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Figure 1. Reconstruction results of three different tasks - super-resolution, inpainting, and MRI reconstruction. Numbers in parenthesis
indicate the iteration numbers for reverse diffusion. Proposed method is compared with canonical conditional diffusion models for each
task. (a) Corrupted measurement, (b) ILVR [5], score-SDE [34], and score-MRI [6], respectively, for each task. (c) Proposed method.

Abstract

Diffusion models have recently attained significant interest
within the community owing to their strong performance as
generative models. Furthermore, its application to inverse
problems have demonstrated state-of-the-art performance.
Unfortunately, diffusion models have a critical downside
- they are inherently slow to sample from, needing few
thousand steps of iteration to generate images from pure
Gaussian noise. In this work, we show that starting
from Gaussian noise is unnecessary. Instead, starting
from a single forward diffusion with better initialization
significantly reduces the number of sampling steps in the
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reverse conditional diffusion. This phenomenon is formally
explained by the contraction theory of the stochastic differ-
ence equations like our conditional diffusion strategy - the
alternating applications of reverse diffusion followed by a
non-expansive data consistency step. The new sampling
strategy, dubbed Come-Closer-Diffuse-Faster (CCDF),
also reveals a new insight on how the existing feed-forward
neural network approaches for inverse problems can be
synergistically combined with the diffusion models. Ex-
perimental results with super-resolution, image inpainting,
and compressed sensing MRI demonstrate that our method
can achieve state-of-the-art reconstruction performance at
significantly reduced sampling steps.

1. Introduction

Denoising diffusion models [8, 10, 15, 29] and score-
based models [31,32,34] are new trending classes of gener-
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Figure 2. Plot of average error ε̄ vs. time t, using different approaches. (a) Conditional diffusion starts from Gaussian noise x(t) and
uses full reverse diffusion. (b) CCDF with vanilla initialization: Corrupted data is forward-diffused with a single step up to t = t0, and
reverse diffused. (c) CCDF with NN initialization: Initialization with reconstruction from pre-trained NN lets us use much smaller timestep
t = t′0 < t0, and hence faster reverse diffusion.

ative models, which have recently drawn signficant atten-
tion amongst the community due to their state-of-the-art
performance. Although inspired differently, both classes
share very similar aspects, and can be cast as variants of
each other [12, 15, 34], thus they are often called diffusion
models.

In the forward diffusion process, a sampled data point x
at time t = 0 is perturbed gradually with Gaussian noise
until t = T , arriving approximately at spherical Gaussian
distribution, which is easy to sample from. In the reverse
diffusion process, starting from the sampled noise at t = T ,
one uses the trained score function to gradually denoise the
data up to t = 0, arriving at a high quality data sample.

Interestingly, diffusion models can go beyond uncondi-
tional image synthesis, and have been applied to conditional
image generation, including super-resolution [5, 17, 25], in-
painting [31, 34], MRI reconstruction [6, 13, 33], image
translation [5, 19, 28], and so on. One line of works re-
design the diffusion model specifically suitable for the task
at hand, thereby achieving remarkable performance on the
given task [17, 25, 28]. However, they compromise flexi-
bility since the model cannot be used on other tasks. An-
other line of works, on which we build our method on, keep
the training procedure intact, and only modify the inference
procedure such that one can sample from a conditional dis-
tribution [5, 6, 13, 33, 34]. These methods can be thought of
as leveraging the learnt score function as a generative prior
of the data distribution, and can be flexibly used across dif-
ferent tasks.

Unfortunately, a critical drawback of diffusion models is
that they are very slow to sample from. To address this,
for unconditional generative models, many works focused
on either constructing deterministic sample paths from the
stochastic counterparts [30, 34], searching for the optimal
steps to take after the training of the score function [4, 38],
or by retraining student networks that can take shortcuts

via knowledge distillation [18, 26]. Orthogonal and com-
plementary to these prior works, in this work, we focus on
accelerating conditional diffusion models by studying the
contraction property [21–23] of the reverse diffusion path.

