
Stable Long-Term Recurrent Video Super-Resolution

Benjamin Naoto Chiche 1,2, Arnaud Woiselle 1, Joana Frontera-Pons 2,3, Jean-Luc Starck 2

1 Safran Electronics & Defense, F-91344 Massy, France
2 AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Cité, F-91191 Gif-sur-Yvette, France

3 DR2I, Institut Polytechnique des Sciences Avancées, F-94200 Ivry-sur-Seine, France

benjamin.chiche@safrangroup.com, arnaud.woiselle@safrangroup.com

joana.frontera-pons@cea.fr, https://orcid.org/0000-0003-2177-7794

Abstract

Recurrent models have gained popularity in deep learn-
ing (DL) based video super-resolution (VSR), due to their
increased computational efficiency, temporal receptive field
and temporal consistency compared to sliding-window
based models. However, when inferring on long video se-
quences presenting low motion (i.e. in which some parts of
the scene barely move), recurrent models diverge through
recurrent processing, generating high frequency artifacts.
To the best of our knowledge, no study about VSR pointed
out this instability problem, which can be critical for some
real-world applications. Video surveillance is a typical ex-
ample where such artifacts would occur, as both the camera
and the scene stay static for a long time.

In this work, we expose instabilities of existing recur-
rent VSR networks on long sequences with low motion. We
demonstrate it on a new long sequence dataset Quasi-Static
Video Set, that we have created. Finally, we introduce a
new framework of recurrent VSR networks that is both sta-
ble and competitive, based on Lipschitz stability theory. We
propose a new recurrent VSR network, coined Middle Re-
current Video Super-Resolution (MRVSR), based on this
framework. We empirically show its competitive perfor-
mance on long sequences with low motion.

1. Introduction

Video super-resolution (VSR) is an inverse problem that
extends single-image super-resolution (SISR). While SISR
aims to generate a high-resolution (HR) image from its low-
resolution (LR) version, in VSR the goal is to reconstruct a
sequence of HR images from the sequence of their LR coun-
terparts. The idea behind VSR, which makes it fundamen-
tally different from SISR, is that the fusion of several LR
images produces an HR image. Therefore, VSR requires
to accumulate information over a number of LR frames as

(a) GT (b) Bicubic

(c) RLSP (d) MRVSR (Ours)

Figure 1. A comparison between a state-of-the-art recurrent VSR
network (RLSP) and our proposed network. The former generates
high frequency artifacts on long sequences with low motion. The
proposed network does not.

large as possible. Classical VSR methods based on the im-
age sequence formation model, knowledge on motion and
iterative algorithms [2,12] could fill this requirement. How-
ever, these iterative algorithms are relatively slow and not
suitable for real-world applications. Moreover, they per-
form poorly when the image sequence formation model and
the assumptions on motion are too simplified.

VSR has recently benefited from DL methods [3,7–9,20,
26, 29] that can overcome some of the drawbacks of clas-
sical methods. Deep VSR networks can efficiently learn
complex spatio-temporal statistics from a training dataset
of natural videos, and once trained the reconstruction is
faster. There are broadly two classes of deep VSR methods.
The first one groups sliding-window based models. These
models [8, 9, 13, 26, 29] take a batch of multiple LR frames
as input to fuse them and reconstruct an HR frame. In most
cases, this batch contains 5 to 7 LR frames. Therefore, the
temporal receptive field—i.e. the number of LR frames that
are used in order to super-resolve a frame—is limited to 7.

837

In contrast, methods introduced in [3,7,20], that build upon
recurrent models, enable a larger temporal receptive field.
In these networks, to super-resolve a frame at time step t,
the hidden states and/or output computed in previous time
step t − 1 are taken as input, in addition to a batch of 1 to
3 LR frames. This recursion allows to propagate informa-
tion through a large number of frames. As their input batch
contains less LR frames and their network structures are
mostly simpler, recurrent methods are faster than sliding-
window based methods. Moreover, an inference of a recur-
rent model presents less redundant computations than the
one of a sliding-window based model because each frame is
processed only once. Finally, sliding-window based meth-
ods generate independent output HR frames, which reduces
temporal consistency of the produced HR frames, result-
ing in flickering artifacts. This is not the case for recurrent
VSR, in which information about previously super-resolved
frame is part of the input at each time step. These consid-
erations make recurrent methods more interesting from a
realistic application-oriented point of view.

Because of computational and memory constraints, as
well as vanishing and exploding gradients, recurrent VSR
models are usually trained on sequences of 7 to 12 im-
ages. They are then deployed to super-resolve a se-
quence of any length. Some applications, such as video-
surveillance, would require to super-resolve sequences of
arbitrary length. However, recurrent models are not trained
on these long sequences. Hence, there is no guarantee that
they optimally perform on long sequences. In this study, we
show that recurrent VSR networks generate high frequency
artifacts when inferring on long video sequences presenting
low motion. Such sequences contain parts of the scene that
barely move, for instance when the camera is quasi-static.
The super-resolution process creates high-frequency infor-
mation which is accumulated in the long-term recurrence,
creating artifacts and causing divergence. Fig. 1 illustrates
this phenomenon. To the best of our knowledge, this work
is the first study about VSR that raises this instability is-
sue. This unexpected behavior can be critical for some real-
world applications, like video surveillance in which both
the camera and the scene stay static for a long time.

