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Abstract

In this paper, we propose a conceptually novel, effi-
cient, and fully convolutional framework for real-time in-
stance segmentation. Previously, most instance segmen-
tation methods heavily rely on object detection and per-
form mask prediction based on bounding boxes or dense
centers. In contrast, we propose a sparse set of instance
activation maps, as a new object representation, to high-
light informative regions for each foreground object. Then
instance-level features are obtained by aggregating fea-
tures according to the highlighted regions for recognition
and segmentation. Moreover, based on bipartite match-
ing, the instance activation maps can predict objects in a
one-to-one style, thus avoiding non-maximum suppression
(NMS) in post-processing. Owing to the simple yet effec-
tive designs with instance activation maps, SparseInst has
extremely fast inference speed and achieves 40 FPS and
37.9 AP on the COCO benchmark, which significantly out-
performs the counterparts in terms of speed and accuracy.
Code and models are available at https://github.
com/hustvl/SparseInst.

1. Introduction
Instance segmentation aims to generate instance-level

segmentation for each object in an image. Based on the ad-
vances in deep convolutional neural networks and object de-
tection, recent works [4,9,14,18,40] have made tremendous
progress in instance segmentation and achieved impressive
results on large-scale benchmarks, e.g., COCO [24]. How-
ever, developing real-time and efficient instance segmenta-
tion algorithms is still challenging and urgent, especially for
autonomous driving and robotics.

Prevalent methods tend to adopt detectors [30, 37] to lo-
calize instances first and then segment through region-based

†Xinggang Wang is the corresponding author.
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Figure 1. Speed-and-accuracy Trade-off. The proposed Sparse-
Inst outperforms most state-of-the-art methods in both speed and
accuracy for real-time instance segmentation. Inference speeds are
measured on one NVIDIA 2080Ti.

convolutional networks [14], dynamic convolutions [36],
etc. Those methods are conceptually intuitive and achieve
great performance. However, when it comes to real-time in-
stance segmentation, those methods suffer from some limi-
tations. Firstly, most methods employ dense anchors (cen-
ters) to localize and then segment objects, e.g., more than
5456 instances (given 512 × 512 input) in CondInst [36],
which incur lots of redundant predictions and much compu-
tation burden. Besides, the receptive field of each pixel is
limited and the contextual information is insufficient if we
densely localize objects by centers or anchors [6, 12]. Sec-
ondly, most methods require multi-level prediction to han-
dle the scale variation of natural objects, which inevitably
increases the latency. Region-based methods [14] apply
RoI-Align to acquire region features, making it difficult to
deploy algorithms to edge/embedded devices. Finally, the
post-processing also requires attention since the sorting and
NMS as well as processing masks are time-consuming, es-
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(a) center-based (c) instance activation map(b) region-based

Figure 2. Object Representation. (a) center-based representation
may fail to hit the instance; (b) region-based representation may
contain features from other instances and background; (c) instance
activation map highlights instance-aware pixels.

pecially for dense predictions. It’s worth noting that even
improved NMS [1, 41] still takes ∼ 2ms, 10% of total time.

In this paper, we present a new highlight to segment
paradigm for real-time instance segmentation. Instead of
using boxes or centers to represent objects, we exploit a
sparse set of instance activation maps (IAM) to highlight in-
formative object regions, which is motivated by CAM [49]
widely used in weakly-supervised object localization. In-
stance activation maps are instance-aware weighted maps
and instance-level features can be directly aggregated ac-
cording to the highlighted regions. Then, recognition and
segmentation are performed based on the instance fea-
tures. Figure 2 compares region-based, center-based, and
IAM-based representations. In comparison, IAM has the
following advantages: (1) it highlights discriminative in-
stance pixels, suppresses obstructive pixels, and conceptu-
ally avoids the incorrect instance feature localization prob-
lems in center-/region-based methods; (2) it aggregates in-
stance features from the whole image and offers more con-
texts; (3) computing instance features with activation maps
is rather simple without extra operation like RoI-Align [14].
However, different from previous works [14, 37, 41] using
spatial priors (i.e., anchors and centers) to assign targets,
instance activation maps are conditioned on the input and
arbitrary for different objects and it is infeasible to assign
targets with hand-crafted rules for training. To address that,
we formulate the label assignment for instance activation
maps as a bipartite matching problem, which is recently
proposed in DETR [3]. Specifically, each target will be as-
signed to an object prediction as well as its activation map
through Hungarian algorithm [31]. During training, the bi-
partite matching facilitates the instance activation maps to
highlight individual objects and inhibit the redundant pre-
dictions, thus avoiding NMS during inference.

