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Abstract

State-of-the-art stereo matching networks trained only
on synthetic data often fail to generalize to more challeng-
ing real data domains. In this paper, we attempt to unfold
an important factor that hinders the networks from general-
izing across domains: through the lens of shortcut learning.
We demonstrate that the learning of feature representations
in stereo matching networks is heavily influenced by syn-
thetic data artefacts (shortcut attributes). To mitigate this
issue, we propose an Information-Theoretic Shortcut Avoid-
ance (ITSA) approach to automatically restrict shortcut-
related information from being encoded into the feature rep-
resentations. As a result, our proposed method learns ro-
bust and shortcut-invariant features by minimizing the sen-
sitivity of latent features to input variations. To avoid the
prohibitive computational cost of direct input sensitivity op-
timization, we propose an effective yet feasible algorithm to
achieve robustness. We show that using this method, state-
of-the-art stereo matching networks that are trained purely
on synthetic data can effectively generalize to challenging
and previously unseen real data scenarios. Importantly, the
proposed method enhances the robustness of the synthetic
trained networks to the point that they outperform their fine-
tuned counterparts (on real data) for challenging out-of-
domain stereo datasets.

1. Introduction

Stereo matching is a fundamental task in computer vi-
sion and is widely used for depth sensing in various ap-
plications such as augmented reality (AR), robotics and
autonomous driving. In recent years, end-to-end trained
Convolutional Neural Networks (CNNs) have achieved im-
pressive results for this task as quantified by the perfor-
mance on several publicly available stereo-matching bench-
marks [6, 16, 18, 45, 52].

Generally, end-to-end stereo-matching networks require
a large amount of labelled data for training. To overcome
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Figure 1. Comparison of disparity maps estimated by PSMNet [6]
when it is trained under different settings and across multiple do-
mains. Each column shows the results for a realistic domain
namely: KITTI 2015 [26], DrivingStereo [47], Oxford Robot-
car [24] and Middlebury [35]. Rows from top to bottom show a
sample image (I) , the prediction for the Scene Flow pre-trained
model (II), KITTI-15 fine-tuned model (III), and the proposed
ITSA optimized method (IV). Comparing these figures shows that
PSMNet trained solely on synthetic data performs poorly on real
data and fine tuning only improves the result for KITTI dataset
(still fails to generalize for other scenarios). The proposed method
performs well across the board (best viewed in color).

this challenge, many state-of-the-art networks are initially
trained on labelled synthetic data, commonly generated us-
ing game engines. However, models trained using synthetic
data do not generalize well to unseen realistic domains. For
example, the PSMNet [6] pre-trained on the Scene Flow
dataset [25] performs poorly when tested on unseen realis-
tic domains as illustrated in Fig. 1. Therefore, in practice,
the networks trained with synthetic data are fine-tuned us-
ing labelled data from the relevant target domain. However,
collecting even a relatively small amount of dense ground
truth data in the real-world can be challenging for tasks
like stereo-matching [22, 41]. Furthermore, to be practi-
cally useful in many applications, a stereo-matching model
should be able to generalize effortlessly to different do-
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mains like day and night times, varying weather conditions,
etc. Collecting data for fine-tuning that cover all possible
situations is both difficult and expensive. It is therefore
highly desirable to remove the fine-tuning requirement.

It is known that neural networks, including stereo match-
ing networks, can learn superficial shortcut features (or
spurious correlations with the target labels), which prevent
them from generalizing across different domains [2,12]. We
found that stereo matching networks trained on synthetic
data are susceptible to exploiting shortcuts in synthetic data
such as (1) consistent local statistics (RGB color features)
between the left and right stereo images and (2) over-
reliance on local chromaticity features (e.g. color, illu-
mination, texture) of the reference stereo viewpoint. De-
tailed analysis and discussion are included in Sec. 4.2. De-
pendency on these shortcut cues, instead of the desirable
semantic and structural representations, means that these
networks would fail drastically when the spurious corre-
lations between shortcuts and labels do not exist in a new
(unseen) domain [33]. While several shortcut-removal ap-
proaches have been previously proposed [4,17,38], most of
these methods are manually designed (e.g. carefully se-
lected data augmentations [4, 17]) and rely on the assump-
tion that the shortcuts could be identified in advance. How-
ever, shortcuts can be non-intuitive, task-specific, and diffi-
cult to identify [9, 27].