The structure of the article is the following. First, we re-
view studies related to VSR and instabilities of recurrent
networks. Then, based on Lipschitz stability theory, we
propose a new framework of recurrent VSR network that
is both stable and competitive on long sequences with low
motion. After this, we introduce a new recurrent VSR net-
work MRVSR as an implementation of this framework. Fi-
nally, we empirically analyze instabilities of existing recur-
rent VSR models on long sequences with low motion and
show the stability and superior performance of the proposed
network. A new long sequence dataset has been created for
our experiments. We make it publicly available.

2. Related work
2.1. Recurrent video super-resolution

Authors of [20] were pioneers of recurrent VSR. They
introduced FRVSR, in which the previous output frame is
warped based on a dense optical flow estimation and fed
back as an additional input to a super-resolution network at
the next time step. The optical flow is estimated by another
network and the two networks are jointly trained end-to-
end. Hence, FRVSR operates frame-recurrence.

A more recent recurrent VSR architecture called recur-
rent latent space propagation (RLSP) was introduced in [3].
In this approach, the previous output frame and the pre-
viously estimated locality based hidden state are used as
an extra input at the next time step. Compared to frame-
recurrence, RLSP can be interpreted as maximizing the
depth and width of the recurrent connection. In contrast to
FRVSR, RLSP is based on implicit motion compensation.
The overall architecture is computationally efficient, which
enables RLSP to be the fastest VSR network at this time.

RSDN [7] is so far the recurrent VSR network that re-
portedly performs the best for relatively short sequences,
according to its performance on Vid4 dataset, composed
of 4 videos between 34 to 49 frames [12]. Its architecture
presents a recurrent hidden state coupled with a hidden-state
adaptation module and structure-detail decomposition. The
input LR frames and the hidden state are decomposed into
structure and detail components and fed to two interleaved
branches to reconstruct the corresponding components of
HR frames.

2.2. Instabilities of recurrent neural networks

Recurrent Neural Networks (RNNs) are difficult to
train [18]. First of all, they involve backpropagation through
time (BPTT), i.e. their unrolling through time, that is costly
in terms of memory. Secondly, these architectures risk van-
ishing and exploding gradients issues. Correlated to this,
RNNs are prone to divergence when inferring on long se-
quences. Authors of [15] showed, in the context of multi-
layer and LSTM networks, that an RNN is stable if its Lip-
schitz constant is smaller than 1. To enforce this constraint,
they proposed to clip singular values of the matrix associ-
ated with the recurrence map to 1. Several works circum-
vent vanishing and exploding gradients problems by setting
all the singular values to 1 [1, 10, 14, 25, 27, 30].

Some studies are related to enforcing the Lipschitz con-
straint in the context of convolutional neural networks. Au-
thors of [22] proposed to clip singular values of the block
matrix of doubly block-circulant matrices associated with
the convolutional layer. The work [16] explored spectral
normalization, that relies on the power iteration to estimate
maximal singular value of the reshaped kernel tensor of the
convolutional layer. Authors of [6, 24] suggested not us-

838

ing this reshaping and instead proposed to directly use the
kernel tensor in the power iteration. Finally, the work [21]
proposed Stable Rank Normalization (SRN), an algorithm
that seeks to enforce either the Lipschitz constraint or its
softer version.

In the context of recurrent video denoising, authors
of [23] pointed out instabilities. They first brought out un-
foreseeable, colorful and black mask-like artifacts in long-
term video denoising. Then, inspired by studies on adver-
sarial examples [5], they proposed a diagnosis tool to check
stability of a trained recurrent video processing network. Fi-
nally, they improved upon the SRN algorithm to propose
Stable Rank Normalization of Layer (SRNL). While SRN
reshapes the kernel tensor of the convolutional layer, SRNL
avoids this reshaping, similarly to [6,24]. They applied this
method on convolutional layers of their recurrent video de-
noising network and demonstrated its effectiveness.

To conclude this section, the following points summarize
the limits of existing works regarding long-term recurrent
VSR and our contributions:

• existing recurrent VSR networks have been only eval-
uated on relatively short generic sequences. Their per-
formances have not been measured on long sequences.
We demonstrate these networks perform poorly on
such sequences when the motion amplitude is low,
due to their recurrent structure. We create a novel
dataset of long and low motion sequences, because ex-
isting datasets only contain sequences that either are
too short or present fast scene motion;

• the relationship between instabilities and scene motion
in video has not been investigated. We show that when
inferring on long sequences presenting low motion, ex-
isting recurrent VSR models diverge;

• the Lipschitz constraint has not been applied on exist-
ing recurrent VSR networks. Indeed, in order to have a
stable recurrent VSR network, we could first take one
of these networks and directly apply a Lipschitz con-
straint to all convolutional layers in the recurrent loop.
We show that this strategy fails when super-resolving
long sequences with low motion;

• we design a recurrent VSR framework that is stable on
long sequences with low motion, while not being glob-
ally Lipschitz constrained. We demonstrate the supe-
rior performance of a network based on this frame-
work.