Specifically, our method, which we call Come-Closer-
Diffuse-Faster (CCDF), first perturbs the initial estimate
via forward diffusion path up to t0 < T , where t0 de-
notes the time where the reverse diffusion starts. This for-
ward diffusion comes almost for free, without requiring any
passes through the neural network. While the distribution
of forward-diffused (noise-added) images increases the es-
timation errors from the initialization as shown in Fig. 2(b),
the key idea of the proposed CCDF is that the reverse con-
ditional diffusion path reduces the error exponentially fast
thanks to the contraction property of the stochastic differ-
ence equation [22,23]. Therefore, compared to the standard
approach that starts the reverse diffusion from Gaussian dis-
tribution at t = T (see Fig. 2(a)), the total number of the re-
verse diffusion step to recover a clean images using CCDF
can be significantly reduced. Furthermore, with better ini-
tialization, we prove that the number of reverse sampling
can be further reduced as shown in Fig. 2(c). This implies
that the existing neural-network (NN) based inverse solu-
tion can be synergistically combined with diffusion models
to yield accurate and fast reconstruction by providing a bet-
ter initial estimate.

Using extensive experiments across various problems
such as super-resolution (SR), inpainting, and MRI recon-
struction, we demonstrate that CCDF can significantly ac-
celerate diffusion based models for inverse problems.

2. Background

2.1. Score-based Diffusion Models

We will follow the usual construction of continuous dif-
fusion process x(t), t ∈ [0, T ] with x(t) ∈ Rd [34]. Con-
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cretely, we want x(0) ∼ p0(x), where p0 = pdata, and
x(T ) ∼ pT , where pT is a tractable distribution that we
can sample from. Consider the following Itô stochastic dif-
ferential equation:

dx = f̄(x, t)dt+ ḡ(t)dw, (1)

where f̄ : Rd 7→ Rd is the drift coefficient of x(t),
ḡ : R 7→ R is the diffusion coefficient coupled with the
standard d-dimensional Wiener process w ∈ Rd. By care-
fully choosing f̄ , ḡ, one can achieve spherical Gaussian dis-
tribution as t → T . In particular, when f̄(x, t) is an affine
function, then the perturbation kernel p0t(x(t)|x(0)) is al-
ways Gaussian, where the parameters can be calculated in
closed-form. Hence, perturbing the data with the perturba-
tion kernel p0t(x(t)|x(0)) comes almost for free, without
requiring any passes through the neural network.

For the given forward SDE in (1), there exists a reverse-
time SDE running backwards [12, 34]:

dx = [f̄(x, t)− ḡ(t)2∇x log pt(x)︸ ︷︷ ︸
score function

]dt+ ḡ(t)dw̄ (2)

where dt is the infinitesimal negative time step, and w̄ is the
Brownian motion running backwards.

Interestingly, one can train a neural network to approx-
imate the actual score function via score matching [31, 34]
to estimate sθ(x, t) ≃ ∇x log pt(x), and plug it into (2)
to numerically solve the reverse-SDE [34]. Furthermore, to
circumvent technical difficulties, de-noising score match-
ing is typically used where ∇x log pt(x) is replaced with
∇x log p0t(x(t)|x(0)).

2.2. Discrete Forms of SDEs

In this paper, we make use of two different SDEs: vari-
ance preserving (VP) SDE, and variance exploding (VE)
SDE [34]. First, by choosing

f̄(x, t) = −1

2
β(t)x, ḡ(t) =

√
β(t), (3)

where 0 < β(t) < 1 is a monotonically increasing function
of noise scale, one achieves the variance preserving (VP)-
SDE [10]. On the other hand, variance exploding (VE)
SDEs choose

f̄ = 0, ḡ =

√
d[σ2(t)]

dt
, (4)

where σ(t) > 0 is again a monotonically increasing func-
tion, typically chosen to be a geometric series [31, 34].

For the discrete diffusion models, we assume we have
N discretizations which are linearly distributed across t ∈
[0, T ]. Then, VP-SDE can be seen as the continuous ver-
sion of DDPM [15,34]. Specifically, in DDPM, the forward
diffusion is performed as

xi =
√
ᾱix0 +

√
1− ᾱiz (5)

where z ∼ N (0, I) and ᾱi =
∏i−1

j=1 αj for αi = 1−βi with
monotonically increasing noise schedule β1, β2, . . . , βN ∈
(0, 1). The associated reverse diffusion step is

xi−1 =
1
√
αi

(
xi + (1− αi)sθ(xi, i)

)
+
√
σiz, (6)

where sθ(xi, i) is a discrete score function that matches
∇xi

log p0i(xi|x0). Further, the noise term σi can be fixed
to σi = 1− αi [10], or set to a learnable parameter [8, 20].