Further, we materialize this paradigm and propose Spar-
seInst, an extremely simple but efficient method for instance
segmentation. SparseInst adopts single-level prediction and
consists of a backbone to extract image features, an encoder
to enhance the multi-scale representation for single-level
features, and a decoder to compute the instance activation
maps, perform recognition and segmentation, as shown in

Figure 3. SparseInst is a pure and fully convolutional frame-
work and independent from detectors. Benefiting from the
facts: (1) the sparse predictions through the instance acti-
vation maps; (2) single-level prediction; (3) compact struc-
tures; (4) simple post-processing without NMS or sorting,
SparseInst has extremely fast inference speed and achieves
37.9 mask AP on MS-COCO test-dev with 40.0 FPS
on one NVIDIA 2080Ti GPU, outperforming most state-of-
the-art methods for real-time instance segmentation. Given
448× input, SparseInst achieves 58.5 FPS with competitive
accuracy, which is faster than previous methods. We hope
the proposed SparseInst can serve as a general framework
for (real-time) end-to-end instance segmentation.

2. Related Work
According to object representations, existing methods

for instance segmentation can be divided into two groups,
i.e. region-based methods and center-based methods.

Region-based Methods. Region-based methods rely on
object detectors, e.g., Faster R-CNN [30], to detect ob-
jects and acquire bounding boxes, and then apply RoI-
Pooling [30] or RoI-Align [14] to extract region features for
pixel-wise segmentation. Mask R-CNN [14], as the repre-
sentative method, extends Faster R-CNN by adding a mask
branch to predict masks for objects and offers a strong base-
line for end-to-end instance segmentation. [9,19,35,45] ad-
dress the low-quality segmentation and coarse boundaries
arising in Mask R-CNN and present several approaches to
refine the mask predictions for high-quality masks. [2,5] ex-
ploit cascade structures to progressively improve the object
localization for more accurate mask prediction.

Center-based Methods. Recently, many approaches em-
ploy the single-stage detectors, especially the anchor-free
detectors [37]. These approaches represent objects by cen-
ter pixels instead of bounding boxes and segment using the
center features. Several methods [43,44] explores the object
contours but show some limitations for objects having hol-
lows or multiple parts. YOLACT [1] and maYOLACT [29]
generate instance masks by the assembly of mask coeffi-
cients and prototype masks. MEInst [46] and CondInst [36]
extend FCOS [37] by predicting the encoded mask vector
or mask kernels for dynamic convolution [7] respectively.
SOLO [40, 41], as a detector-free method, yet localize and
recognize objects by centers as well as generating the mask
kernels. The proposed SparseInst exploits sparse instance
activation maps to represent objects with a simple pipeline
and high efficiency.

Bipartite Matching for Object Detection. The bipartite
matching has been widely explored for end-to-end object
detection [3, 31–34, 39, 51], which avoids NMS in post-
processing. Recently, SOLQ [10] and ISTR [17] exploit the
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mask encodings for instance segmentation. QueryInst [13]
extends [34] by adding dynamic mask heads. Besides,
[8,21,38,47] employ transformers with instance and seman-
tic queries to obtain panoptic segmentation results. How-
ever, our method aiming at fast speed is motivated by the in-
stance activation maps as object representation for instance-
level recognition and segmentation. And the concise yet ef-
fective representation drives the framework rather fast.

3. Method
In this section, we first investigate the instance activa-

tion maps for representing objects. Then we present a novel
framework which exploits the sparse set of instance activa-
tion maps to highlight objects and aggregate instance fea-
tures for instance-level recognition and segmentation.

3.1. Instance Activation Maps

Formulation. Intuitively, instance activation maps are
instance-aware weighted maps which aim to highlight the
informative regions for each object. And the features
from the highlighted regions are semantically abundant and
instance-aware for both recognizing and separating objects.
Therefore, we directly aggregate the features according to
the activation maps as the instance features. Given the in-
put image features X ∈ RD×(H×W ), instance activation
maps can be formulated as: A=Fiam(X) ∈ RN×(H×W ),
where A is the sparse set of N instance activation maps and
Fiam(·) is a simple network with a sigmoid non-linearity.
Then we can obtain the sparse set of instance features
by gathering distinctive information from the input fea-
ture maps X with the instance activation maps through:
z=Ā ·XT ∈ RN×D, where z = {zi}N are the feature rep-
resentations for N potential objects in the image and Ā is
normalized to 1 for each instance map. The sparse instance-
aware features {zi}N are straightforwardly used for conse-
quent recognition and instance-level segmentation.