3. Method
3.1. Stability of recurrent video processing models

A recurrent video processing model is determined by a
recurrence map ϕL : Rn × Rd → Rn and an output map

ψ : Rn → Rc. The recurrent information ht ∈ Rn and
the output image ŷt ∈ Rc are updated at each time step t as
follows: {

ht = ϕL(ht−1, xt)

ŷt = ψ(ht)
(1)

where xt ∈ [0, 1]d is an input image provided at time t.
The recurrent model is Lipschitz stable if ϕL is contrac-

tive in h i.e. if ϕL is L-Lipschitz in h with L < 1 (the
superscript in ϕL highlights this Lipschitz continuity). L
is the Lipschitz constant of ϕL. This stability ensures that
the full recurrent system is globally stable when running the
network an arbitrary number of times, avoiding any diver-
gence. Assume that ϕL is composed of K convolutional
layers interspaced with ReLU non-linearities. Each convo-
lutional layer can be encoded by a weight matrix, obtained
from the layer’s kernel tensor as a block matrix of doubly
block-circulant matrices. Because Lipschitz constant of the
ReLU activation is 1, L is upper-bounded by the product of
the spectral norms of the weight matrices of the convolu-
tional layers:

Proposition 1. For a recurrent model ϕL constituted of K
convolutional layers with weight matrices W1, ...,WK ∈
Rn×n interspaced with ReLU non-linearities, the Lipschitz
constant L of ϕL verifies:

L ≤
K∏
k=1

||Wk|| (2)

where ||.|| is the spectral norm.

Given this inequality, the Lipschitz stability can be en-
sured under the hard Lipschitz constraint:

Constraint 1. Hard Lipschitz constraint (HL)
∀k ∈ [[1,K]], we impose ||Wk|| ≤ 1.

However, the upper bound in Eq. (2) mostly overesti-
mates L. For example, if ϕL is constituted of 2 convolu-
tional layers with weight matricesW1 andW2, the only case
where L = ||W1|| · ||W2|| is when the first right singular
vector of ||W1|| and the first left singular vector of W2 are
aligned. Hence, the constraint is overly restrictive. One can
thus decide to relax the latter, leading to the soft Lipschitz
constraint:

Constraint 2. Soft Lipschitz constraint (SL)
∀k ∈ [[1,K]], we set ||Wk|| = α > 1 and minimize
srank(Wk) based on training data, where srank is the Sta-
ble rank.

Stable rank is an approximation of the rank operator that
is stable under small perturbations of the matrix. This soft
constraint does not theoretically guarantee the Lipschitz sta-
bility, so it is important to empirically verify the non diver-
gence.

839

To enforce these constraints in the context of convolu-
tional neural networks, Stable Rank Normalization of Layer
(SRNL) can be applied to a convolutional layer during the
training stage. This sets the spectral norm of the matrix of
this layer to a desired value α and minimizes the stable rank
of the matrix during training, controlled by β. α and β are
among hyperparameters of the algorithm. When β = 1,
it is equivalent to performing spectral normalization on the
matrix. After training, a normalization step is required just
before test time, so the algorithm does not introduce any
overhead in runtime and model size at inference time.

3.2. Unconstrained Stable Recurrent VSR frame-
work

In approaches such as RLSP, FRVSR and RSDN, every
convolutional layer of super-resolving networks is recurrent
within feedback loops. This seeks to increase the depth and
width of the recurrent connection by giving the hidden state
and the previous output to the input of super-resolving net-
works. Therefore, these layers both incorporate past infor-
mation and contribute to the deconvolution task. Adopt-
ing the notations from Eq. (1), in these networks ψ is re-
duced to the identity mapping (followed by pixel shuffling
or transposed convolutions). In order to have a stable recur-
rent VSR network, a naive approach would be to directly
apply SRNL to one of these VSR networks. However, this
approach presents some difficulties.

First, we applied SRNL to RLSP with (α, β) =
(2.0, 0.1) and empirically verified that SL was not capa-
ble of removing the artifacts on long sequences (Fig. 4d).
Second, we did the same experiment with (α, β) =
(1.0, 1.0) to enforce HL and this resulted in a stable net-
work but with poor VSR performance (detailed in Sec. 5.2).
This is because the resulting architecture has been con-
strained to be globally 1-Lipschitz, and a successful super-
resolving function—that operates both upsampling and
deconvolution—cannot be 1-Lipschitz; since some frequen-
cies need to be boosted as the Wiener filter does in the opti-
mal linear case. This is not the case for a denoising function,
that can be 1-Lipschitz while correctly performing.

Considering these points, we define a new framework of
recurrent VSR network that is stable and performs compet-
itively on long sequences:

Definition 1. An Unconstrained Stable Recurrent VSR
network is defined by an input network ξ : [0, 1]d×(2T+1) →
Rd, a contractive recurrent network ϕL : Rn × Rd → Rn
and an output network ψ : Rn → Rc. The features zt, the
hidden state ht and the output image ŷt are updated at each
time step t as follows:

zt = ξ(Xt)

ht = ϕL(ht−1, zt)

ŷt = ψ(ht)

(3)

where Xt = {xt}t−T≤t≤t+T ∈ [0, 1]d×(2T+1) is an input
batch of LR images provided to the network at t and 2T +1
denotes the size of the batch.

