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Tiger 
→ White wolf

Standard schnauzer 
→ Yorkshire terrier

Black 
→ Red

Glass 
→ Water jug

Plastic bag 
→ Backpack

Sow’s ear 
→ Silk purse

Figure 1. FlexIT transformation examples. From top to bottom: input image, transformed image, and text query.

Abstract

Deep generative models, like GANs, have considerably
improved the state of the art in image synthesis, and are
able to generate near photo-realistic images in structured
domains such as human faces. Based on this success, re-
cent work on image editing proceeds by projecting images
to the GAN latent space and manipulating the latent vector.
However, these approaches are limited in that only images
from a narrow domain can be transformed, and with only a
limited number of editing operations. We propose FlexIT, a
novel method which can take any input image and a user-
defined text instruction for editing. Our method achieves
flexible and natural editing, pushing the limits of seman-
tic image translation. First, FlexIT combines the input im-
age and text into a single target point in the CLIP multi-
modal embedding space. Via the latent space of an autoen-
coder, we iteratively transform the input image toward the
target point, ensuring coherence and quality with a variety
of novel regularization terms. We propose an evaluation
protocol for semantic image translation, and thoroughly
evaluate our method on ImageNet. Code will be available
at https://github.com/facebookresearch/
SemanticImageTranslation/.

1. Introduction

The old saying goes: “You can’t make a silk purse from
a sow’s ear.” Or can you? Truly flexible and powerful se-
mantic image editing is elusive, and current work is limited
in terms of possible input images and edit operations. Re-
search in deep generative image models has seen significant
progress in recent years, with GANs in particular generating
near photo-realistic samples in domains such as human and
animal faces [26] or object-centric images [4]. Moreover,
recent “style-based” GANs, like StyleGAN [27–29], have
an impressively disentangled latent space, where perform-
ing copy-pastes between two latent vectors transfers the cor-
responding styles in the image space.

Consequently, significant research efforts have been put
into using pre-trained GANs for semantic image edition.
Through specific latent-space manipulation, high-level at-
tributes such as age or gender can be identified and edited
in a realistic manner [1,22,41,57]. These approaches, how-
ever, present several caveats. First, contrary to generated
latents, inferred latent codes representing real images have
been shown to react poorly to latent editing operations [19].
Although recent methods [19, 45, 55] improve editability,
input images are still highly limited to the distribution of
the generative network. Moreover, edit operations are also
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limited to the semantics identified in the latent space via a
pre-trained classifier [1,41,57] or through a semi-automatic
manner [22, 48]. These semantics are specific to the single
domain the GAN was trained on, such as age or apparent
gender in the case of faces. Some flexibility w.r.t. the input
images can be obtained by training a GAN to directly mod-
ify the images, known as image-to-image translation. These
methods learn a transformation between two domains, using
paired data [23, 38, 49] or unpaired data [6, 56]. However,
these models only learn a single transformation, or combi-
nations thereof [50], specific to the training data, limiting
the scope of their applicability.

We tackle these challenges with a unified framework
which modifies an input image based on a user-defined text
query of the form (S → T ), like cat → dog. For this se-
mantic image translation task, the goal is to make mini-
mal image modifications while transforming the image as
requested. We leverage CLIP [40], which combines text
and image representations in one powerful multimodal em-
bedding space. This space is used to define our target point,
based on the embeddings from the user input. We perform a
per-image optimization procedure, using specific strategies
to ensure image quality and relevance to the transformation
query. Our method requires only fixed pre-trained compo-
nents, and can thus be used off-the-shelf without requiring
any training. The image is optimized in the latent space of
an auto-encoder, rather than a GAN, which greatly enlarges
the scope of possible input images. This allows for truly
flexible image edits; as Figure 1 shows, even a sow’s ear
can be changed into a silk purse.

We also propose a quantitative evaluation protocol for
the task of semantic image translation. Evaluation is based
on three criteria: (i) the transformed image should correctly
correspond to the text query, (ii) the output image should
look natural, and (iii) visual elements irrelevant to the text
query should remain unchanged. We thoroughly evaluate
our model on ImageNet, and demonstrate quantitatively and
qualitatively the superiority of our method against base-
lines, broadening the horizon of text-driven image editing.