Our goal is to train a stereo matching network on syn-
thetic data that can generalize to realistic scenes without
the need for fine-tuning. To achieve this, we propose an
information-theoretic approach to automatically restrict the
shortcut-related information from being encoded from the
input into the feature representations. The approach is based
on the well known information bottleneck (IB) principle
that proposes to optimize the following objective [1, 40]:

argmax
θ

I (Y,Z; θ)− βI (X,Z; θ) (1)

where Z is the encoding of input X , Y is the target, I
is mutual information and β ∈ [0, 1] is the hyperparam-
eter that controls the size of the information bottleneck.
While optimizing the IB objective leads to compressed fea-
ture representations, our empirical experiments showed that
these compressed features are neither robust nor shortcut-
invariant (details are provided in Sec. 3.3.1). Consequently,
the IB optimized networks may still incorporate shortcuts
and remain fragile when tested in unseen domains. The re-
cently introduced robust IB criterion [31] encourages the
learning of both robust and compressive features by replac-
ing the mutual information in IB with statistical Fisher in-
formation. Robust IB is presented in the context of learning
features that are robust to adversarial attacks and to the best
of our knowledge it has not been used for domain general-
ization.

In our approach, we combine the task loss (e.g. smooth
L1 loss) with Fisher information to learn a generalizable
stereo matching model. Although such an objective can
work in theory, straightforward optimization of the Fisher
information by gradient descent requires computation of
the second-order derivatives and is therefore computation-
ally expensive for tasks with high dimensional inputs such
as stereo matching and semantic segmentation. To over-
come this shortcoming, we propose ITSA which consists of
a novel loss term and perturbation technique to approximate
the optimization of the Fisher information loss. The pro-
posed ITSA is computationally efficient, and as we show
by extensive experiments, it can promote the learning of
shortcut-invariant features. Unlike the existing domain-
invariant stereo matching networks [37, 53], the proposed
ITSA does not involve significant network alteration and is
model-agnostic. Therefore, as shown in the experiments
section, it can be easily integrated with different stereo
matching networks.

The empirical results show that stereo-matching net-
works trained on synthetic data, with the proposed ITSA,
can generalise to realistic data without fine-tuning. Ad-
ditional experiments on challenging out-of-domain stereo
datasets (e.g. different adverse weathers and night scenes)
show that our method also improves the overall robustness
of the stereo matching networks and importantly even out-
performs the networks fine-tuned on realistic domains when
tested on these challenging datasets. The main contributions
of this paper include:

• We show that learning feature representations that are
less sensitive to input variations can significantly en-
hance the synthetic to realistic domain generalization,
and robustness in stereo matching networks.

• We introduce a novel loss function that enables us to
minimize the Fisher information, without computing
the second-order derivatives.

• We also show that the application of the proposed
framework is not limited to stereo matching task, and
can be used in training models for non-geometry based
vision problems such as semantic segmentation.

The rest of the paper is organized as follows. Sec. 2 de-
scribes the related work in the field of learning-based stereo
matching networks, domain generalization and shortcut
learning. Sec. 3 presents the proposed method for automatic
shortcut avoidance and domain generalization. Experimen-
tal results and discussions are presented in Sec. 4, and Sec. 6
concludes the paper.

2. Related Work
Learning-based Stereo Matching Networks
In recent years, end-to-end learned deep stereo match-
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ing networks have excelled in most datasets and bench-
marks [6, 18, 45, 52]. These networks generally have three
sub-modules (1) feature extraction sub-network, (2) cost-
volume generator, and (3) cost aggregation and refinement
sub-network. There are two main types of stereo matching
networks based on how the cost volume is generated.

Correlation-based stereo matching networks construct
the cost volume by correlating the features extracted from
the two views. Previously proposed correlation-based meth-
ods include DispNetC [25], iResNet [21], CRL [30], Seg-
Stereo [48], and AANet [45]. Although these methods are
usually computationally efficient, semantics and structural
information in the feature representations are lost due to the
correlation operation [16]. As a result, the correlation-based
stereo matching methods usually have inferior performance
compared to the concatenated-based methods.

Concatenation-based methods use a cost volume that is
a simple assembly of features extracted from the two views.
Examples of the state-of-the-art concatenation-based stereo
matching networks include PSMNet [6], GANet [52], GC-
Net [18], StereoDrNet [5] and EMCUA [28]. While these
networks can achieve superior performance in stereo match-
ing, they require labelled samples from the target environ-
ments, for fine-tuning. Without fine-tuning, these networks
cannot generalize to unseen test data.

To overcome this problem, Zhang et al. [53] proposed
DSMNet, which employs Domain Normalization and
non-local graph-based filtering layers to enforce the
learning of structural features that are domain-invariant.
Similarly, Shen et al. [37] introduced CFNet, an efficient
network architecture with multi-scale cost volume fusion
and refinement, to enforce the learning of robust struc-
tural representation for stereo matching. In contrast, we
have identified shortcut learning [13] as a major factor
that hinders stereo matching networks from generalizing
across domains. In this work, we show that avoiding
shortcut learning can effectively enhance the robustness
of the stereo matching networks and enables a model to
generalize across domains. This is evidenced by showing
networks’ superior performance on challenging realistic
data without fine-tuning.