Let ϕL be constituted of K convolutional layers with
weight matrices W1, ...,WK ∈ Rn×n interspaced with
ReLU activations. ϕL is contractive in h based on the hard
Lipschitz constraint: ∀k ∈ [[1,K]], ||Wk|| ≤ 1.

Stable: all the layers in the inner recurrent loop of such a
network are contractive, which guarantees its stability over
time.

Unconstrained: such a network is not globally con-
strained in terms of Lipschitz continuity, due to its non con-
tractive input and output networks which can keep their full
expressiveness.

Most of the deconvolution task is done by ξ and ψ. ϕL

incorporates past information. When ξ and ψ are simultane-
ously identity mappings, the unconstrained property is lost,
as the network becomes globally 1-Lipschitz. This is the
case encountered when imposing HL on all convolutional
layers of networks such as RLSP, FRVSR and RSDN.

3.3. Middle Recurrent Video Super-Resolution

ht−1

xt−1

xt

xt+1

ht

ŷt

×s

Conv SRNL Conv ReLU Pixel shuffling

1 nξ 1 nϕ

Concatenation along channel dimension

x∗t

Element-wise addition

1 nψ

×s

Number of channels: 3 f 1 s2

ξ ϕL ψ

Figure 2. MRVSR architecture. SRNL Conv denotes convo-
lutional layer under HL enforced by SRNL. Each convolutional
layer uses 3 × 3 kernel with stride 1 and outputs f feature maps
(f = 128 in our study), except the last one which outputs s2 = 16
feature maps, where s is the scaling factor. The network outputs
the brightness channel Y of YCbCr color space. Cb and Cr chan-
nels are upsampled independently with bicubic interpolation. In-
put LR frames {xi}t−1≤i≤t+1 are in RGB colorspace. Besides,
xt is converted from RGB to Y and replicated s2 = 16 times
in the channel dimension, which gives x⋆

t for the residual con-
nection. Pixel shuffling rearranges elements in a tensor of shape
(C × s2, H,W) to a tensor of shape (C,H × s,W × s).

As an implementation of the proposed framework, we
design a new network coined Middle Recurrent Video
Super-Resolution (MRVSR). Its architecture is illustrated
in Fig. 2. The first part of the network, ξ, has a feed-forward
architecture with nξ convolutional layers and interspaced
ReLU activations. The second part ϕL is composed of
nϕ+1 convolutional layers under HL and interspaced ReLU

840

activations. The third part ψ has a feed-forward architec-
ture with nψ convolutional layers interlaced with ReLU ac-
tivations and followed by a pixel shuffling layer. This part
takes as input the current hidden state ht and the hidden
state from the previous time step. This mecanism, called
feature-shifting, is helpful to promote temporal consistency
between two successively output frames.

Incorporating past information via the recurrent connec-
tion is a simpler task than deconvolution. This can be il-
lustrated revisiting the traditional, non DL based Shift-and-
Add agorithm [2]. In the latter, historical information is
captured via averaging or median aggregating past frames
after projection on a HR grid and motion compensation. Av-
eraging or median aggregating are rather simple mathemat-
ical operations. Therefore, nϕ can be smaller than nξ +nψ .
In practice, one can fix nξ + nϕ + nψ to satisfy some con-
straint on computational cost, set a small value for nϕ and
then select nξ and nψ . In our setting, we have found that
under the condition nξ + nϕ + nψ = 7 (that enables both
fast computations and good performance), the value nϕ = 1
lead to the best performance among other values of nϕ on
our validation set (described in Sec. 4.2).

4. Experiments
4.1. Networks

For comparison, we implement the following state-of-
the-art recurrent VSR networks in Pytorch [19]: FRVSR
10-128 [20], RSDN 9-128 [7] and RLSP 7-128 [3]. The
numbers after each network respectively indicate the num-
ber of repeated building blocks and the number of filters
in each convolutional layer. These hyperparameters enable
reasonably fast training and testing and satisfactory perfor-
mance on short sequences. In the following, we omit these
numbers for simplicity. For RSDN, our implementation is
based on the official codes released by its authors.1 Ad-
ditionally, we implement modified RLSP where all its lay-
ers have been normalized by SRNL with hyperparameter
sets (α, β) = (2.0, 0.1) and (α, β) = (1.0, 1.0) to enforce
the soft and hard Lipschitz constraints respectively. We call
these networks RLSP-SL and RLSP-HL.

We compare these networks against the proposed
MRVSR. We select (nξ, nϕ, nψ) so that nξ + nϕ + nψ = 7
for the reason stated in Sec. 3.3. This number equals the
number of convolutional layers in RLSP (excluding the
layer that processes the hidden state), which yields fair com-
parison. Among MRVSR with different sets (nξ, nϕ, nψ),
the network with (nξ, nϕ, nψ) = (3, 1, 3) was the best per-
forming model on our validation set. Therefore, in Sec. 5
we only report performances recorded by MRVSR with this
hyperparameter set. We use SRNL with (α, β) = (1.0, 1.0)
to impose the HL.