2. Related Work

Image editing. Deep generative networks, like GANs,
have given rise to numerous image editing applications,
ranging from photography retouching [42], image inpaint-
ing [52], object insertion [17], domain translation [53, 56],
colorization [23], super-resolution [25, 35], among many
others. Automatic user-driven image editing aims at provid-
ing the user control to modify an image, by tweaking seg-
mentation masks [37], scene graphs [10], or class labels [5].
Allowing the user to provide unstructured free-form text
queries is more challenging. Close to our objective, Mani-
GAN [36] aims at performing text-based edits by training

a model to refine the details of an image based on its tex-
tual description. Their quantitative evaluation protocol uses
transformation queries on the COCO dataset by considering
random unaligned (image, caption) pairs, resulting in possi-
bly incoherent transformation queries. We carefully design
our evaluation protocol to avoid such cases.

Image latent space. While GANs are highly effective as
generative models, inference of the latent variable given an
image is in principle intractable. Even though joint learning
of an inference network has been proposed, see e.g. [11,14],
the mode-seeking training dynamics of GANs are not suited
for good reconstruction performance beyond the training
distribution (or even within it, if modes are dropped). Vari-
ational autoencoders [33], on the other hand, offer an in-
ference network by construction, and their likelihood-based
training objective ensures accurate reconstructions.

Vector-quantized variational autoencoders (VQ-
VAE) [2, 47], which discretize the latent space, have been
found to offer both good reconstructions as well as com-
pelling samples. In particular, VQ-GAN [15, 51] further
improves reconstructions by including an adversarial loss
term to train the autoencoder. In our work, we adopt the
VQ-GAN autoencoder, and edit images in its latent space.

Latent space manipulation. The introduction of “style-
based” GANs, such as StyleGAN [27–29] significantly im-
proved the disentanglement of the latent space, leading to
a surge of research into its interpretation and manipula-
tion. By using an auxiliary classifier, a simple approach
consists in finding linear boundaries in the latent space sep-
arating binary attributes [18, 41, 57], which allows to edit
attributes by “walking” in the orthogonal latent direction.
StyleFlow [1] proposes a non-linear approach by learning
the latent transformations using normalizing flows. Other
methods [22,48] operate without a pre-trained classifier and
find the transformations in an unsupervised manner, requir-
ing a manual labelling process to interpret and annotate the
“discovered” transformations. Rather such restricted sets of
possible edit dimensions, we target more general transfor-
mations described by free-text.

Semantic alignment with CLIP. To align images and text,
CLIP [40] learns encoders that map both modalities to a
shared latent space in which they can easily be compared
and combined. Vision encoders are based on ResNets [20]
and Vision Transformers [13].

CLIP, trained on 400M web-crawled image/text pairs
with a simple contrastive InfoNCE loss [46], can provide a
robust differentiable signal for image synthesis and editing,
used in conjunction with diffusion models [32], and gener-
ators based on Bézier curve strokes [16]. CLIP was also
successfully used in conjunction with VQGAN to generate
novel art images [8] or perform semantic style transfer [30].
Similarly to us, StyleCLIP [39] transforms images based on
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Figure 2. FlexIT optimization framework: components involving the multimodal latent space colored in green; those involving the image
latent space in yellow; those involving the LPIPS distance in pink. Given a transformation query (I0, S, T ), we first compute a target point
P in the multimodal embedding space, and we encode I0 in the image latent space to get z0. Then, for a fixed number of steps, we update
the latent variable z (initialized with z0) to get closer to the target point P . We add two regularization terms: the LPIPS perceptual distance
between the input image and the output image, and a latent distance between z and z0. All networks are frozen, only z is updated.

text queries via alignment in CLIP’s latent space. However
it relies on the latent space of StyleGAN2 to optimize the
image, which requires training a separate generative and la-
tent space inference model per application domain.

3. FlexIT framework for semantic editing
An overview of our image transformation approach is

depicted in Figure 2. It relies on three pre-trained com-
ponents. First, we edit the input image in a latent space,
with the requirement that a wide range of images can be
encoded and decoded back to an RGB image with minimal
distortion. We chose the VQGAN autoencoder [15] for that
purpose. Second, we embed the text query and input image
in a multimodal embedding space, to define the optimiza-
tion target for the modified image. We use the CLIP [40]
multimodal embedding spaces. Finally, to ensure that the
modified image remains similar to the input, we control its
distance to the input image with the LPIPS perceptual dis-
tance [54] computed with a VGG [43] backbone.
Optimization scheme. The core idea of the FlexIT method
is to edit the input image in a latent space, guided by a
high-level semantic objective defined in the multimodal em-
bedding space. Let E be the image encoder, D the image
decoder and (Ct, Ci) the multimodal encoders for text and
image respectively. Given an input image I0 and a textual
transformation S → T , we first initialize FlexIT by com-
puting the initial latent image representation as z0 = E(I0)
and the target multimodal point P as