Learning Instance Activations. Instance activation maps
don’t exploit explicit supervisions, e.g., instance masks, for
learning to highlight objects. Essentially, the subsequent
modules for recognition and segmentation provide instance
activation maps with indirect supervisions, which encour-
age the Fiam to discover informative regions. Addition-
ally, the supervisions are instance-aware due to the bipartite
matching, which further enforces the Fiam to discriminate
objects and activate only one object per map. Consequently,
the proposed instance activation maps are capable to high-
light discriminative regions for individual objects.

3.2. SparseInst

As illustrated in Figure 3, SparseInst is a simple, com-
pact, and unified framework which consists of a backbone
network, an instance context encoder, and an IAM-based

decoder. The backbone network, e.g., ResNet [15], ex-
tracts multi-scale features from the given image. The in-
stance context encoder is attached to the backbone to en-
hance more contextual information and fuse the multi-scale
features. For faster inference, the encoder outputs single-
level features of 1

8× resolution w.r.t. the input image, and
the features will be fed to subsequent IAM-based decoder
to generate instance activation maps to highlight foreground
objects for classification and segmentation.

3.3. Instance Context Encoder

Objects in natural scenes tend to have wide range of
scales, which is prone to degrade the performance of de-
tectors. Most approaches adopt multi-scale feature fusions,
e.g., feature pyramids [22], and multi-level prediction to fa-
cilitate the recognition for objects of different scales. Nev-
ertheless, using multi-level pyramidal features increase the
computation burden, especially for detectors using heavy
heads [23, 37], as well as producing amounts of duplicate
predictions. Conversely, our method aiming at faster in-
ference leverages single-level prediction. Considering the
limitations of the single-level features for objects of vari-
ous scales, we reconstruct the feature pyramid networks and
present an instance context encoder, as illustrated in Fig-
ure 3. The instance context encoder adopts a pyramid pool-
ing module [48] after C5 to enlarge the receptive fields and
fuses features from P3 to P5 to further enhance the multi-
scale representations for the output single-level features.

3.4. IAM-based Segmentation Decoder

Figure 3 illustrates the IAM-based segmentation decoder
which contains an instance branch and a mask branch. The
two branches are composed of a stack of 3 × 3 convolu-
tions with 256 channels. The instance branch aims to gen-
erate instance activation maps and N instance features for
recognition and instance-aware kernel. The mask branch is
designed to encode instance-aware mask features.

Location-Sensitive Features. Empirically, objects are lo-
calized in different positions and the spatial locations can be
used as cues to distinguish instances. Hence, we construct
two-channel coordinate features which consists of normal-
ized absolute (x, y) coordinates of spatial locations, which
is similar to CoordConv [25]. Then we concatenate the out-
put features from the encoder with coordinate features to
enhance the instance-aware representation.

Instance Activation Maps Fiam. We adopt a simple yet
effective 3×3 convolution with sigmoid as the vanilla Fiam,
which highlights each instance with a single activation map.
Accordingly, instance features {zi} are obtained through
activation maps, in which each potential object is encoded
into a 256-d vector. Then three linear layers are applied
for classification, objectness score, and mask kernel {wi}N .
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Figure 3. The architecture of SparseInst. SparseInst contains three main components: backbone, encoder and IAM-based decoder.
Given the input image, the backbone extracts the multi-scale image features (i.e., {C3,C4,C5}). The encoder employs pyramid pooling
module (PPM) [48] to enlarge the receptive field and fuses the multi-scale features. ‘4×’or ‘2×’ denote the upsampling by a factor 4 or
2. The IAM-based decoder consists of two branches, i.e. an instance branch and a mask branch. In the instance branch, the ‘IAM’ module
predicts the instance activation maps (shown in the right column) to acquire the instance features {zi}N for recognition and mask kernels.
The mask branch aims to provide mask features M and will be multiplied with the predicted kernels to generate segmentation masks.