1https://github.com/junpan19/RSDN

In order to measure the benefit from constrained re-
currence map, we also implement MRVSR without its re-
currence and feature-shifting, which coincides with RLSP
without its recurrence. This can be seen as an extension of
SISR that takes 3 consecutive LR frames as an input at each
time step. Its architecture is feed-forward with 7 convolu-
tional layers with interlaced ReLU activations. We call this
network RFS3 for Residual Fusion Shuffle network with 3
input frames. This network will serve as baseline against
recurrent models. In addition, we also implement RFS with
an input batch of 7 LR frames, that we call RFS7. This
serves as a representative sliding-window based model to
compare against MRVSR, because most of sliding-window
based VSR models take a batch of 5 to 7 LR frames.

4.2. Datasets

We prepare the training dataset in a similar way as
in [3]. From the 37 high resolution Vimeo videos that were
used in this study, after downsampling them by a factor
of 2 we extract 40,000 random cropped sequences of size
I×256×256×3, where I ≥ 12. The delimiting keyframes
are excluded from the sequence. At training time, we sam-
ple random sub-sequences of these crops with length 12.
By excluding the first and the last frames, we obtain ground
truth (GT) sequences with length 10. The first and last
frames of the sampled sequences are used to produce x−1 at
the beginning and x10 at the end. Data augmentation (ran-
dom flip/transposition) is also employed.

We also prepare a validation set of 4 sequences. They
come from videos with no constraints on motions of objects
and count between 30 and 50 frames each.

We introduce a new test set of long sequences in which
the camera is quasi-static and foreground objects move.
This dataset will be complementary to the existing datasets
(Vid4 [12], REDS [17] and Vimeo-90K [28]) which con-
tain only videos that either are short, or present fast scene
motion. To generate this new dataset, we download videos
from vimeo.com and youtube.com and extract 4 se-
quences with quasi-static scene and moving objects inside.
The first two of them are respectively Full HD and HD
Ready and the two others are 4K. The HD and 4K se-
quences are downsampled respectively by a factor of 2
and 4. These 4 sequences respectively have the following
lengths in number of frames: 379, 379, 379 and 172. They
constitute the test dataset we call Quasi-Static Video Set.
We limited the lengths of the sequences to 379 to ensure
dataset homogeneity, but the video containing the first se-
quence contains a much larger number of frames. There-
fore, we have also prepared a longer version of the first
sequence called Sequence 1-XL. The latter contains 8782
frames. All of these sequences are available on https:
//github.com/bjmch/MRVSR.

The train and validation sets contain standard, relatively

841

short sequences with no constraints on motion, whereas the
test set contains long sequences with low motion. It aims
at testing the capability of networks trained on short se-
quences to work on real-life long sequences that may have
low-motion periods. We remind the reader that training re-
current networks on such long sequences is not realistic for
reasons explained in Sec. 1, so the generalization gap be-
tween short and long sequences cannot be addressed with
training data.

We additionally compare the reconstruction perfor-
mances on the standard Vid4 dataset.

From each of the training, validation and test sequences
in HR space, the corresponding LR sequence is generated
by applying gaussian blur with σ and sampling every s = 4
pixel in both spatial dimensions. We set σ = 1.5, except
when testing RSDN. In the case of this network, we use the
pre-trained weights available on its official github reposi-
tory. We thus adapted the codes of the corresponding degra-
dations that are available on this repository to generate the
LR sequence and the value of σ = 1.6 was used.

4.3. Training procedure and evaluation

All of the networks we prepare are trained from scratch
after the Xavier initialization [4], except RSDN. The loss
function is pixel-wise mean-squared-error between pixels
in the brightness channel Y of YCbCr color space of GT
frames and the network’s output. The networks are trained
with Adam optimizer [11] and a batch size of 4. The learn-
ing rate starts at 10−4 and is divided by 10 after the 200th
and 400th epochs. RFS3, RFS7 and MRVSR are trained
for 600 epochs. Other models except RSDN are trained be-
tween 400 and 600 epochs until convergence, based on train
and validation losses.

We numerically evaluate the networks based on frame
PSNR and SSIM. Qualitative evaluation that checks the
presence of artifacts is of equal importance. We also as-
sess the temporal consistency by examining temporal pro-
files from output sequences.

Moreover, the diagnosis tool from [23] can be used in
order to visualize Spatio-Temporal Receptive Field (STRF)
of a recurrent network. This tool, that is inspired by stud-
ies on adversarial examples [5], works as follows: given a
trained recurrent video processing network, it looks for an
input sequenceX = (x−τ , ..., xτ) that is optimized to max-
imize the response at the center pixel in the output sequence
Y = (y−τ+1, ..., yτ−1). To do so, the L1 norm of the center
pixel |p| in y0 is maximized. This optimization only affects
pixels in X that have an effect on p. Therefore, the opti-
mized sequence X can be interpreted as a visualization of
the STRF for the pixel p. τ is typically set to 40, values of
pixels in X are randomly initialized between 0 and 1 and
images in X have dimensions 64 × 64 × 3. In our experi-
ment, the optimization is solved using gradient descent and

Adam optimizer for 1500 iterations. The learning rate starts
at 1 and is divided by 10 after 750 and 1250 iterations.