For DDPM, denoising diffusion implicit model (DDIM)
establishes the current state-of-the-art among the accelera-
tion methods. Unlike DDPM, DDIM has no additive noise
term during the reverse diffusion, allowing less iterations
for competitive sample quality. Specifically, the reverse dif-
fusion step is given as:

xi−1 =
√
ᾱi−1

(
xi −

√
1− ᾱizθ(xi, i)√

ᾱi

)
+
√
1− ᾱi−1zθ(xi, i) (7)

where

zθ(x, i) := −sθ(x, i)
√
1− ᾱi. (8)

One can further define

σi =

√
1− ᾱi√
ᾱi

, x̄i =
xi√
ᾱi

, (9)

to express (7) as x̄i−1 = x̄i + (σi−1 − σi)zθ(xi, i).
On the other hand, score matching with Langevin dy-

namic (SMLD) [31, 32] can be seen as the discrete version
of VE-SDE. Specifically, the forward SMLD diffusion step
is given by

xi = x0 + σiz (10)

where σi = σmin(
σmax
σmin

)
i−1
N−1 , as defined in [34]. The associ-

ated reverse diffusion is given by

xi−1 = xi + (σ2
i − σ2

i−1)sθ(xi, i) +
√

σ2
i − σ2

i−1z

(11)

where z ∼ N (0, I).

3. Main Contribution
3.1. The CCDF Algorithm

The goal of our CCDF acceleration scheme is to make
the reverse diffusion start from N ′ := Nt0 < N such that
the resulting number of reverse diffusion step can be signif-
icantly reduced. For this, our CCDF algorithm is composed
of two steps: forward diffusion up to N ′ with better ini-
tialization x0, which is followed by a reverse conditional
diffusion down to i = 0.
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Specifically, for a given initial estimate x0, the forward
diffusion process can be performed with a single step diffu-
sion as follows:

xN ′ = aN ′x0 + bN ′z (12)

where z ∼ N (0, I), and aN ′ , bN ′ for SMLD and DDPM
can be computed for each diffusion model using (10) and
(5), respectively.

In regard to the conditional difusion, SRDiff [17],
SR3 [25] are examples that are trained specifically for SR,
with the low-resolution counterparts being encoded or con-
catenated as the input. However, these approaches attempt
to redesign the score function so that one can sample from
the conditional distribution, leading to a much complicated
formulation.

Instead, here we propose a much simpler but effective
conditional diffusion. Specifically, our reverse diffusion
uses standard reverse diffusion, alternated with an operation
to impose data consistency:

x′
i−1 = f(xi, i) + g(xi, i)zi (13)

xi−1 = Ax′
i−1 + b (14)

where the specific forms of f(xi, i) and g(xi, i) depend on
the type of diffusion models (see Table 1), zi ∼ N (0, I),
and A is a non-expansive mapping [2]:

∥Ax−Ax′∥ ≤ ∥x− x′∥, ∀x,x′ (15)

In particular, we assume A is linear. For example, one-
iteration of the standard gradient descent [13,24] or projec-
tion onto convex sets (POCS) in [9, 11, 27, 35] corresponds
to our data consistency step in (14) with (15). See Supple-
mentary Section D for algorithms used for each task.

f(xi, i) g(xi, i)

SMLD xi + (σ2
i − σ2

i−1)sθ(xi, i)
√

σ2
i − σ2

i−1

DDPM 1√
αi
(xi + (1− αi)sθ(xi, i))

√
1− αi

DDIM
√
αi−1

(
xi−

√
1−ᾱizθ(xi,i)√

ᾱi

)
+
√
1− ᾱi−1zθ(xi, i) 0

Table 1. Values of f , g, and noise schedule of discrete SDEs.