Further, to obtain fine-grained instance features, we present
the group instance activation maps (Group-IAM) to high-
light a groups of regions for each object, i.e., multiple ac-
tivation maps per object. Specifically, we adopt a 4-group
3×3 convolution as the Fiam for Group-IAM and aggregate
instance features by concatenating features from a group.

IoU-aware Objectness. We discover that the one-to-one
assignment will enforce most predictions to be background
which may lower the classification confidence and cause
misalignments between classification scores and segmenta-
tion masks. To alleviate the above issues, we introduce the
IoU-aware objectness to adjust the classification outputs.
We adopt the estimated IoU between predicted masks and
ground-truth masks as the targets for foreground objects.
The ground-truth objectness for instances is varied and can
facilitate the network to separate instances. Different from
[18] using an extra head to predict IoU score based on mask
predictions, we only adopt IoUs as the objectness targets.
At inference stage, we rescore the classification probability
pi with the IoU-aware objectness si and obtain the ultimate
probability p̃i =

√
pi · si, where i denotes the i-th instance.

Mask Head. With the instance-aware mask kernels {wi}N
generated by the instance branch, the segmentation mask
for each instance can be directly produced by mi = wi ·M,
where mi is the i-th predicted mask and its corresponding
kernel is wi ∈ R1×D. M ∈ RD×H×W is the mask fea-
tures. The final segmentation mask will be upsampled (via
bilinear interpolation) to 1× w.r.t. original resolution.

3.5. Label Assignment and Bipartite Matching Loss

The proposed SparseInst outputs a fixed-size set of pre-
dictions and it’s difficult to assign ground-truth objects with

hand-crafted rules. To tackle the end-to-end training, we
formulate the label assignment as bipartite matching [3].
Firstly, we propose a pairwise dice-based matching score
C(i, k) for i-th prediction and k-th ground-truth object in
Eq. (1), which is determined by classification scores and
dice coefficients of segmentation masks.

C(i, k) = p1−α
i,ck

· DICE(mi, tk)
α, (1)

where α is a hyper-parameter to balance the impacts of clas-
sification and segmentation and empirically set to 0.8. ck is
termed as the category label for the k-th ground-truth object
and pi,ck indicates the probability for the category ck of i-th
prediction. mi and tk are the masks of i-th prediction and
k-th ground-truth object respectively. The dice coefficient
is defined in Eq. (2).

DICE(m, t) =
2
∑

x,y mxy · txy∑
x,y m

2
xy +

∑
x,y t

2
xy

, (2)

where mxy and txy denote the pixels at (x, y) in the pre-
dicted mask m and ground-truth mask t respectively. Then,
we adopt Hungarian algorithm [31] to find the optimal
match between K ground-truth objects and N predictions.

The training loss is defined in Eq. (3), involving losses
for classification, objectness prediction, and segmentation.

L = λc · Lcls + Lmask + λs · Ls, (3)

where Lcls is focal loss [23] for object classification, Lmask

is the mask loss and Ls is the binary cross entropy loss for
the IoU-aware objectness. Considering the severe imbal-
ance problem between background and foreground in full-
resolution instance segmentation, we adopt a hybrid mask
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loss in Eq. (4) by combining the dice loss [27] and pixel-
wise binary cross entropy loss for segmentation mask.

Lmask = λdice · Ldice + λpix · Lpix, (4)

where Ldice and Lpix are dice loss and binary cross entropy
loss, λdice and λpix are corresponding coefficients.

3.6. Inference

The inference stage of SparseInst is much straightfor-
ward and concise. Forward the given images through the
whole network and we can directly obtain N instances with
classification scores {p̃i}N and corresponding raw segmen-
tation masks {mi}N . Then we can determine the category
and confidence score for each instance and obtain the fi-
nal binary mask by thresholding. Sorting and NMS are not
needed, thus making the inference procedure very fast.

4. Experiments
In this section, we evaluate the accuracy and inference

speed of our proposed SparseInst on the challenging MS-
COCO dataset and provide detailed ablation studies about
our framework as well as qualitative results.

Dataset and Evaluation Metrics. Our experiments are
conducted on the COCO dataset [24] which consists of 118k
images for training, 5k for validation and 20k for testing.
All models are trained on train2017 and evaluated on
val2017. As for instance segmentation, we mainly re-
port the AP for segmentation mask. For inference speed,
we measure the frames per second (FPS) including the
post-processing on one NVIDIA 2080Ti GPU. TensorRT or
FP16 is not used for acceleration.

