = —lOg p(o* |W, PT) (10)

where a; is the expert action of a partial demonstration path

* ., and o* is the groundtruth object at the last location Pr.
More details are presented in the supplementary material.
Policy learning via an interactive demonstrator. Behav-
ior cloning suffers from distribution shifts between training
and testing. Therefore, we propose to further train the pol-
icy with the supervision from a pseudo interactive demon-
strator (PID) 7* similar to the DAgger algorithm [42]. Dur-
ing training we have access to the environment graph G,
hence 7* can utilize G to select the next target node, i.e., a
navigable node with the overall shortest distance from the
current node and to the final destination. In each iteration,
we use the current policy to sample a trajectory P and use
7* to obtain pseudo supervision:

T *
Lep =), —logp(af W, P<) (1)
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where a?* is our pseudo target at step t. We combine the
original expert demonstrations with our pseudo demonstra-
tions in policy learning with a balance factor A:

L = ALsap + Lpp + Log. (12)

Inference. At each time step during testing, we update the
topological map as introduced in Sec. 3.1 and then predict
a global action as explained in Sec. 3.2. If it is a naviga-
tion action, the shortest route planning module employs the
Floyd algorithm to obtain a shortest path from the current
node to the predicted node given the map, otherwise the
agent stops at the current location. The agent is forced to
stop if it exceeds the maximum action steps. In such case, it
will return to a node with maximum stop probability as its
final prediction. At the stopped location, the agent selects
an object with maximum object prediction score.

4. Experiments
4.1. Datasets

We focus our evaluation on goal-oriented VLN bench-
marks REVERIE [7] and SOON [8], which require fine-
grained object grounding and advanced exploration capa-
bilities to find a remote object. We also evaluate our model
on the widely used VLN benchmark R2R [2], which has
step-by-step instructions and no object localization.

REVERIE contains high-level instructions mainly describ-
ing target locations and objects. Instructions contain 21
words on average. Given predefined object bounding boxes
provided for each panorama, the agent should select the cor-
rect object bounding box at the end of the navigation path.
The length of expert paths ranges from 4 to 7 steps.

SOON also provides instructions describing target rooms
and objects. The average length of instructions is 47 words.
SOON does not provide object boxes and requires the agent
to predict object center locations in the panorama. Hence,
we use an automatic object detector [46] to obtain candidate
object boxes. The length of expert paths ranges from 2 to
21 steps with 9.5 steps on average.

R2R contains step-by-step navigation instructions. The av-
erage length of instructions is 32 words. The average length
of expert paths is 6 steps.

Examples from REVERIE and R2R are illustrated in Fig-
ure 5. Further details are in the supplementary material.

4.2. Evaluation Metrics

Navigation metrics. We use standard metrics [1] to mea-
sure navigation performance, i.e., Trajectory Length (TL):
average path length in meters; Navigation Error (NE): av-
erage distance in meters between agent’s final location and
the target; Success Rate (SR): the ratio of paths with NE

Table 1. Comparison of different scales and dual-scale fusion strat-
egy on REVERIE val unseen split.

scale  fusion |OSR?T SRt SR 1 SPLt RGSt RGSPLt

OSR

fine - ‘30.96 28.86 93.22 2357 2039 16.64

coarse - 46.44 36.52 78.64 2598 - -
mul 2verage 51.86 45.81 88.33 31.94 3249 22.78
dynamic | 51.07 46.98 91.40 33.73 32.15 23.03

less than 3 meters; Oracle SR (OSR): SR given oracle stop
policy; and SR penalized by Path Length (SPL).

Object grounding metrics. To evaluate both the naviga-
tion and object grounding, we follow [7] and adopt Remote
Grounding Success (RGS): the proportion of successfully
executed instructions. We also use RGS penalized by Path
Length (RGSPL). All the metrics are the higher the better
except for TL and NE.