5. Results
5.1. Performance of existing recurrent networks

Fig. 3 shows the evolution of the PSNR per frame for
some of the networks, averaged over the first three se-
quences of Quasi-Static Video Set. The curve of RFS3 is
taken as a baseline and subtracted to the other ones, and the
resulting curves are displayed. We see that until a relatively
small number of processed frames, existing recurrent net-
works (RLSP, RSDN and FRVSR) perform optimally and
remain better than the baseline model. But at a certain
point their performance drop and they become worse than
the baseline model, indicating that the recursion integrates
harmful information at each new frame. This can be seen as
divergence.

50 100 150 200 250 300 350
Frame number

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
 P

SN
R

RLSP
RLSP-SL
RLSP-HL
RFS3

FRVSR
RSDN
MRVSR

Figure 3. Evolution of PSNR on Y channel per frame averaged
over the first three sequences of the Quasi-Static Video Set. We
substract the curve of the RFS3 baseline and the graph shows these
differences.

Tab. 1 summarizes the performances of the networks on
the Quasi-Static Video Set. It summarizes the performances
of the methods at the beginning of the sequences, through
the entire sequences, and at the end of the sequences. The
table conforms with the curves shown on Fig. 3. Based on
reported performances, at the beginning of the sequences
RLSP and RSDN perform better than the baseline RFS3.
However, at the end of the sequences these networks and
FRVSR have diverged and perform worse than RFS3. The
differences in performance on the last 50 reconstructed
frames between RFS3 and respectively RLSP, FRVSR and
RSDN are −1.50, −4.39 and −4.09 in PSNR and −0.0029,
−0.0790 and −0.0362 in SSIM. They represent in aver-
age −3.33dB in PSNR and −0.0394 in SSIM. This per-
formance drop is due to the generation and accumulation of
high frequency artifacts. These artifacts appear on objects
that barely move. Example artifacts are shown on Figs. 4a
to 4c which show a frame near the end of the first sequence

842

Model First 50 All Last 50
Bicubic 30.08 / 0.8362 30.05 / 0.8356 30.11 / 0.8387
RFS3 32.20 / 0.8911 32.04 / 0.8886 32.07 / 0.8911
RFS7 32.38 / 0.8945 32.23 / 0.8921 32.26 / 0.8943

FRVSR 32.15 / 0.8947 29.16 / 0.8442 27.68 / 0.8121
RSDN 33.46 / 0.9181 29.82 / 0.8788 27.98 / 0.8549
RLSP 33.08 / 0.9099 31.67 / 0.8964 30.57 / 0.8882

RLSP-SL 32.45 / 0.8991 30.62 / 0.8708 29.98 / 0.8627
RLSP-HL 30.98 / 0.8618 30.91 / 0.8608 30.95 / 0.8630
MRVSR 32.80 / 0.9030 32.62 / 0.9007 32.62 / 0.9026

Table 1. Mean PSNR / SSIM on Y channel of Quasi-Static Video
Set. The metrics are measured excluding the first 3 and last 3
GT frames. ‘First 50’ means the metrics are computed at the be-
ginning of the sequences i.e. on the first 50 reconstructed frames.
‘All’ means the metrics are computed through the entire sequences
i.e. on all reconstructed frames. ‘Last 50’ means the metrics are
computed at the end of the sequences i.e. on the last 50 recon-
structed frames. Red: the best result. Blue: the second best result.

(a) RLSP (b) RSDN

(c) FRVSR (d) RLSP-SL

Figure 4. A frame near the end of the first sequence of Quasi-Static
Video Set (the 376th frame) reconstructed from state-of-the art re-
current networks, and RLSP-SL. The Y channel is visualized. The
networks generate high frequency artifacts on the branch, which is
a quasi-static object.

of Quasi-Static Video Set (the 376th frame) reconstructed
by each network.

Behavior analysis: These existing recurrent networks
are trained to optimize their performance on a very low
number of frames (at most 10). In this setting, it is bene-
ficial to the network to produce rapidly a huge amount of
details in the output sequence. These high frequency de-
tails grow in strength with time, but they are not fed back
into the network more than 10 times, so the optimization
process is not trained to manage their increase after this pe-
riod. When inferring on long sequences, these details keep
accumulating long after the short-term network’s training
regime, which produces visible artifacts that diverge over
time. In the presence of strong motion, even with short-term

training, the network learns to forget the past information,
which is inconsistent with the new one. The newly created
high frequency content is forgotten at the same time, pre-
venting divergence on scenes with enough motion. In the
first sequence of the Quasi-Static Video Set, the bird moves
regularly, which is why artifacts do not have time to appear
on the bird itself, as can be seen on Fig. 4.