Implementation Details. SparseInst is built on Detec-
tron2 [42] and trained over 8 GPUs with a total of 64 images
per mini-batch. Following the training schedule in [33], we
adopt AdamW [26] optimizer with a small initial learning
rate 5 × 10−5 with weight decay 0.0001. All models are
trained for 270k iterations and learning rate is divided by
10 at 210k and 250k respectively. The backbone is ini-
tialized with the ImageNet-pretrained weights with frozen
batchnorm layers and other modules are randomly initial-
ized. We adopt random flip and scale jitter in training. The
shorter side of images are randomly sampled from 416 to
640 pixels, while the longer side is less or equal to 864. Un-
less specified, we evaluated the speed and accuracy with the
shorter size 640. Loss coefficients λc, λdice, λpix, and λs

are empirically set to 2.0, 2.0, 2.0, and 1.0 respectively. We
adopt N=100 instances for each image. Besides, we provide
a MindSpore [28] implementation of SparseInst.

4.1. Main Results

Since the SparseInst aims for real-time instance segmen-
tation, we mainly compare SparseInst with the state-of-the-

art methods towards real-time instance segmentation with
respect to accuracy and inference speed. Results are eval-
uated on COCO test-dev. We provide SparseInst with
group instance activation maps and different backbones to
achieve the trade-off between speed and accuracy. We adopt
ResNet-50 [15] to reach higher inference speed and its vari-
ant ResNet-d [16] to achieve better accuracy but with higher
latency and aim for providing a stronger baseline for real-
time instance segmentation. Additionally, we adopt a sim-
ple random crop and larger weight decay (0.05) to bet-
ter compare with OrienMask [11] and YOLACT [1]. Ta-
ble 1 shows that our SparseInst is superior to most real-
time methods with better performance and faster inference
speed. SparseInst outperforms the popular real-time ap-
proach YOLACT by a remarkable margin with faster speed.
Figure 1 illustrates the speed-accuracy trade-off curve and
the proposed SparseInst with R50-d and DCN [50] ob-
tains better trade-off compared with the counterparts and
achieves 58.5 FPS and 35.5 mask AP with 448× input,
which is superior to most real-time methods (≥ 30FPS).

4.2. Ablation Experiments

We conduct a series of ablations to investigate Sparse-
Inst, including experimental details about the components.

Instance Context Encoder. Table 2 shows the impacts
of the modifications to the vanilla feature pyramids [22].
Adding the pyramid pooling module for larger receptive
fields and more object contexts brings significant improve-
ment by 1.5 AP and 2.2 AP for larger objects (APL) while
incurs negligible latency. Moreover, fusing the multi-scale
features from P3 to P5 further enhances the multi-scale fea-
ture representation and improves the performance by 0.7
AP and 2.0 APL. The context encoder is rather essential
for single-level prediction to cope with the limited receptive
fields and provide better multi-scale features, thus bridging
the gap between multi-level and single-level methods.

Structure of the Decoder. In Table 3, we compare differ-
ent structures of the two branches in the IAM-based De-
coder. We adopt 4 conv layers with 256 channels as the ba-
sic setting for both branches and evaluate the performance
of models with different depths or widths. Reducing width
or reducing depth will lower the performance but increase
the inference speed and it’s worth noting that reducing chan-
nels to 128 performs worse. Increasing the depth from 4
to 6 brings 0.4 AP improvement. Considering the trade-
off between speed and accuracy, we adopt width=256 and
depth=4 in all experiments. Adding coordinate features im-
proves the baseline by 0.5 AP with negligible time con-
sumption, which indicates the effect of the explicit location-
aware features as discussed in §3.4. Table 3 also shows the
effects of replacing the last convolution of the two branches
with a deformable convolution. Using deformable convolu-
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method backbone size FPS AP AP50 AP75 APS APM APL