4.3. Implementation Details

Features. For images, we adopt ViT-B/16 [50] pretrained
on ImageNet to extract features. For objects, we use the
same ViT on the REVERIE dataset as it provides bounding
boxes, while we use the BUTD object detector [46] on the
SOON dataset. The orientation feature [1 1] contains sin(-)
and cos(+) values for heading and elevation angles.

Model architecture. We use 9, 2, 4 and 4 transformer
layers in the text encoder, panorama encoder, coarse-scale
cross-modal encoder and fine-scale cross-modal encoder,
respectively. Other hyper-parameters are set the same as in
LXMERT [47], e.g., the hidden layer size is 768. We utilize
the pretrained LXMERT for initialization.

Training details. On the REVERIE dataset, we first pre-
train DUET with the batch size of 32 for 100k iterations
using 2 Nvidia Tesla P100 GPUs. We automatically gener-
ate synthetic instructions to augment the dataset [10]. Then
we use Eq. (12) to fine-tune the policy with the batch size of
8 for 20k iterations on a single Tesla P100. The best epoch
is selected by SPL on val unseen split. More details are
provided in supplementary material.

4.4. Ablation Study

We ablated our approach on the REVERIE dataset. All
results in this section are reported on the val unseen split.
1) Coarse-scale vs. fine-scale encoders. We first evalu-
ate coarse-scale and fine-scale encoders separately for the
REVERIE navigation task in the upper part of Table 1. As
the coarse-scale encoder is not fed with object representa-
tions, it is unable to select target objects for the REVERIE
task. However, it outperforms the fine-scale version except
for %, for which the fine-scale encoder achieves much
higher performance. This ratio estimates the performance
of the stop action (the OSR is the success rate under oracle
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Table 2. Ablation of graph-aware self-attention (GASA) for graph
encoding on REVERIE val unseen split.

Table 3. Ablation of training losses on REVERIE val unseen split.

Pretrain Finetune
Fusion GASA |OSRT SRT SPLT RGST RGSPL? SAP OG Aux RL pip|OSRT SRT SPLT RGST RGSPLT
werase X | 4922 4450 3090 2988 20.73 VX X X x |3845 3530 2455 - -
g v | 51.86 4581 3194 3249 2278 VvV X x  x |4024 37.80 26.40 23.89 16.36
[P s me e 7 7 memamn e
ynamic 15107 4698 3373 3215  23.03 oo j : : : : .

stop policy) and indicates that fine-grained visual represen-
tations are essential to determine the target location speci-
fied in the instruction. However, the fine-scale encoder ob-
tains a low OSR score, suggesting it lacks exploration due
to a limited action space. The coarse-scale encoder instead
benefits from the constructed map and is able to efficiently
explore more areas with high OSR and SPL metrics.

2) Dual-scale fusion strategy. As the fine- and coarse-
scale encoders are complementary, we compare different
approaches to fuse the two encoders in the bottom part of
Table 1. Both fusion methods outperform the fine-scale and
coarse-scale encoder by a large margin. Our proposed dy-
namic fusion achieves more efficient exploration compared
to the average fusion with 1.79% improvement on SPL.

3) Graph-aware self-attention. Table 2 ablates models
with or without graph topology encoded in the transformer
as in Eq. (3). It shows that the awareness of the graph struc-
tures is more beneficial to improve the SPL score, which
emphasizes navigating to the target with shorter distance.
4) Training losses. In Table 3, we compare different train-
ing losses for DUET. The first row only uses Lgap in be-
havior cloning. As it is not trained for object grounding, we
can ignore RGS and RGSPL metrics. The second row adds
the object supervision in training. It also improves navi-
gation performance, which suggests that additional cross-
modal supervisions such as association between words and
objects can be beneficial to VLN tasks. In the third row,
we add common auxiliary proxy tasks MLM and MRC
in training, which are more helpful for object grounding.
As instructions in REVERIE mainly describe the final tar-
get, these two losses are more relevant to object grounding.
We further fine-tune the model with reinforcement learning
(RL) [14, 15] or our PID in the last two rows to address dis-
tribution shift issue in behavior cloning. Both RL and PID
achieve significant improvement and PID outperforms RL.
5) Data augmentation with synthetic instructions. We
evaluate contributions of augmenting training data with syn-
thetic instructions. The upper block of Table 4 presents re-
sults of pretraining with or without the augmented data. We
can see that the synthetic data is beneficial in the pretraining
stage and improves SPL and RGSPL by 1.63% and 1.76%
respectively. Based on the initialization of the model in row
2, we use PID to further improve the policy. The results are