Single Domain Generalization
Domain generalization typically involves forcing DNNs to
learn domain-invariant features, using data sampled from
multiple source domains [20,32]. On the other hand, single
domain generalization is a more challenging problem
because only one source domain is available for training.
To solve this problem, Volpi et al. [42] proposed adversarial
data augmentation (ADA), which aims to expand and di-
versify the distribution of training data. Specifically, ADA
creates “fictitious” yet “challenging” new populations, sim-
ulating data sampled from novel domains, using adversarial

training. In a similar fashion, Qiao et al. [32] proposed a
novel framework that employs ADA and meta-learning to
enforce the learning of domain-invariant features. While
these works focus on minimizing the domain differences,
we are interested in learning robust and shortcut-invariant
features that are transferable across different domains.
To this end, we propose ITSA, an information-theoretic
approach to prevent shortcut learning (see next section),
particularly in the stereo matching networks.

Shortcut Learning
Geirhos et al. [12] coined the term shortcut learning as a
phenomenon where DNNs learn trivial solutions by relying
on superficial features (shortcuts). These features are spuri-
ously correlated with the target labels, without contributing
to transferability across contexts. For example, image clas-
sification networks tend to rely on shortcuts such as back-
grounds [2, 12] and textures [14, 43] to improve their per-
formance. However, these networks fail to generalize to
unseen domains, where the spurious correlations between
shortcuts and labels are violated [33]. Similarly, we ob-
served that stereo matching networks trained on synthetic
data also have a tendency to exploit shortcuts to produce
accurate depth results in synthetic domains. Consequently,
these networks fail drastically when tested in unseen realis-
tic environments.

Several attempts have been made to restrict the learn-
ing of identified shortcuts and generalize DNNs across do-
mains [4, 7, 17, 38, 43]. These methods reply on having
some shortcut-related prior knowledge and usually include
data augmentations [4, 17], whitening transformation [7] or
dropout-based regularization [38] as part of their solutions.
However, shortcuts are non-trivial, task-specific, and are of-
ten difficult to be identified a priori [9, 27]. In contrast,
our proposed method automatically avoids shortcut learning
without requiring shortcut-related knowledge in advance.

3. Methodology
3.1. Problem Definition

In this work, we focus on the synthetic-to-realistic do-
main generalization for stereo matching. Given a syn-
thetic stereo data set Dsyn consisting of stereo image pairs{
x
(i)
syn,l, x

(i)
syn,r

}n
i=1

with corresponding ground-truth dis-

parity
{
y
(i)
syn

}n
i=1

, the goal is to design a robust and
shortcut-invariant stereo matching network that can accu-
rately predict disparity map ŷ(i) for unseen realistic envi-
ronments Dreal.

Our approach to achieve synthetic-to-realistic domain
generalization is to use an information-theoretic measure to
automatically restrict the shortcut-related information from
being included in feature representations.
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Figure 2. An overview of the proposed shortcut-avoidance strategy to achieve domain generalization in stereo matching networks. The
parameters are shared across the two feature extractor networks fθ (best viewed in color).

3.2. Model
A typical stereo-matching network can be represented by

the following equation:

ŷ(i) = mψ

(
C
(
fθ
(
x
(i)
l

)
, fθ
(
x(i)r

)))
(2)

where fθ (·) is the feature extraction sub-network, C (·) the
cost volume andmψ (·) the cost aggregation and refinement
sub-network. The refined cost volumes are converted to dis-
parity maps ŷ via the soft argmin [18] operation.

Our proposed method (ITSA) can be applied to any
stereo-matching network that has the above structure. In
the experiments section, we show the result of applying the
proposed algorithm to different stereo-matching networks
with concatenation cost (we observed similar results with
correlation-based methods) volumes [6, 16, 37]. The high-
level structure of the network including the proposed short-
cut avoidance strategy is shown in Fig. 2.

3.3. Loss function

Our main contribution is the loss function devised to
automatically restrict the shortcut-related information from
being encoded in the learning process. As we explained
earlier, the information bottleneck (IB) principle [1, 40] is
typically used to compress features and would be a natural
choice to achieve this objective.

The standard LIB loss defined in Eq. (1), which uses mu-
tual information to quantify information content, was de-
signed to extract features that are both concise and relevant
for prediction. However, models trained by this loss are not
robust to existence of artefacts that can generate shortcuts
(similar to adversarial distortions mentioned in [31]).