3.2. Fast Convergence Principle of CCDF

Now, we are ready to show why CCDF provides much
faster convergence than the standard conditional diffusion
models that starts from Gaussian noise. In fact, the key in-
novation comes from the mathematical findings that while
the forward diffusion increases the estimation error, the con-
ditional reverse diffusion decreases it much faster at expo-
nential rate. Accordingly, we can find a “sweet spot” N ′

such that the forward diffusion up to N ′ followed by re-
verse diffusion can significantly reduces the estimation er-
ror of the initial estimate x0. This fast convergence princi-
ple is shown in the following theorems, whose proofs can

be found in Supplementary Materials. First, the following
lemma is a simple consequence of independency of Gaus-
sian noises.

Lemma 1. Let x̃0 ∈ Rn and x0 ∈ Rn be the ground-
truth clean image and its initial estimate, respectively, and
the initial estimation error is denoted by ε0 = ∥x0 − x̃0∥2.
Suppose, furthermore, that xN ′ and x̃N ′ denote the forward
diffusion from x0 and x̃0, respectively, using (12). Then, the
estimation error after the forward diffusion is given by

ε̄N ′ := E∥xN ′ − x̃N ′∥2

= a2N ′ε0 + 2b2N ′n. (16)

Now, the following theorem, which is a key step of our
proof, comes from the stochastic contraction property of the
stochastic difference equation [22, 23].

Theorem 1. Consider the reverse diffusion using (13) and
(14). Then, we have

ε̄0,r ≤
2Cτ

1− λ2
+ λ2N ′

ε̄N ′ (17)

where ε̄0,r denotes the estimation error between reverse
conditional diffusion path down to i = 0, and τ =
Tr(ATA)

n . Furthermore, the contraction rate λ and the con-
stant C have the following closed form expression:

λ =


max
i∈[N ′]

√
αi

(
1−ᾱi−1

1−ᾱi

)
(DDPM)

max
i∈[N ′]

σ2
i−1−σ2

0

σ2
i−σ2

0
(SMLD)

max
i∈[N ′]

σi−1

σi
(DDIM)

(18)

and

C =


n(1− αN ) (DDPM)
n max

i∈[N ′]
σ2
i − σ2

i−1 (SMLD)

0 (DDIM)

(19)

Now we have the main results that shows the existence
of the shortcut path for the acceleration.

Theorem 2 (Shortcut path). For any 0 < µ ≤ 1, there
exists a minimum N ′(= t0N < N) such that ε̄0,r ≤ µε0.
Furthermore, N ′ decreases as ε0 gets smaller.

Theorem 1 states that the conditional reverse diffusion
is exponentially contracting. Subsequently, Theorem 2 tells
us that we can achieve superior results (i.e. tighter bound)
with shorter sampling path. Hence, it is unnecessary for us
to start sampling from N . Rather, we can start from an arbi-
trary timestep N ′ < N , and still converge faster to the same
point that could be achieved when starting the sampling pro-
cedure at N . Furthermore, as we have better initialization
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such that ε0 is smaller, then we need smaller reverse diffu-
sion step, achieving much higher acceleration.

For example, we can initialize the corrupted image with
a pre-trained neural network Gφ, which has been widely
studied across different tasks [16,39,40]. These methods are
typically extremely fast to compute, and thus does not intro-
duce additional computational overload. Using this rather
simple and fast fix, we observe that we are able to choose
smaller values of t0, endowed with much stabler perfor-
mance. For example, in the case of MRI reconstruction, we
can choose t0 as small as 0.02, while outperforming score-
MRI [6] with 50× acceleration.