P = Ct(T ) + λICi(I0)− λSCt(S). (1)

We choose to use a multimodal embedding space since it
allows text and image modalities to be combined together
in a meaningful way: semantic transformations defined by
textual embeddings can be applied to images with linear op-
erations [24]. In this context, our target point P can be seen
as an image embedding that has been semantically modi-
fied with textual embeddings, by removing the source class

information (−λSEt(S)) and adding the target class infor-
mation (+Et(T )). Since we don’t know what is the optimal
linear combination of image and text embeddings, we con-
sider λI and λS as parameters which will be validated on
our development set.

To find an output image which, when encoded in the
multimodal embedding space, gets as close as possible to
the target point, we optimize the embedding loss:

Lemb(z) = ∥Ci(D(z))− P∥22. (2)

We add two regularization terms to the embedding loss,
to encourage that only the content related to the transforma-
tion query is changed. Without regularization, the optimiza-
tion scheme can alter any part of the image if this helps in
getting closer to the multimodal target point, which we have
found to yield unnatural artifacts. The distance to the input
image I0 is controlled with a LPIPS distance:

Lperc(z) = dLPIPS(D(z), I0). (3)

To enforce staying in parts of the latent space that are
well decoded by our image decoder, we use a regularization
term with respect to the initial latent code z0. We use a ℓ2
norm at each spatial position i of the latent code, and sum
these norms across spatial positions to obtain the loss:

Llatent(z) =
∑
i

∥zi − zi0∥2. (4)

This ℓ2,1 loss encourages sparse zi changes, i.e. limiting
changes in spatial locations, which is aligned with our ob-
jective to transform a localized part of the input image.

Finally, note that λI in Eq. (1) also acts as a regulariza-
tion parameter, by encouraging the input and output image
to be close in the multi-modal embedding space.

The total loss we optimize can be written as:

Ltotal(z) = Lemb(z) + λpLperc(z) + λzLlatent(z). (5)
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Figure 3. Architecture of our robust CLIP-based image encoder,
which combines three different encoders by concatenation.

After initialization, the latent image variable z is updated
via gradient descent with a fixed learning rate µ for a fixed
number of steps N , while keeping all network weights
frozen. Following the implementation of the Fast Gradient
Method [12], we normalize the gradient before the update.

Image optimization space. The distance to the multi-
modal target point is a differentiable loss that can be op-
timized via gradient descent. A straightforward approach
consists in performing gradient descent directly in the pixel-
space. However, this type of image representation lacks a
prior on low-level image statistics. By optimizing over a la-
tent variable instead, the image is obtained as the output of
a neural-network based decoder. Choosing an autoencoder,
like that of VQGAN, lets us (i) make use of the decoder’s
low-level priors, which guides the optimization problem to-
wards images that exhibit at least low-level consistency; and
(ii) encode and decode images in its latent space with lit-
tle distortion. The spatial dimensions in the VQGAN la-
tent space allows to edit specific parts of the image inde-
pendently, contrary to GANs which typically rely on more
global latent variables. Although GANs generate realistic
images with stronger priors, it is problematic to optimize
their latent space for two reasons: first, GANs work well on
narrow distributions (such as human faces), but do not work
as well when trained on a much wider distribution; second,
even with a GAN trained on a wide distribution such as that
of ImageNet, it is hard to faithfully reconstruct an image
using its latent space.

We report on experiments with optimization over raw
pixels and GAN latent spaces in Section 4.3.

Implementation details. In FlexIT, we run the optimiza-
tion loop for N = 160 steps, which we found enough to
transform most images. We use a resolution of 288 for en-
coding images with VQGAN, which compresses the images
in a latent space with dimensions (256, 18, 18).

We take advantage of various pre-trained CLIP mod-
els, and combine their embeddings with concatenation, as

shown in Figure 3. By default, we use three image embed-
ding networks with different ResNet and ViT architectures,
which implement complementary inductive biases. To en-
code an image with a single CLIP network, we average the
embeddings of multiple augmentations of the input image
(8 by default). We have empirically observed that using
multiple augmentations per network stabilizes optimization
in the early stages.

For the regularization coefficients, we use λz = 0.05,
λp = 0.15, λS = 0.4, λI = 0.2 as our default values.
These coefficients are set using our ImageNet-based devel-
opment set, and are fixed for all experiments.