51.07 46.98 33.73 32.15 23.03

Table 4. Ablation of augmented speaker data in training on
REVERIE val unseen split.

PID Aug | OSRT SRt SPLt RGS?t

X 37.29 3456 2556  23.00 16.64
v 37.63 36.81 27.19 25.05 18.40

RGSPL{

X
v X 51.07 4698 33.73 32.15 23.03
v 52.09 46,58 3272 31.75 22.18

Table 5. Comparison with the state of the art on SOON dataset.

Split | Methods | TL OSRt SRt SPLt RGSPLt

Val | GBE [§] 28.96 28.54 19.52 13.34 1.16

Unseen | DUET (Ours) | 36.20 50.91 36.28 22.58 3.75
Test | GBE [8] 27.88 21.45 1290 9.23 0.45
Unseen | DUET (Ours) | 41.83 43.00 33.44 21.42 4.17

shown in the bottom block of Table 4. The synthetic data
however does not bring improvements to the performance.
We hypothesize that auxiliary proxy tasks in pretraining
help to take advantage from the noisy synthetic data, but
the policy learning still requires cleaner data.

4.5. Comparison with State of the Art

REVERIE. Table 6 compares our final model with state-
of-the-art models on the REVERIE dataset. Our model sig-
nificantly beats the state of the arts on all evaluation metrics
on the three splits. For example, on the val unseen split, our
model outperforms the previous best model HAMT [15] by
14.03% on SR, 3.53% on SPL and 5.75% on RGSPL. Our
model also generalizes better on the test unseen split, where
we improve over HAMT by 22.11% on SR, 9.39% on SPL
and 8.98% on RGSPL. This clearly demonstrates the effec-
tiveness of our dual-scale action planning model with topo-
logical maps. Note that none of the previous methods has
employed a map for navigation on this dataset.

SOON. Table 5 presents the results on the SOON dataset.
Our model also achieves significant better performance than
the previous graph-based approach GBE [8], with 20.54%
gains on SR and 12.19% on SPL on test unseen split. The
results, however, are much lower than those on REVERIE.
This is because SOON contains fewer and more challenging
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Table 6. Comparison with the state-of-the-art methods on REVERIE dataset.

Val Seen Val Unseen Test Unseen

Methods Navigation Grounding Navigation Grounding Navigation Grounding

TL OSRfT SRt SPLT RGST RGSPL{| TL OSR{T SRt SPLT RGST RGSPLT| TL OSRT SRT SPLT RGST RGSPLT
Human | - - - - - -] - - - - - |21.18 86.83 81.51 53.66 77.84 51.44
Seq2Seq [2] 12.88 35.70 29.59 24.01 1897 1496 |11.07 8.07 4.20 2.84 2.16 1.63 [10.89 6.88 3.99 3.09 2.00 1.58
RCM [12] 10.70 29.44 23.33 21.82 1623 1536 |[11.98 1423 929 697 4.89 389 |10.60 11.68 7.84 6.67 3.67 3.14
SMNA [11] 7.54 4329 41.25 39.61 30.07 2898 |[9.07 11.28 8.15 6.44 454 361 |923 839 580 453 310 239
FAST-MATTN [7]|16.35 55.17 50.53 45.50 31.97 29.66 |45.28 28.20 1440 7.19 7.84  4.67 [39.05 30.63 19.88 11.61 11.28  6.08
SIA [49] 13.61 65.85 61.91 57.08 4596 42.65 |41.53 44.67 31.53 16.28 22.41 11.56 |48.61 44.56 30.80 14.85 19.02  9.20
RecBERT [14] |13.44 5390 51.79 47.96 3823 35.61 [16.78 35.02 30.67 24.90 18.77 15.27 |15.86 32.91 29.61 23.99 16.50 13.51
Airbert [30] 15.16 48.98 47.01 42.34 32.75 30.01 |18.71 34.51 27.89 21.88 18.23 14.18 [17.91 34.20 30.28 23.61 16.83 13.28
HAMT [15] 12.79 47.65 43.29 40.19 2720 25.18 |14.08 36.84 32.95 30.20 18.92 17.28 |13.62 33.41 30.40 26.67 14.88 13.08
DUET (Ours) \13.86 73.86 71.75 63.94 57.41 51.14 \22.11 51.07 46.98 33.73 32.15 23.03 \21.30 56.91 52.51 36.06 31.88 22.06