MEInst [46] R-50-FPN 512 24.0 32.2 53.9 33.0 13.9 34.4 48.7
CenterMask [20] R-50-FPN 600 31.9 32.9 - - 12.9 34.7 48.7
CondInst [36] R-50-FPN 800 20.4† 35.4 56.4 37.6 18.4 37.9 46.9
SOLO [40] R-50-FPN 512 24.4 34.2 55.9 36.0 - - -
SOLOv2-Lite [40] R-50-FPN 448 38.2 34.0 54.0 36.1 10.3 36.3 54.4
SOLOv2-Lite [40] R-50-DCN-FPN 512 28.2 37.1 57.7 39.7 12.9 40.0 57.4
PolarMask [43] R-50-FPN 600 21.7† 27.6 47.5 28.3 9.8 30.1 43.1
PolarMask [43] R-50-FPN 800 17.2† 29.1 49.5 29.7 12.6 31.8 42.3
YOLACT [1] R-50-FPN 550 50.6 28.2 46.6 29.2 9.2 29.3 44.8
YOLACT [1] R-101-FPN 700 29.0 31.2 50.6 32.8 12.1 33.3 47.1
YOLACT++ [1] R-50-DCN-FPN 550 38.6 34.1 53.3 36.2 11.7 36.1 53.6
OrienMask [11] D-53-FPN 544 42.7 34.8 56.7 36.4 16.0 38.2 47.8
SparseInst R-50 608 44.6 34.7 55.3 36.6 14.3 36.2 50.7
SparseInst R-50-DCN 608 41.6 36.8 57.6 38.9 15.0 38.2 55.2
SparseInst R-50-d 608 42.8 36.1 57.0 38.2 15.0 37.7 53.1
SparseInst R-50-d-DCN 608 40.0 37.9 59.2 40.2 15.7 39.4 56.9

Table 1. COCO Instance Segmentation. Comparisons with state-of-the-art methods for mask AP and speed on COCO test-dev.
Inference speeds of all models are tested on our machine with one NVIDIA RTX 2080Ti except those marked with †, which are inherited
from their publications.

w/ fusion w/ PPM t (ms) AP AP50 AP75 APS APM APL

22.0 29.8 48.7 31.0 12.0 31.8 44.1
✓ 22.2 31.3 50.8 32.4 14.0 33.2 46.2

✓ 22.8 30.3 49.5 31.6 12.5 32.3 45.9
✓ ✓ 22.9 32.0 52.0 33.3 13.1 34.5 48.2

Table 2. Ablation on the Instance Context Encoder. The vanilla
encoder [22] is incapable for single-level prediction. Leveraging
PPM can enlarge the receptive fields and significantly improve
the overall performance and adding multi-scale fusion further im-
proves the accuracy, especially for APL. Notably, the extra latency
of the improved encoder compared to the vanilla one is negligible.

depth width coord? dconv? AP APS APM APL t (ms)
4 256 31.5 13.4 33.5 47.9 22.9
4 256 ✓ 32.0 13.0 34.5 48.2 22.9
4 256 ✓ ✓ 32.6 13.1 34.8 49.2 24.6
2 256 ✓ 31.0 12.9 33.2 47.0 20.6
6 256 ✓ 32.4 13.7 35.4 47.9 25.5
4 128 ✓ 30.6 12.4 32.5 46.2 19.7

Table 3. Ablation on the structure of the decoder. ‘coord.’ de-
notes coordinates and ‘dconv.’ denotes deformable convolution.
Adding coordinates brings 0.5 AP improvement but with negligi-
ble latency. Replacing the last convolution with deformable convo-
lution gives significant improvement on larger objects (APL). Re-
ducing the width or depth improves the inference speed but lower
the performance, while increasing the depth can further improve
the accuracy but lower the speed.

tion [50] is optional and improves larger objects by enlarg-
ing the receptive field but consumes much time (+1.7ms).

Instance Activation Maps. Fiam is the key component for
highlighting object regions, and we explore different de-
signs for Fiam in Table 4. Using softmax or 1× 1 conv
brings 0.4 AP and 1.2 AP drop, respectively. Sigmoid (w/

Fiam act. AP AP50 AP75 t (ms)
3×3 conv sigmoid 32.0 51.9 33.5 22.9
3×3 conv softmax 31.6 51.4 32.9 22.9
1×1 conv sigmoid 30.8 50.7 32.0 22.4
3×3 conv, ReLU, 3×3 conv sigmoid 31.9 52.2 33.0 23.6
Group 3×3 conv (2 groups) sigmoid 32.2 52.3 33.5 23.1
Group 3×3 conv (4 groups) sigmoid 32.7 53.1 34.0 23.3

Table 4. Ablation on Fiam. Using softmax or 1×1 conv brings
0.4 AP and 1.2 AP drop respectively, and using two 3×3 conv
with ReLU brings no gain. However, Group-IAM with 4 groups
obtains 0.7 AP improvement.

norm) and softmax can be formulated as si = f(xi)∑
k f(xk)

where f(x) = ex for softmax and f(x) = 1
1+e−x for sig-

moid, which tends to saturate thus activate larger regions
then softmax. Adding extra 3×3 conv brings no gain but
increases the computation cost. Further, we evaluate the
Group-IAM with different groups and Table 4 shows that
using 4 groups improves the model by 0.7 AP.