5.2. Constraining existing recurrent networks

(a) GT (b) Bicubic

(c) RLSP-HL (d) RFS3

(e) RFS7 (f) MRVSR

Figure 5. The 376th frame of the first sequence of Quasi-Static
Video Set, reconstructed from methods that are stable by design
(non recurrent or under HL). MRVSR presents the best quality.

Figure 6. Evolution of PSNR on Y channel per frame on Sequence
1-XL. We substract the curve of the RFS3 baseline and the graph
shows these differences.

SL: RLSP-SL faces the same issues as existing recurrent
networks. After being better than the baseline RFS3 at the
beginning of the sequences, it diverges (Fig. 3). It generates
high frequency artifacts (Fig. 4d) and its performance at the
end of the sequences is poor, as shown in Tab. 1 (−2.09dB
in mean PSNR and −0.0284 in mean SSIM compared to
RFS3 on the last 50 reconstructions). This proves that SL is
not enough to prevent the divergence.

HL: RLSP-HL also obtains an overall poor performance
(−1.13dB in average PSNR and −0.0278 in average SSIM

843

compared to RFS3 based on all reconstructed frames, ac-
cording to Tab. 1). Its reconstruction performance is stable
on a long sequence (Figs. 3 and 6), but the reconstructed
image is blurred (Fig. 5c). This is because RLSP-HL is
globally constrained to be 1-Lipschitz. Thus, as stated in
Sec. 3.2, it is poorly suited to the deconvolution task.

5.3. Performance of the proposed network

Model RFS3 FRVSR RSDN RLSP MRVSR
PSNR 26.43 26.69 27.92 27.46 26.90

Param. (M) 0.77 5.05 6.18 1.08 1.21
Runtime (ms) 9 55 56 11 12

Table 2. Mean PSNR on Y channel of Vid4, model size and run-
time. PSNR values for FRVSR, RLSP and RSDN are taken from
their papers. Runtime is measured on an LR size of 180×320, an
Intel I9-10940X CPU and one NVIDIA TITAN RTX GPU.

At the beginning of the quasi static sequences (Fig. 3
and Tab. 1) MRVSR cannot match RLSP and RSDN, but
performs better than the baseline RFS3 and FRVSR. This
performance is compatible with the results on Vid4 (Tab. 2),
where MRVSR is 0.56dB behind the unconstrained similar
network RLSP. This is due to the Lipschitz constraint on
MRVSR, built to ensure its long-term stability at the price
of a lower short-term performance.

When considering long-term performance on sequences
with low motion, MRVSR gives the best results. Figs. 3, 5f
and 6 show that MRVSR does not diverge and does not gen-
erate any artifact. According to Tab. 1, MRVSR achieves
the best mean performance on the test set, based on all re-
constructed frames as well as focusing on the last 50 re-
constructed frames. Because MRVSR and RFS3 take the
same number of input frames—namely three—the differ-
ences of +0.58 dB in average PSNR and +0.0121 in aver-
age SSIM computed on all reconstructed frames represent
the benefit brought by the contractive recurrence map of
MRVSR. Moreover, considering that RFS7 takes an input
batch of 7 frames, the fact that MRVSR outperforms RFS7
(+0.39dB in average PSNR and +0.0086 in average SSIM)
shows that the temporal receptive field enabled by its con-
tractive recurrence accounts for more than 7 frames. This
is confirmed in Fig. 7, where the temporal receptive field
of MRVSR spans around 28 frames, which is much larger
than the usual length (i.e. 7) of temporal receptive field of
sliding-window based models. Moreover, temporal profiles
produced by MRVSR are less noisy and sharper than the
ones produced by RFS3 and RFS7. This shows the con-
tractive recurrence map of MRVSR additionally enables in-
creased temporal consistency. Visually speaking, sequences
generated by MRVSR present less flickering artifacts than
sequences produced by RFS7 and RFS3. Fig. 8 displays ex-
amples of temporal profiles for the first sequence of Quasi-

Static Video Set. Finally, MRVSR presents the best long-
term reconstruction in terms of visual quality. Some exam-
ples can be observed in Fig. 5.

-40-39-38-37-36-35-34-33-32-31-30-29-28-27-26-25-24-23-22-21-20-19-18-17-16-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

Figure 7. Spatio-temporal receptive fields of MRVSR (vizual-
ization of juxtaposed images in the input sequence X =
(x−τ , ..., xτ) optimized to maximize the L1 norm of the center
pixel in the output image y0). The horizontal axis accounts for the
time index t of xt. The figure is stretched in vertical direction.

(a) GT (b) RFS3

(c) RFS7 (d) MRVSR

Figure 8. Temporal profiles from the Y channel of the first se-
quence of Quasi-Static Video Set. We take the 256th horizontal
row of all images and stack them vertically.

As one could expect, MRVSR has practically the same
computational complexity compared to RLSP (similar run-
time and slight overhead in number of parameters, accord-
ing to Tab. 2). As we stated in Sec. 2.1, RLSP is known
to be the fastest VSR network so far. Therefore, MRVSR
presents state-of-the-art runtime and compact model size.