‘ REVERIE: Go to the living room and wipe down the end table. |

R2R: Walk from telephone down hall and turn left down hall just before
vase. Walk through archway into bedroom. Stop between bed and chair.

(over ] ]

Figure 5. Predicted trajectories of DUET and the state-of-the-art
HAMT [15]. The green and checkered flags denote start and tar-
get locations respectively. The dashed lines denote global actions.
DUET is able to make more efficient explorations and correct its
previous decisions, while HAMT is limited by its local actions.

training data (see supplementary material for analysis).
R2R. As shown in Table 7, DUET beats state-of-the-art ap-
proaches on success rate (SR) by 6% and 4% on val un-
seen and test unseen split respectively. However, it achieves
comparable performances on SPL. This can be explained by
the fact that for map-based approaches backtracking is en-
couraged which makes the trajectory length longer. We fur-
ther compare a coarse-scale DUET for fair comparison with
previous graph-based approaches [8, 19, 20] which do not
use a fine-scale encoder. Even without using the fine-scale
representation, DUET still outperform them by a margin,
showing the effectiveness of our graph transformer. It also
demonstrates DUET is able to backtrack more efficiently.
Figure 5 visualizes some qualitative examples.

Table 7. Comparison with the state of the art on R2R dataset.
Methods are grouped according to the used memories: ‘Rec’ for
recurrent state, ‘Seq’ for sequence and ‘Map’ for topological map.

Mem | Methods Val Unseen Test Unseen
; TL{ NE| SRt SPLt TL| NEJ SRT SPLt
Seq2Seq [2] 839 781 22 - 813 785 20 18
SE[10] - 662 35 - 1482 662 35 28
PRESS [27] 1036 528 49 45 10.77 549 49 45
Ree [ENVDrop [13] (1070 522 52 48 11.66 523 51 47
€€ | AuxRN [51] - 528 55 50 - 515 55 51
PREVALENT [26]|10.19 471 58 53 1051 530 54 51
RelGraph [52] | 9.99 4.73 57 53 1029 475 55 52
RecBERT[14] |12.01 3.93 63 57 1235 409 63 57
Seq |HAMT[15] 11.87 365 65 59 12.65 411 63 58
°d I HAMT-e2¢ [15] |11.46 229 66 61 1227 3.93 65 60
EGP [19] - 483 56 44 - 534 53 42
GBE [8] - 520 54 43 - 518 53 43
Map |SSM [20] 207 432 62 45 204 457 61 46
DUET-coarse  |12.96 3.67 68 59 13.08 3.93 67 58
DUET (Ours)  |13.94 331 72 60 14.73 3.65 69 59

5. Conclusion

We propose DUET (dual-scale graph transformer) for
vision-and-language navigation (VLN) based on online
constructed topological maps. It uses graph transform-
ers to reason over a coarse-scale map representation for
long-term action planning and a fine-scale local repre-
sentation for fine-grained language grounding. The two
scales are dynamically combined in the navigation pol-
icy. DUET achieves state-of-the-art performance on VLN
benchmarks REVERIE, SOON and R2R.
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