4. Experiments

4.1. Experimental settings

We test our method on three different tasks: super-
resolution, inpainting, and MRI reconstruction. For all
methods, we evaluate the qualitative image quality and
quantitative metrics as we accelerate the diffusion process
by reducing the t0 values. For the proposed method, we
report on the results starting with neural network (NN)-
initialized x0 unless specified otherwise.
Dataset. For vision tasks using face images, we use two
datasets - FFHQ 256 × 256, and AFHQ 256 × 256. For
FFHQ, we randomly select 50k images for training, and
sample 1k images of test data separately. For AFHQ, we
train our model using the images in the dog category, which
consists of about 5k images. Testing was performed with
the held-out validation set of 500 images of the same cate-
gory. For the MRI reconstruction task, we use the fastMRI
knee data, which consists of around 30k 320 × 320-sized
slices of coronal knee scans. Specifically, we use magni-
tude data given as the key reconstruction esc. We
randomly sample 10 volumes from the validation set for
testing.
Quantitative metrics. Since it is well known that for high
corruption factors, standard metrics such as PSNR/SSIM
does not correlate well with the visual quality of the re-
construction [25, 40], we report on the FID score based on
pytorch-fid1. For MRI reconstruction, it is less sound
to report on FID; hence, we report on PSNR.
Super-resolution. Experiments were performed across
three different levels of SR factor -×4,×8,×16. We train a
discretized VP-SDE based on IDDPM [20] for each dataset
- FFHQ and AFHQ, following the standards. Specific de-
tails can be found in Supplementary section D. For the one-
step feed forward network corrector, we train the widely-
used ESRGAN [37] for each SR factor, using the same
neural network architecture that was used to train the score
function. We use three methods for comparison - ESRGAN,

1https://github.com/mseitzer/pytorch-fid

Figure 3. Stability of convergence depending on the choice of
initialization. (a) Random initialization, large ε0, (b) vanilla ini-
tialization, moderate ε0, (c) NN initialization, small ε0.

ILVR, and SR32. We note that the official code of SR3
is yet to be released, and hence we resort to unofficial re-
implementation, which we train with default configurations.
Additionally, in the original work of SR3 [25], the authors
propose consecutively applying ×4 SR models to achieve
16×16 7→ 64×64 7→ 256×256 SR. In contrast, we report
on a single×16 SR model which maps 16×16 7→ 256×256
directly.

Inpainting. The score function used in the inpainting task
is the same model that was used to solve SR tasks, since we
use task-agnostic conditional diffusion model. The feed-
forward network was adopted from Yu et al. [40]. We con-
sider box-type inpainting with varying sizes: 96×96, 128×
128, 160 × 160. The model was trained for 50k steps with
default configurations. We compare with score-SDE [34],
using the same trained score function.

MRI reconstruction. Experiments were performed across
three different levels of acceleration factor, with gaussian
1D sampling pattern - ×2,×4,×6, each with 10%, 8%, 6%
of the phase encoding lines included for autocalibrating sig-
nal (ACS) region. We train a VE-SDE based on ncsnpp,
proposed in [34], and demonstrated specifically for MR re-
construction in [6, 33]. For comparison with compressed
sensing (CS) strategy, we use total-variation (TV) regular-
ized reconstruction. For feed forward network, we train a
standard U-Net, using similar settings from [6, 41]. We use
the same trained score function for comparison with score-
MRI [6].

2https://github.com/Janspiry/Image-Super-Resolution-via-Iterative-
Refinement
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Figure 4. Results of super-resolution on AFHQ 256×256 data. First, second and third row denote ×4 SR, ×8 SR, and ×16 SR, respectively.
(a) LR input, (b) Ground Truth, (c) ESRGAN [37], (d) SR3 [25] with 20 diffusion steps (N = 20,∆t = 0.05), (e) ILVR [5] with 20
diffusion steps (N = 20,∆t = 0.05), (f) proposed method with 20 diffusion steps (N = 100, t0 = 0.2).

4.2. Super-resolution

Dependence on ε0. We first demonstrate the dependency
of stochastic contraction on the squared error term in Fig-
ure 3. For small squared difference, as in the case for many
inverse problems, we see that the reverse diffusion stably
converges to the same solution, even with small timestep
t0. In contrast, when random x0 is the starting point, ε0
becomes large, and only with higher values of t0 does the
reverse SDE converge to a feasible solution.

t0 0.05 0.1 0.2 0.5 0.75 1.0 [5]
SR ×4 63.90 60.90 60.91 64.04 64.14 63.31
SR ×8 85.21 78.13 75.76 79.34 79.67 77.34
SR ×16 116.37 101.79 92.59 88.09 92.12 88.49

Table 2. FID(↓) scores on FFHQ test set for SR task with N =
1000, and varying t0 values. t0 = 1.0 is the baseline method
without any acceleration used in [5]. Numbers in boldface and
underline indicate the best and the second best.