6. Conclusion
In this work, we have pointed out the divergence prob-

lem of recurrent VSR when facing long sequences with low
motion. Existing recurrent VSR networks generate high-
frequency artifacts on such sequences. To solve this is-
sue, we defined a new framework of recurrent VSR model,
based on Lipschitz stability theory. As an implementation
of this framework, we proposed a new recurrent VSR net-
work coined MRVSR. We experimentally verified its sta-
bility and state-of-the-art performance on long sequences
with low motion. As part of our experiments, we introduced
a new test dataset of such sequences, namely Quasi-Static
Video Set.

844

References
[1] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Uni-

tary evolution recurrent neural networks. In International
Conference on Machine Learning, pages 1120–1128. PMLR,
2016. 2

[2] Sina Farsiu, M Dirk Robinson, Michael Elad, and Peyman
Milanfar. Fast and robust multiframe super resolution. IEEE
transactions on image processing, 13(10):1327–1344, 2004.
1, 5

[3] Dario Fuoli, Shuhang Gu, and Radu Timofte. Efficient video
super-resolution through recurrent latent space propagation.
In ICCV Workshops, 2019. 1, 2, 5

[4] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256. JMLR Work-
shop and Conference Proceedings, 2010. 6

[5] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations, 2015. 3,
6

[6] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and
Michael J Cree. Regularisation of neural networks by enforc-
ing lipschitz continuity. Machine Learning, 110(2):393–416,
2021. 2, 3

[7] Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin
Wang, and Qi Tian. Video super-resolution with recurrent
structure-detail network. In European Conference on Com-
puter Vision, pages 645–660. Springer, 2020. 1, 2, 5

[8] Takashi Isobe, Songjiang Li, Xu Jia, Shanxin Yuan, Gregory
Slabaugh, Chunjing Xu, Ya-Li Li, Shengjin Wang, and Qi
Tian. Video super-resolution with temporal group attention.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8008–8017, 2020. 1

[9] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon
Joo Kim. Deep video super-resolution network using dy-
namic upsampling filters without explicit motion compensa-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3224–3232, 2018. 1

[10] Cijo Jose, Moustapha Cissé, and Francois Fleuret. Kro-
necker recurrent units. In International Conference on Ma-
chine Learning, pages 2380–2389. PMLR, 2018. 2

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 6

[12] C. Liu and D. Sun. A bayesian approach to adaptive video
super resolution. In CVPR 2011, pages 209–216, 2011. 1, 2,
5

[13] Xiaohong Liu, Lingshi Kong, Yang Zhou, Jiying Zhao, and
Jun Chen. End-to-end trainable video super-resolution based
on a new mechanism for implicit motion estimation and
compensation. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 2416–
2425, 2020. 1

[14] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman,
and James Bailey. Efficient orthogonal parametrisation of re-
current neural networks using householder reflections. In In-
ternational Conference on Machine Learning, pages 2401–
2409. PMLR, 2017. 2

[15] John Miller and Moritz Hardt. Stable recurrent models. In In-
ternational Conference on Learning Representations, 2019.
2

[16] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In International Conference on Learning
Representations, 2018. 2

[17] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik
Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu
Lee. Ntire 2019 challenge on video deblurring and super-
resolution: Dataset and study. In CVPR Workshops, June
2019. 5

[18] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On
the difficulty of training recurrent neural networks. In Inter-
national conference on machine learning, pages 1310–1318.
PMLR, 2013. 2

[19] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 5

[20] Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew
Brown. Frame-recurrent video super-resolution. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6626–6634, 2018. 1, 2, 5

[21] Amartya Sanyal, Philip H. Torr, and Puneet K. Dokania. Sta-
ble rank normalization for improved generalization in neural
networks and gans. In International Conference on Learning
Representations, 2020. 3

[22] Hanie Sedghi, Vineet Gupta, and Philip M. Long. The sin-
gular values of convolutional layers. In International Con-
ference on Learning Representations, 2019. 2

[23] Thomas Tanay, Aivar Sootla, Matteo Maggioni, Puneet K
Dokania, Philip Torr, Ales Leonardis, and Gregory Slabaugh.
Diagnosing and preventing instabilities in recurrent video
processing. arXiv preprint arXiv:2010.05099, 2020. 3, 6

[24] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of
deep neural networks: analysis and efficient estimation. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates,
Inc., 2018. 2, 3

[25] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and
Chris Pal. On orthogonality and learning recurrent networks
with long term dependencies. In International Conference
on Machine Learning, pages 3570–3578. PMLR, 2017. 2

[26] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 0–0, 2019. 1

[27] Scott Wisdom, Thomas Powers, John Hershey, Jonathan
Le Roux, and Les Atlas. Full-capacity unitary recurrent neu-
ral networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,

845

and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates, Inc., 2016.
2

[28] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-
oriented flow. International Journal of Computer Vision,
127(8):1106–1125, 2019. 5

[29] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Ji-
ayi Ma. Progressive fusion video super-resolution network
via exploiting non-local spatio-temporal correlations. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 3106–3115, 2019. 1

[30] Jiong Zhang, Qi Lei, and Inderjit Dhillon. Stabilizing gra-
dients for deep neural networks via efficient svd parameter-
ization. In International Conference on Machine Learning,
pages 5806–5814. PMLR, 2018. 2

846