To demonstrate the above point, we conducted a toy ex-
periment. In this experiment, we investigated the efficacy of
using IB loss for helping digit recognition networks (DRNs)
to generalize from MNIST (source) [19] to MNIST-M [10]

Method MNIST [19] MNIST-M [10]
ERM 97.9 ± 0.14 40.9 ± 2.95
IB [1] 99.0 ± 0.47 21.8 ± 0.21
RIB [31] 98.3 ± 0.13 52.8 ± 1.04
ITSA 98.1 ± 0.38 56.9 ± 1.23

Table 1. Performance comparison of digit recognition networks
optimized via empirical risk minimization (ERM), the information
bottleneck (IB) [1], its robust variant (RIB) [31] and our proposed
method (ITSA). While IB performs well in the in-domain tests, it
performs poorly on out-of-domain tests.

(target) dataset. The former contains images of handwritten
digits with black background, and the latter is created by
combining the MNIST digits with randomly extracted color
patches as their background. All networks were trained on
the MNIST training set only and the top-1 accuracy (%)
was employed for evaluation. The details of the experiment
are included in the supplementary document. As shown
in Tab. 1, the standard IB can effectively reduce over fit-
ting, and achieves the best performance in the source do-
main. However, it fails to generalize its performance to the
unseen domain. Importantly, it even performs worse than
the baseline networks in the unseen target domain.

3.3.1 Robust Information Bottleneck and Fisher Infor-
mation

As our aim is to develop an IB based cost function that is
not susceptible to existence of shortcuts in source data, we
take inspiration from the robust IB principle [31]. Robust IB
utilizes the statistical Fisher information Φ(Z|X) of the ex-
tracted features Z parameterized by the inputs X as a more
robust measure of information (in place of I(Z,X)). The
Fisher information Φ(Z|X) is defined as:

Φ(Z|X) =

∫
X
Φ(Z|X = x)pX(x)dx, (3)
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where

Φ(Z|X = x) =

∫
Z

∥∥∇x log pZ|X(z|x)
∥∥2
2
pZ|X(z|x)dz. (4)

The term Φ(Z|X = x) in Eq. (3, 4) can be regarded as the
sensitivity of the latent distribution pZ|X(·|x), with respect
to changes at the input x. Therefore, optimizing the Fisher
information, Φ(Z|X), will minimize the average sensitiv-
ity of the latent distribution with respect to change of in-
puts X . As shortcuts are generated by data artefacts that
are transient 1 by nature, they are sensitive to perturbations
of input data [12]. As such, minimizing the Fisher infor-
mation is a step towards promoting the learning of shortcut-
invariant features. Our conjecture is supported by the re-
sults of the toy experiment included in Tab. 1. The DRNs
constrained by the Fisher information (RIB) achieved better
performance than the IB networks in the target domain.

In order to minimize the Fisher information expressed
in Eq. (4), one has to compute second order derivatives
such as ∇θ∇x log pZ|X(z|x), which is computationally
prohibitive for tasks with large dimensional inputs such
as stereo matching, semantic segmentation, etc. [39]. To
overcome this issue, we propose ITSA, a simple yet com-
putationally feasible approach to promote the learning of
shortcut-invariant features.

3.3.2 Approximating Fisher information

Optimizing the Fisher information Φ
(
Z | X

)
measure de-

fined in Eq. (3) is related to minimizing Φ
(
Z | X = x

)
.

By adding a regularization term such as Φ
(
Z | X = x

)
to

the loss function, we can penalize the transient features and
discourages networks from learning shortcuts. To calcu-
late this term, we employ a first order approximation as de-
scribed below.

Lemma 3.1. If ϵ > 0, u is a unit vector (i.e. ∥u∥ = 1, we
refer to as the shortcut perturbation) and x∗ = x+ϵu, then,
subject to first order approximation:

Φ
(
Z | X = x

)
=

Ez
[∣∣pZ|X=x∗ (z)− pZ|X=x (z)

∣∣]2
ϵ2 cos2 ψ

+V
[∥∥∇x log pZ|X=x (z)

∥∥
2

] (5)

where Ez [υ] and V [υ] are the expectation and variance of
υ, and ψ is the angle between u and ∇xpZ|X=x.