These implementation choices are analysed in Sec. 4.4.

4. Experiments
Below, we first describe our evaluation protocol in detail.

We then present qualitative and quantitative results, and an
in-depth analysis of various components of our approach.

4.1. Evaluation Protocol

Evaluation dataset. We did not find a satisfying evalu-
ation framework to study the problem of semantic image
translation: existing dataset and metrics focus on narrow
image domains, or random text transformation queries [36,
39]. To overcome this, we have decided to build upon the
ImageNet dataset [9] for its diversity and its high number of
classes: by defining which class labels can be changed into
one another (like cat → tiger), we can build a set of sensi-
ble object-centric transformation queries. We have selected
a subset of the 273 ImageNet labels that we manually split
into 47 clusters according to their semantic similarity. For
instance, there is a cluster containing all kinds of vegetables.
Details on the subset selection and grouping are presented
in the appendix. We only consider transformations S → T
where S and T are in the same cluster, in order to avoid
nonsensical transformations between unrelated objects, e.g.
laptop → butterfly.

For each target label T we construct eight transforma-
tion queries by randomly sampling eight other classes {Si}
within the same cluster, and sample a random image from
each Si from the ImageNet validation set. This gives a total
of 2,184 transformation queries that we split into a devel-
opment set and a test set of equal size. We use the develop-
ment set to tune various hyper-parameters of our approach,
and report evaluation metrics on the test set.

Metrics. We evaluate the success of the transformation
by means of the Accuracy of an image classifier, which is
possible since we use ImageNet class labels as the transfor-
mation targets. We use a DeiT [44] classifier, which has an
ImageNet validation accuracy of 85.2%. We judge a trans-
formation successful if, for the transformed image, class T
has the highest probability among the 273 selected classes.

418273



Input 
Image

Output 
Image

Dataset 
Image

Lifeboat 
→ Fireboat

Beagle 
→ Otterhound

Soccer ball → 
Ping pong ball

Broccoli → 
Spaghetti squash

Indigo bunting 
→ Junco

Monarch → 
Sulphur butterfly

Tiger beetle 
→ LadybugText Query Steel drum

→ Marimba

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Transformation examples with FlexIT on ImageNet images. From top to bottom: input and output image, as well as dataset
image from the target class. Columns (a)-(e) show examples of successful transformations. Column (f) shows an interesting behavior
where another object has been added in the image to add more context (a table tennis racket in the hand of the person). The last two
columns show the most frequent modes of failure: only part of the input object is transformed (g), or parts of the input object that should
be changed are not changed: in column (h), the transformed images still has a broccoli shape with green parts instead of an orange and
round spaghetti squash).

To assess naturalness of transformed images, we use the
Fréchet Inception distance (FID) [21]. To avoid numeri-
cal instability related to estimating the feature distribution
with a small number of samples, we use the “Simplified
FID” (SFID) [31] which does not take into account the off-
diagonal terms in the feature covariance matrix. In addition
to the SFID, we use a class-conditional SFID score (CS-
FID) which is an average of the SFID scores computed for
each target class separately.1 Because we compute these
scores with a low number of examples for many classes,
the CSFID score has a high bias, low variance profile on
our dataset [7], and we have found it to be reliable and sta-
ble. The CSFID metric is a measure of both image quality
and transformation accuracy, as it measures the feature dis-
tribution distance between the transformed images and the
reference images from the target class in the training set.
Editing should not change parts of the image that are ir-
relevant to the transformation defined in the text, e.g. the
background. We use the LPIPS perceptual distance [54] to
measure deviation from the input image. It is a weighted ℓ2
distance of deep image features, and has been demonstrated
to correlate well with human perceptual similarity. During
training, we used the LPIPS distance based on VGG fea-
tures, so as to reduce bias in the LPIPS evaluation which is
based on AlexNet features. The LPIPS distance cannot dif-
ferentiate between edits that are relevant to the text query,
and those which are not; and we don’t know the minimal
LPIPS distance between an image and its closest successful
transformation. Still, we argue that it should be as low as
possible.

1Referred to as within-class FID in [3].

More details on the metrics we used in our experiments
are presented in the appendix.

4.2. Results

Qualitative results of FlexIT transformations on Ima-
geNet images are presented in Figure 4, including success-
ful transformations as well as several failure cases. To
demonstrate the generality of our approach, we also show
examples of color transformations for images from the
Stanford Cars dataset [34] in Figure 5.