Hybrid Mask Loss. In Table 5, we analyze the effects of
the hybrid mask loss. Notably, dice loss is the critical com-
ponent for mask prediction and removing dice loss lead to
the collapse (AP rapidly drops 8.1 points). Compared to
RoI-based methods [14], full-resolution instance segmen-
tation has severe imbalance problem between background
and foreground, especially for small objects which may oc-
cupy less than 0.5% pixels. Dice loss is more robust to the
foreground/background imbalance thus effective to handle
the full-resolution segmentation. In Table 5, adding a pixel-
wise classification loss can further improve the segmenta-
tion accuracy: using binary cross-entropy loss (BCE) or fo-
cal loss improves by 1.0 AP and 0.5 AP respectively. More-
over, we note that pixel-wise loss significantly improves
APL (e.g., +1.8 AP from BCE) for large objects. Addition-
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Dice Focal BCE AP AP50 AP75 APL

✓ 23.9 40.2 24.3 40.8
✓ 31.0 50.8 32.0 46.4
✓ ✓ 31.5 51.6 32.7 47.5
✓ ✓ 32.0 52.0 33.3 48.2

Table 5. Ablation on the hybrid mask loss.
We evaluate the effects of the different hybrid
mask loss. Dice loss is an essential compo-
nent and adding extra BCE loss can further
improve the performance (+1.0 AP) especially
for larger objects (+1.8 APL).

w/ obj. rescore? loss AP AP50 AP75

✗ - - 30.7 51.3 31.6
✓ ✗ CE 31.4 52.1 32.2
✓ ✓ CE 32.0 52.0 33.3
✓ ✓ L1 31.5 51.3 32.7

Table 6. Ablation on the IoU-aware
objectness. Adding objectness facilitates
more instance-aware features and improves
the performance even without rescoring.
Using cross-entropy loss obtains better re-
sults than L1 loss.

Fiam AP AP50 AP75 t (ms)
1×1 conv 30.8 50.7 32.0 22.4
3×3 conv 32.0 51.9 33.5 22.9
Group 3×3 conv 32.7 53.1 34.0 23.3
Cross Attention 31.8 51.7 33.1 23.4

Table 7. Comparison with cross atten-
tion. We evaluate the performance of di-
rectly using one 4-head cross attention [3]
with 100 queries to segment objects. No-
tably, (Group-) IAM with 3×3 conv can
offer better results

size backbone encoder decoder post
512 10.0 (54.3%) 2.5 (13.5%) 4.1 (22.2%) 1.8 (10.0%)
640 13.3 (55.6%) 2.9 (12.1%) 5.6 (23.4%) 2.1 (8.90%)

Table 8. Inference time. We report the inference latency of mod-
ule of the SparseInst. The backbone consumes more than 50% of
the total time.

ally, increasing the weight for pixel-wise loss (λpix), e.g.,
5.0, will bring some improvements.

IoU-aware Objectness. We further conduct ablations to
investigate the effects of the proposed IoU-aware object-
ness method. In Table 6, employing the IoU-aware object-
ness can improve the baseline by 1.3 AP. Interestingly, we
observe that adding objectness prediction without rescor-
ing still brings 0.7 AP improvements, which has no direct
impact to classification or segmentation. The targets for ob-
jectness differs among foreground instances and therefore
the objectness loss can facilitate the instance branch to learn
more instance-aware features for distinguishing objects as
discussed in §3.4. We also compare different types of loss,
i.e., L1 loss and cross-entropy, for IoU-aware objectness
and Table 6 shows the superiority of using cross-entropy.

4.3. Timing

Our framework achieves fast inference speed for since
it saves much computation costs by using single-level pre-
diction, highlighting a sparse set of instances, fully con-
volutional design, and adopting extremely simple post-
processing without sorting or NMS. To better understand
the efficiency of the proposed method, we measure the in-
ference latency of each module (i.e., backbone, encoder, de-
coder, and post-processing). We disable the asynchronous
execution in GPU for accurately recording the time, which
slows down the overall inference speed. Table 8 shows the
inference latency (ms) of each module in SparseInst with
different input resolutions. It’s worth noting that the back-
bone (i.e., ResNet-50) consumes most of the inference time
and the post-processing inevitably requires nearly 2ms to
process the final segmentation and recognition results for
evaluation. The 3×3 convolutions in the decoder take much
time and can be pruned for more efficient inference.