Proof is given in the supplementary material.
The first term in the RHS of Eq. (5) will be minimized

when the divergence (distance) between the two distribu-
tions, pZ|X=x and pZ|X=x+ϵu, is reduced. There are many

1We use transient to describe image attributes that are inconsistent
across domains, and spuriously correlated with the true label. These fea-
tures may include backgrounds, textures, image style, etc.

popular divergence measures between distributions, such as
Kullback-Leibler divergence, Jensen-Shannon divergence,
Total Variation, the Wasserstein distance, etc. In this work,
we choose the Wasserstein distance: as the distributions
pZ|X=x and pZ|X=x+ϵu may not have common supports
and it leads to a simpler loss function.

In the case of a deterministic feature extractor, which
is common in stereo matching networks, the distributions
pZ|X=x and pZ|X=x∗ can be seen as two degenerate dis-
tributions (i.e. Dirac delta distributions) located at points
z = fθ (x) and z∗ = fθ (x

∗). Furthermore, the V [·]
in Eq. (5) will be zero. In this case, the Wasserstein-p dis-
tance can be simplified as:

Wp(pZ|X=x∗ , pZ|X=x) =
(∥∥z∗ − z

∥∥p
2

)1/p
. (6)

Using the above insights, we can see that minimizing
∥z∗ − z∥2 is a step towards minimizing Φ

(
Z | X = x

)
(for

p = 1). Thus, we propose to promote the learning of robust
and shortcut-invariant features in stereo matching networks,
by optimizing the overall loss function defined below:

L = LsmoothL1 (ŷ, y) +
λ

2

(
LFI
(
zl, z

∗
l

)
+ LFI

(
zr, z

∗
r

))
(7)

where ŷ and y are the estimated and ground-truth disparity
maps, LFI is our proposed Fisher information loss function
defined as:

LFI =

n∑
i=1

∥∥∥z(i) − z∗(i)
∥∥∥
2

(8)

and LsmoothL1
is the smooth-L1 loss function commonly

employed for optimizing stereo matching networks [6, 16,
52, 53].

3.3.3 Shortcut Perturbation (SCP)

In order to compute LFI, we need to define u (refer to
as shortcut perturbation and is introduced in Lemma 3.1):
u = ∇xz

(i)

∥∇xz(i)∥
2

where ∇xz
(i) is the gradient of the extracted

features z with respect to input. The shortcut-perturbed im-
age can then be expressed as:

x∗(i) = x(i) + ϵ
∇xz

(i)∥∥∇xz(i)
∥∥
2

(9)

The above perturbation will put more weight on pixels that
are sensitive to changes in the input. Intuitively, pixels with
large absolute value of ∇xz will have significant impact in
altering the statistics of encoded latent distributions and the
extracted latent feature representations. Moreover, these
pixels are also likely to include shortcuts as shortcuts are
highly sensitive to perturbations of the input [12].

To examine the accuracy of the above approximations,
we trained the digit recognition network of our toy exper-
iment with the proposed SCP and LFI (ITSA). As the pro-
posed method is specifically designed for domain general-
ization, our method can effectively generalize the network
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1.45 2.34 4.98 73.99 7.83 64.07

1.57 1.65 1.59 1.67 1.71 1.51

Figure 3. Examples of shortcuts in stereo matching networks. The
left and right input images are included in the top two rows. The
disparity maps estimated by the baseline PSMNet [6] are included
in the third row and ITSA-PSMNet in the bottom row. The perfor-
mance of the baseline PSMNet deteriorates substantially when the
shortcut attributes are distorted or removed from the input stereo
images. The corresponding EPE is displayed on the estimated dis-
parity map. Best viewed in color and zoom in for details.

to unseen domains and achieve better performance (4%)
than the robust information bottleneck as shown in Tab. 1.

4. Experiments

4.1. Experimental Settings

Datasets and Metrics: Scene Flow [25] is a large collec-
tion of synthetic stereo images with dense disparity ground
truth. It contains FlyingThings3D, Driving and Monkaa
subsets, and provides 35,454 training and 4,370 testing im-
ages. In our experiments, all stereo matching networks are
trained on the Scene Flow dataset only.

The realistic datasets used in our experiments include
KITTI2012 [11] and KITTI2015 [26] containing 193 and
200 stereo images of outdoor driving scenes, Middle-
bury [35] containing 15 images of high resolution indoor
scenes, and ETH3D [36] containing 27 low resolution,
greyscale stereo images of both indoor and outdoor scenes.
Furthermore, datasets covering different weather conditions
provided by the DrivingStereo [47] dataset, and night-time
provided by Oxford Robotcar [24]) were also included to
evaluate the robustness of our proposed method. All the
above datasets come with with sparse ground truth.