Semantic image translation is inherently a trade-off be-
tween having the most relevant and natural output image
(as measured by Accuracy, CSFID and SFID), while stay-
ing as close as possible to the input image (as measured by
LPIPS). We consider two extreme configurations as base-
lines, which only optimize one of these two criteria: (i) The
COPY baseline, which simply copies the input image with-
out any modification, and (ii) the RETRIEVE baseline that
outputs a random validation image labelled with the target
class T . We add the ENCODE baseline that simply passes
the input image through the VQGAN autoencoder.

We also evaluate StyleCLIP [39], the most relevant text-
driven image transformation algorithm from the literature.
We consider the version most similar to our method that
embeds images with an ImageNet-trained StyleGAN2,2 and
iteratively updates the StyleGAN2 latent representation to
maximize the similarity with a given text in the CLIP latent
space. We have also trained ManiGAN [36] on ImageNet

2We used the publicly available model from https://github.
com/justinpinkney/awesome-pretrained-stylegan2, and
train our own e4e encoder [45] to embed images into this latent space.
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Yellow → Orange Grey → Blue Red → Orange Grey → Yellow Red → Grey

Figure 5. Example transformations on the Cars dataset: input
images (first row), FlexIT results (second row), StyleCLIP re-
sults based on a StyleGAN2 backbone pre-trained on LSUN Cars.
dataset (last row). Although GAN-based images have better de-
tails like the wheels, they are farther away from the input images.

LPIPS ↓ Acc.%↑ CSFID ↓ SFID ↓

COPY 0.0 0.45 106.0 0.2
ENCODE 17.5 1.6 107.5 3.0
RETRIEVE 72.4 90.6 27.2 0.2
ManiGAN [36] 21.7 2.0 123.8 17.0
StyleCLIP [39] 33.4 8.0 146.6 35.8
FlexIT (Ours) 24.7 51.3 57.9 6.8

Table 1. Evaluation of FlexIT and baselines on ImageNet images.

with the implementation from the authors.
Results are reported in Table 1. As expected, the copy

baseline is ideal on LPIPS and SFID, but fails to adapt to the
transformation target T , and thus fails on Accuracy and CS-
FID. For the same reason, the auto-encoding baseline also
fails on Accuracy and CSFID, but demonstrates the non-
trivial impact of using the VQGAN latent space on LPIPS
and SFID. The RETRIEVE baseline provides ideal metrics
for Accuracy, CSFID and SFID, as it returns natural images
of the target class. It fails on LPIPS, however, since the
output image is unrelated to the input.

Our FlexIT approach combines a low LPIPS (24.7 vs.
17.5 for ENCODE) with an accuracy of 51.3% and a CS-
FID of 57.9, which is closer to the CSFID of RETRIEVE
(27.2) than that of ENCODE (107.5). The StyleCLIP scores
are poor, with high SFID and CSFID scores which was ex-
pected as StyleCLIP has been designed to work well where
GANs shine. The StyleGAN2 model we use, trained on Im-
ageNet, is agnostic to class information and cannot synthe-
size realistic images for all ImageNet classes. ManiGAN
works well when trained on narrow domains with color
change transformation requests, but we find that it does not
produce convincing edits when trained on ImageNet.

To provide insight into which transformations work well,
and which less so, we group our 47 ImageNet clusters into
13 bigger groups (see appendix for details) and report the

0 50 100
CSFID

bird
fungus

dog
mammal

vehicle
insect

sea life
reptile
edible

music instr.
container

device
object

0% 50% 100%
Failure Rate

Figure 6. Groupwise CSFID and Failure Rate (1-Accuracy), lower
is better for both metrics. Dark colors: best possible values ob-
tained with RETRIEVE baseline; medium colors: scores obtained
with FlexIT; light colors: values obtained with COPY baseline.
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Figure 7. CSFID obtained without regularization, with individual
LPIPS, Latent and CLIP regularizers, and using all. Each curve
corresponds to 160 steps of optimization on the dev. set.

average CSFID and failure rate (1−accuracy) scores for
each group in Figure 6. Generally, transformations among
natural objects are more successful than transformations
among man-made objects. We believe that this is mostly
because the latter appear in a wider variety of shapes and
contexts which leads to more difficult transformations.