Dependence on t0. In Table 2, we report on the FID scores
by varying the t0 values with a fixed discretization step
∆t = 1/1000 in order to see which value is optimal for each
degradation factor. Consistent with the theoretical findings,
we see that as the corruption factor gets higher, and ε0 gets
larger, we typically need higher values of t0 to achieve op-
timal results. Interesting enough, we observe that there al-
ways exist a value t0 ∈ [0, 1) where the FID score is lower
(lower is better) than when using full reverse diffusion from
T = 1.
Comparison study. The results of various super-resolution
algorithms is compared in Fig. 4. We compare with
SR3 [25] and ILVR [5], with setting the number of itera-
tions for reconstruction same for ILVR, SR3, and the pro-
posed method. We clearly see that SR3 and ILVR starting
from pure Gaussian noise at T = 1 cannot generate satis-
factory results with 20 iterations, whereas our method can
estimate high-fidelity samples with details preserved even
with only 20 iterations starting from t0 = 0.2. Visualizing
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the trend of FID score in Figure 5, we see that the quality of
the image degrades as we use less and less number of itera-
tions for the ILVR method, whereas the proposed method is
able to keep the FID score at about the same level, or even
boost the image quality, with less iterations.

Figure 5. Comparison of FID score on ×8 SR task. For ILVR,
re-scheduling method of IDDPM [20] was used starting from
T = 1. For CCDF, the step size for discretization is ∆t = 0.01
so that the starting point for the reverse diffusion is t0 = ∆t ×
[number of iteration].

SR factor ESRGAN [37] SR3∗ [25] ILVR [5] CCDF (ours)

FFHQ
×4 81.14 66.79 63.14 60.90
×8 108.96 80.27 81.85 75.76
×16 143.80 99.46 92.32 88.39

AFHQ
×4 24.52 20.68 18.70 15.53
×8 51.84 30.23 34.85 32.30
×16 98.22 60.76 47.28 48.77

Table 3. Comparison of FID(↓) scores on FFHQ and AFHQ test
set. t0 values used for the proposed method is 0.1, 0.2, 0.3 for
×4,×8,×16 SR, respectively. Numbers in boldface represent the
best results among the row. (∗unofficial re-implementation)

We also perform a comparison study where we set the
total number of diffusion steps to N = 1000 starting from
T = 1 for ILVR [5], and set t0 to 0.1, 0.2, and 0.3 for
each factor, thereby reducing the number of diffusion steps
to 100, 200, and 300, respectively, by our method. In Ta-
ble 3, we demonstrate by using the proposed method, we
achieve results that are on par or even better. For qualitative
analysis, see Supplementary Section E.
Incorporation of DDIM. As briefly discussed before,
CCDF can be combined together with approaches that
searches for the optimal (full) reverse diffusion path. In
Fig. 6, we illustrate that we can reduce the number of it-
erations to as little as 5 steps, and still maintain high image
quality.

4.3. Inpainting

We illustrate the results of inpainting in Fig. 7. Consis-
tent with what was observed in the SR task, the results in
Figure 7 show that using full reverse diffusion with large

Figure 6. Results on SR task using CCDF with DDIM. (a) LR
image, (b) initialization with ESRGAN, (c) ILVR + DDIM, (d)
CCDF + DDIM. Numbers on top indicate the number of itera-
tions. Proposed method uses N = 50, and t0 = 0.1, 0.2, 0.5,
respectively.

Figure 7. Results of inpainting on FFHQ 256×256 data. (a)
Masked image, (b) Ground Truth, (c) SN-PatchGAN [40]. (d)
score-SDE [34] using 20 steps from T = 1, (e) proposed method
(CCDF) using 20 steps from t0 = 0.2.

discretization steps is inefficient, leading to unrealistic out-
put. On the other hand, our method can reconstruct very
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realistic images within this small budget.

method masked SN-PatchGAN
[40]

Score-SDE [34]
(1000)

CCDF
(200)

Box 96 131.31 46.42 50.85 45.99
Box 128 145.81 52.63 64.51 49.77
Box 160 167.37 66.25 78.29 57.99

Table 4. Comparison of FID(↓) scores on FFHQ test set for in-
painting task (N = 1000,∆t = 0.001). Number in parenthesis
indicate the number of iterations used for generation. Numbers in
boldface and underline indicate the best and the second best.