We evaluated the performance of disparity estimation us-
ing the D1 error rate (%), with different pixel threshold. The
D1 metric computes the percentage of bad pixels (disparity
end-point error larger than the threshold) in the left frame.
Following the advice of data originators, a threshold of 3
pixels is selected for KITTI and DrivingStereo, 2 pixels for
Middlebury, and 1 pixel for ETH3D.
Baselines & Implementation Details: We have selected
three popular and top-performing stereo matching networks
namely PSMNet [6], GwcNet [16] and CFNet [37] as the

Inputs PSMNet [6] GwcNet [16] CFNet [37]
No Augment (x) 1.38 0.85 1.00

ACJ 13.98 3.13 1.34
GrayScale (L) 37.68 8.41 1.32
GrayScale (R) 9.82 2.25 1.09

SCP 5.84 2.90 2.55

Table 2. Analysis of the effect of data augmentation on the perfor-
mance of stereo matching networks. All networks are only trained
on the Scene Flow training set and the EPE metric is employed for
evaluation. The results show that removing shortcut related arte-
facts (by data augmentation) negatively impact the performance of
these networks. In particular, our proposed augmentation can even
significantly impact robust methods (e.g. CFNet).

baseline networks for our experiments. We have selected
these networks mainly due to the fact that PSMNet and
GwcNet are well-studied, and commonly employed as a
baseline in many prior works [44, 50, 54]; and CFNet is
one of the recently proposed state-of-the-art stereo match-
ing networks. The networks are implemented using Py-
Torch framework and are trained end-to-end with Adam
(β1 = 0.9, β2 = 0.999) optimizer. Similar to the origi-
nal implementations of the selected networks, our data pro-
cessing includes color normalization and random cropping
the input images to size H = 256 and W = 512. Fol-
lowing the original implementation of CFNet, asymmetric
chromatic augmentation and asymmetric occlusion [46] are
also employed for data augmentation in CFNet. The maxi-
mum disparity for PSMNet and GwcNet is set to 192, and
for CFNet is set to 256. All models are trained from scratch
for 20 epochs with learning rate set to 0.001 for the first
10 epochs and decreased by half for another 10 epochs.
The batch size is set to 12 for training on 2 NVIDIA RTX
8000 Quadro GPUs. The models are trained using syn-
thetic data only and directly tested using data from dif-
ferent realistic datasets. For all experiments included in
the following sections, the hyper-parameters λ and ϵ were
set to 0.1 and 0.5 respectively. The hyper-parameter tun-
ing experiments are detailed in the supplementary docu-
ment. The code of our implementations is available at:
https://github.com/waychin-weiqin/ITSA

4.2. Shortcuts in stereo matching networks

Our hypothesis is that the baseline stereo matching net-
works naively trained on synthetic data only, learn to exploit
common artefacts of synthetic stereo images as shortcut fea-
tures. These artefacts include (1) consistent local statis-
tics (RGB color features) between the left and right stereo
images and (2) over-reliance on local chromaticity features
of the reference stereo viewpoint.

To empirically verify the above, we tested three base-
line networks trained only with synthetic data (i.e. Scene
flow), using augmented stereo inputs images. The aug-
mented stereo images were derived from the Scene Flow
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SCP LFI
PSMNet GwcNet PSMNet GwcNet

KITTI-2012 KITTI-2015
✗ ✗ 27.4 11.7 29.3 12.8
✓ ✗ 8.1 5.3 8.6 5.9
✓ ✓ 5.2 4.9 5.8 5.4

Table 3. Ablation results on PSMNet [6] and GwcNet [16]. SCP
is the proposed shortcut perturbations and LFI is the proposed loss
function in Eq. (7). The D1 metric was used for evaluation.

test set using the following strategies: (1) Chromatic Aug-
mentation (e.g. asymmetrical color jittering (ACJ) [46] and
gray scaling) and (2) the shortcut-perturbation (SCP, ex-
plained in Sec. 3.3.3). If a network has learnt to utilize the
transient attributes (related to shortcut), distorting those in
the input space will negatively impact its performance. Ex-
perimental results, given in Tab. 2, showed that using these
augmented images as inputs has substantially worsened the
performance of the stereo matching networks.

Interestingly, the SCP images also deteriorate the perfor-
mance of the best performing robust stereo matching net-
works such as CFNet [37]. In Sec. 4.5 and 4.5, we show
that our method can enhance the robustness of CFNet and
significantly improve its performance in unseen realistic en-
vironments and anomalous scenarios.

The qualitative results, shown in Fig. 3, demonstrate that
the performance of baseline networks (third row) deterio-
rated significantly when the color features consistency be-
tween stereo viewpoints is violated. Moreover, as shown in
the fourth column of Fig. 3, removing the chromaticity fea-
tures from the reference image will causes substantial per-
formance reduction in the baseline networks. In contrast,
our proposed method reduces the exploitation of shortcut
features and shows better robustness to adverse data aug-
mentation scenarios, without using these shortcut-related
knowledge (see last row of Fig. 3).