4.4. Comparison with Cross Attention

The proposed IAM has some connections with query-
based methods [3, 8, 38, 47]. The cross attention between
object queries Q and image features X can be briefly for-
mulated by: A = QX and O = Softmax(A)XT , where
A and O are attention maps and output queries. The cross
attention has similar formulations with IAM in §3.1 espe-
cially for 1×1 conv, which can be viewed as 1-head cross
attention. Differently, we adopt the 3×3 conv as Fiam to
highlight object regions, which acts as a direct spatial ob-
ject representation. Compared to queries or 1×1 conv, 3×3
conv perceives larger context and local patterns for instance
recognition. Further, we replace IAM with a 4-head cross
attention and 100 queries to generate instance features, and
Table 7 shows that the 4-head cross attention drops 0.2 AP
or 0.9 AP compared to IAM and Group-IAM, respectively.

4.5. Visualizations

Instance Activation Maps. Figure 4 provides the visu-
alizations for instance activation maps and corresponding
segmentation masks. Each instance activation map high-
lights a prominent region of the object. Segmentation masks
are well-localized and aligned with the instance activation
maps. Moreover, instance activation maps can highlight ob-
jects in despite of the scales, positions, categories and also
perform well for crowd scenes.

For a better understanding of how the instance activa-
tion maps can discriminate objects, we further provide the
visualizations of the instance activation maps from all im-
ages. Figure 6 illustrates 12 (of 100) instance activation
maps by averaging the activation response over the 5,000
images from COCO val2017. Different instance activa-
tion maps highlight regions of different spatial locations,
scales, and shapes, which contributes to separating the in-
stances of the same or different categories.

Qualitative Results. Figure 5 shows the qualitative results
of SparseInst. The proposed SparseInst can generate pre-
cise segmentation masks with fine boundaries. For crowd
and dense scenes, SparseInst can also distinguish different
instances well.
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Figure 4. Visualizations for Instance Activation Maps. We present the visualizations of the instance activation maps and segmentation
masks. For each input image, the upper row shows the instance activation maps and the bottom row shows the corresponding segmentation
masks. The instance activation maps tend to highlight the discriminative regions of the objects regardless of the scales, occlusion, and
poses. Best viewed on screen after zooming in.

Figure 5. Visualizations for Instance Segmentation. The results are obtained by SparseInst on COCO val2017. The confidence
threshold is set to 0.4. We can observe that SparseInst can generate precise boundaries, highlight and segment well on the crowd scenes,
and cope with the scale-variant segmentation.

Figure 6. Visualizations for Instance Activation Maps over the
COCO dataset. We gather the 100 instance activation maps over
the 5,000 images from the COCO val2017 by averaging the ac-
tivation responses for each map. Instance activation maps from
different images are resized to the same size 512 × 512. We pro-
vide 12 instance activation maps for visualization.

5. Conclusion

In this work, we have explored a novel object repre-
sentation by instance activation maps, which are instance-
aware weighted maps and aim to highlight informative re-
gions of objects. Then we present a new highlight to seg-
ment paradigm to exploit a sparse set of instance activation

maps to highlight objects and aggregate instance features
according to the activation maps for instance-level recogni-
tion and segmentation. Following this paradigm, we pro-
pose SparseInst, a conceptually novel and efficient end-to-
end framework, which achieves rather fast inference speed
with highly competitive accuracy for real-time instance seg-
mentation. Extensive experiments and qualitative results
have demonstrated the effectiveness of the core idea and the
superiority of the trade-off between speed and accuracy. Fi-
nally, we hope SparseInst can serve as a general framework
for end-to-end real-time instance segmentation and be ap-
plied to practical scenes for its effectiveness and efficiency.
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NSFC (No. 61876212 and No. 61733007) and CAAI-
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Limitations. SparseInst along with previous methods [1,
40, 41, 46] perform worse on small objects (APS) and we
conjecture that the lack of high-resolution features (e.g., P2)
or high-resolution input limits the performance on APS and
will continue to tackle it in future research.
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