Comparison with prior arts by setting relatively large
number of iterations is shown in Table 4. We observe that
the proposed method outperforms both score-SDE with full
reverse diffusion, and SN-PatchGAN, in terms of FID score.
For detailed comparison and further experiments, see Sup-
plementary Section E.

4.4. MRI reconstruction

We summarize and compare our results in Figure 8, and
the quantitative metrics are presented in Table 5. In the
task of MR reconstruction, we observe that we can push
the t0 value down to very small values: t0 = 0.02, and
still achieve remarkable results, even outperforming score-
POCS which uses full reverse diffusion. When we compare
the proposed method which uses 20 iterations vs. score-
POCS with 20 iterations, we see that score-POCS can-
not generate a feasible image, arriving at what looks like
pure noise, as demonstrated in Figure 1. With other tasks,
we could see that higher degradations typically require in-
creased t0 values. With CCDF, we do not see such trend,
and observe that selecting low values of t0 ∈ [0.02, 0.1]
stably gives good results. We emphasize that this is a huge
leap towards practical usage of diffusion models in clinical
settings, where fast reconstruction is crucial for real-time
deployment.

Figure 8. Results of the MR reconstruction task: (a) TV [3], (b) U-
Net [41], (c) score-POCS [6] using 1000 steps starting from T =
1, (d) proposed method (CCDF) using 20 steps from t0 = 0.02
(20 steps), (e) Reference image. Numbers in yellow correspond to
PSNR values.

method ZF TV [3] U-Net [41] Score-POCS
[6]

CCDF
(20)

× 2 27.23 29.10 32.93 32.85 33.41
× 4 22.68 25.93 31.07 31.45 32.51
× 6 21.54 24.69 30.77 31.15 31.30

Table 5. PSNR(↑) on fastMRI test set for MRI reconstruction
tasks. Gaussian 1D sampling masks were used. Number in paren-
thesis indicate the number of iterations used (N = 1000, t0 =
0.02). Numbers in boldface indicate the best among the rows.

5. Discussion

We note that we are not the first to propose starting from
forward-diffused data in the context of diffusion models. It
was first introduced in SDEdit [19], but in a different con-
text with distinct aim form ours. In SDEdit, forward diffu-
sion was used up to t0 ∈ [0.3, 0.6], which a relatively higher
value than those used in our work t0 ≤ 0.2, since the pur-
pose was to destroy the signal so as to acquire high fidelity
images from coarse strokes.

Our work differs from SDEdit in that we consider this
procedure in a more rigorous framework and first reveal that
starting from a better initialization for inverse problems sig-
nificantly accelerate the reverse diffusion. This leads to a
novel hybridization that has not been covered before: a sim-
ple incorporation of pre-trained feed-forward NNs can be
very efficient at pushing t0 to smaller limits, even as small
as t0 = 0.02 in the case of MRI reconstruction.

5.1. Limitations

We note that the choice of t0 for acceleration varies by
quite a margin across different tasks, and the degree of cor-
ruptions. Currently, there does not exist clear and concise
rules for selecting such values as we do not have a knowl-
edge of ε0 a priori. Thus, one needs to rely mostly on
trial-and-error, which could potentially reduce practicality.
Building an adaptive method that can automatically search
for the optimal t0 values will be beneficial, and we leave
this venue for possible direction of future research.

6. Conclusion

In this work, we proposed a method to accelerate condi-
tional diffusion models, by studying the property of stochas-
tic contraction. When solving inverse problems via con-
ditional reverse diffusion, rather than starting at random
Gaussian noise, we proposed to initialize the starting from
forward-diffused data from a better initialization, such as
one-step correction via NN. Using the stochastic contrac-
tion theory, we showed theoretically why taking the shortcut
path is in fact optimal, and back our statement by showing
diverse applications in which we both achieve acceleration
along with increased stability and performance.
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