4.3. Ablation Study

This section presents the results of our study on the effi-
cacy of each component of the proposed method. We first
trained the baseline networks with the proposed shortcut-
perturbation augmentation (SCP) only. Next, we trained the
baseline networks with both the shortcut-perturbed stereo-
images and the proposed loss function LFI in Eq. (7).

As shown in Tab. 3, the baseline networks, trained
only with synthetic data, perform poorly when tested on
KITTI data. The performance improved when shortcut-
perturbations (SCP) were used in the training stage for input
image augmentations. Further improvement in both base-
line networks can be seen when using the proposed method
i.e. SCP with the proposed loss function. We have not in-
cluded CFNet in the ablation study as it is specifically de-
signed for synthetic to real domain generalization.

Methods KITTI Middlebury ETH3D2012 2015 Full Half Quarter
HD3 [49] 23.6 26.5 50.3 37.9 20.3 54.2
PSMNet [6] 27.4 29.3 60.4 29.1 19.6 16.1
GwcNet [16] 11.7 12.8 45.5 18.1 10.9 9.0
CasStereo [15] 11.8 11.9 40.6 - - 7.8
GANet [52] 10.1 11.7 32.2 20.3 11.2 14.1
MS-PSMNet [3] 14.0 7.8 - 19.8 - 16.8
DSMNet [53] 6.2 6.5 21.8 13.8 8.1 6.2
MS-GCNet [3] 5.5 6.2 - 18.5 - 8.8
CFNet [37] 4.7 5.8 28.2 13.5 9.4 5.8
ITSA-PSMNet 5.2 5.8 28.4 12.7 9.6 9.8
ITSA-GwcNet 4.9 5.4 26.8 11.4 9.3 7.1
ITSA-CFNet 4.2 4.7 20.7 10.4 8.5 5.1
CFNet RVC [37] (1.6) (2.0) (16.1) (10.1) - (3.7)

Table 4. Synthetic-to-realistic domain generalization evaluation
using KITTI, Middlebury and ETH3D training sets. All methods
are trained on the Scene Flow dataset and directly tested on the
three real datasets. Pixel error rate with different threshold are em-
ployed: KITTI 3-pixel, Middlebury 2-pixel and ETH3D 1-pixel.

4.4. Synthetic-to-Realistic Domain Generalization
Evaluation

In Tab. 4, we compare the synthetic-to-realistic domain
generalization performance of our method with the state-of-
the-art stereo matching networks [6,15,16,37,49,52,53] on
the four realistic datasets. All networks are trained on the
synthetic Scene Flow training set only. We found that the
proposed ITSA substantially improved the domain general-
ization performance (6.8% − 23.5%) of the selected stereo
networks (PSMNet [6] and GwcNet [16]), outperforming
the state-of-the-art stereo matching networks in the realistic
datasets. The improved networks also outperform DSM-
Net [53] on the KITTI 2012 [11] and KITTI 2015 [26]
datasets, and achieve comparable performance as the CFNet
on the Middlebury [35] datasets. In addition, we show
that ITSA is even capable of further enhancing the robust-
ness and cross-domain performance of CFNet [37], which
was the best performing stereo matching networks in the
Robust Vision Challenge 2020. The results of fine-tuned
CFNet (CFNet RVC) are also included in Tab. 4 to show
the upper bound performance of CFNet. Qualitative results
comparison of the baseline and ITSA are included in Fig. 4.

4.5. Robustness to Anomalous Scenarios

Here, we analyze the robustness to anomalous condi-
tions of a network trained on synthetic data with the pro-
posed ITSA. The anomalous conditions include night-time,
foggy and rainy weather conditions. In this comparison, we
train the same network twice: (1) pre-train using synthetic
data followed by fine-tuning on realistic KITTI 2015 dataset
(common strategy), (2) train only using synthetic data with
the proposed SCP and LFI (ITSA). We also included the pre-
trained counterpart of CFNet [37] to illustrate the efficacy
of our method in further enhancing the network robustness.

In Tab. 5, we show that the fine-tuned (FT) networks gen-
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(a) Input (b) PSMNet [6] (c) GwcNet [16] (d) CFNet [37]

Figure 4. Qualitative results on KITTI 2015 stereo data. For each
example, the results of the baseline networks are presented on the
top row and the results from our method are included in the bottom
row. The corresponding left image and ground truth are included
in column (a). Our method can significantly improve the stereo
matching performance even in scenario with poor lighting condi-
tion. Best viewed in color and zoom in for details.

Models FT ITSA Sun Cloud Rain Fog Night Avg

PSMNet [6] ✓ ✗ 3.94 2.82 11.51 6.50 16.66 8.28
✗ ✓ 4.78 3.24 9.43 6.31 8.56 6.46

GwcNet [16] ✓ ✗ 3.10 2.46 12.34 5.98 25.33 9.84
✗ ✓ 4.35 3.31 9.78 5.88 9.41 6.55

CFNet [37]
✗ ✗ 4.89 4.64 10.74 5.43 16.19 8.38
✓ ✗ 1.79 1.65 5.20 1.59 11.56 4.36
✗ ✓ 3.42 2.87 5.32 4.32 8.95 4.98

Table 5. Robustness evaluation on anomalous scenarios. Our
method (ITSA) consistently enhances the robustness of selected
stereo matching networks and outperform the fine-tuned (FT)
models in the real-world anomalous scenarios including rainy and
foggy weather and night-time. The performances were evaluated
using the D1 metric.

erally has better performance when tested on data similar to
the KITTI training data (sunny and cloudy). In contrast,
our method (ITSA) can substantially improve the robust-
ness and overall performance of the PSMNet [6] and Gwc-
Net [16], without using the real-world data. The overall
performance of fine-tuned CFNet is slightly better than its
ITSA counterpart. However, as mentioned earlier, the pro-
posed ITSA improves CFNet performance when only using
synthetic data for training. The results demonstrate that our
method could effectively improve the robustness and per-
formance of existing stereo matching networks, and extends
these networks to real-world applications, without using the
real data for fine-tuning.

4.6. Extension to Semantic Segmentation

Similar to stereo matching networks, semantic segmen-
tation networks trained on synthetic data also fail to gen-
eralize to realistic data [32, 51]. Here, we show that
the proposed ITSA can easily be extended to the seman-
tic segmentation task to promote the learning of shortcut-
invariant feature and enhance domain generalization. We
have selected the commonly employed FCN [23] paired
with ResNet-50 as the baseline network. The network was
trained on synthetic GTAV [34] dataset only and evaluated
on real Cityscapes [8] dataset. The mean intersection over

IBN-Net [29] ISW [7] DRPC [51] ITSA
22.17 7.47 ↑ 28.95 7.63 ↑ 32.45 4.97 ↑ 28.71 6.65 ↑29.17 36.58 37.42 35.36

Table 6. Synthetic-to-realistic domain generalization performance
comparison on semantic segmentation task. All networks were
trained on the GTAV [34] synthetic dataset only and evaluated on
the Cityscapes [8] validation set (G → C). The mean intersection
over union (mIoU) metric was employed for evaluation.

union (mIoU) metric was employed for performance eval-
uation. As shown in Tab. 6, the proposed method (ITSA)
can also improve the synthetic-to-realistic domain gener-
alization performance of semantic segmentation networks
and achieve comparable performance with the existing do-
main generalization methods (IBN-Net [29], ISW [7] and
DRPC [51]). This further demonstrates the effectiveness of
our proposed method in promoting shortcut-invariant fea-
tures and enhancing the performance of domain generaliza-
tion. The implementation details and qualitative results of
our method are included in the supplementary document.

5. Limitations
Although the proposed method can significantly improve

the performance of stereo matching networks without fine-
tuning and even outperform their fine-tuned counterpart
when tested in unseen challenging environments (e.g. rain
and night-time), its performance remains fragile under ex-
treme conditions (e.g. heavy rain and extreme low light),
which may occur in real scenarios. This is reflected by the
large errors reported in Tab. 5. By looking at samples with
large errors, we noticed that those inaccuracies are largely
due to having insufficient light source, lens glare/flares and
reflection on specular surfaces (wet grounds).

6. Conclusion
In this work, we have presented ITSA: a novel infor-

mation theory-based approach for domain generalization in
stereo matching networks. To address the shortcut learn-
ing challenge, we propose to minimize the sensitivity of
the extracted feature representations to the input perturba-
tions, measured via the Fisher information. We further pro-
posed an efficient algorithm to optimize the Fisher informa-
tion objective. Experimental results show that the proposed
method consistently promotes the learning of robust and
shortcut-invariant features, and substantially enhances the
performance of existing stereo matching networks in cross-
domain generalization, even outperforming their fine-tuned
counterparts in challenging scenarios. We also show that the
proposed method can be easily extended for non-geometry
based vision problems such as semantic segmentation.
Acknowledgements D. Suter acknowledges funding under
Australian Research Council grant DP200103448.
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ten Grauman, Nicolò Cesa-Bianchi, and Roman Garnett,
editors, Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018,
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