4.3. Ablation studies

Regularizers. In Figure 7, we show the evolution of
CSFID along the optimization steps, where we consider
our method without regularization, with each regulariza-
tion scheme separately, and with all regularizers (default
configuration). Compared to not using regularization, the
LPIPS regularization substantially improves the CSFID
score along the optimization path, while also reducing
LPIPS as expected. The CLIP regularizer has a similar ef-
fect, but is able to reduce CSFID further while the LPIPS
distance is only slightly reduced compared to our method
without any regularization. These two regularizers are com-
plementary: while the LPIPS loss mitigates image deviation
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Figure 8. Example transformations with different regularizers.
Textual queries from top to bottom: Rottweiler → German shep-
herd, Electric guitar → Banjo, Red wolf → Grey fox.
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Figure 9. CSFID for different CLIP networks combinations and
number of data augmentations options. Default setting: ViT+2RN.

for local features, the CLIP loss provides semantic guidance
which helps to reconstruct recognizable objects. Using all
regularizers allows us to obtain the lowest CSFID scores at
low LPIPS. Corresponding qualitative examples are shown
in Figure 8.

CLIP embedding module. We study how different
choices of CLIP image encoders impact the CSFID score.
Our default configuration involves two ResNet-based net-
works and one ViT-based network to embed the image in the
CLIP space. We experiment with a single ViT or ResNet,
a combination of ViT with a single ResNet, and also us-
ing all available pre-trained CLIP networks, which com-
prises a ViT-B/16, a ViT-B/32, a ResNet50, ResNet50×4
and ResNet50×16, see [40] for details on the modules. For
each CLIP network configuration, we experiment with ei-
ther not using data augmentation, or using d ∈ {1, 8, 32}
augmentations. We apply basic geometric augmentations
that are commonly used to train image classification net-

10 20 30 40 50 60
Mean LPIPS distance

60

80

100

120

140

C
S

F
ID

8

32
160

8

32
160

8
32

160

8 32

160

VQGAN

ICGAN

Pixels

StyleGAN2

Figure 10. CSFID and LPIPS scores across iterations, using dif-
ferent latent spaces, or raw pixels, for optimization.

works (more details in appendix). Each of the Nnets CLIP
networks sees a different augmentation in each of the Nsteps
optimization steps, resulting in a total of d×Nnets ×Nsteps
augmentations of the input image.

From the results in Figure 9, we see that while the ViT
and ResNet embedding networks lead to similar results,
they are complementary and combining them leads to a sub-
stantial improvement. Adding additional networks leads to
further improvements. Second, using data augmentation is
very beneficial, and leads to a reduction in CSFID of 10 or
more points for all network configurations. Using more than
one augmentation does not improve results substantially: it
suffices to a different augmentation for each network at each
optimization step. In our other experiments we use the three
smallest (and fastest) CLIP networks as our default setting.

Image optimization space. We compare our choice of op-
timizing in the VQGAN latent space with using the latent
spaces of StyleGAN2 [29] and IC-GAN [5], as well as op-
timizing directly in the pixel space. IC-GAN [5] generates
images similar to an input image, and uses a latent variable
to allow for variability in its output. As IC-GAN does not
offer direct inference of the latents for a given image, we
take 1,000 samples from the latent prior, and keep the one
yielding minimal LPIPS distance to the input image. We
found that optimization to further reduce the LPIPS w.r.t.
the input image from this point on was not effective. For
StyleGAN2 [29], we use the same network pre-trained on
ImageNet as we used for StyleCLIP. To embed the evalu-
ation images into this latent space, we first obtain an ini-
tial prediction of the vector with the e4e encoder [45], as in
StyleCLIP, and then perform an additional 1,000 optimiza-
tion steps to better fit the input image, following the GAN
inversion procedure described in [28].

The results in Figure 10 show that using the VQGAN la-
tent space allows to substantially decrease the CSFID score
along the iterations, while only slightly increasing LPIPS.
Using the raw pixel space is not effective to decrease the
CSFID. IC-GAN has relatively good image synthesis abil-
ities but it is hard to faithfully encode images in its latent
space, yielding high LPIPS scores above 50. The Style-
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Figure 11. Effect on CSFID and Accuracy of hyper-parameters;
default settings represented by the black dot, where all lines cross.

GAN2 latent space (W+) is bigger, allowing generated im-
ages to be closer to the input images; however its CSFID
scores are not competitive with the other approaches.

4.4. Hyperparameter study

In Figure 11, we illustrate the effect of our hyper-
parameters on the LPIPS, CSFID, and Accuracy metrics.
For the three regularization parameters λp, λz, λI , we ob-
serve that (i) the LPIPS distance with respect to the input
image is smaller as the regularization gets stronger, as ex-
pected; (ii) less regularization allows more image modifica-
tions, yielding better accuracy scores, as illustrated in the
bottom panel; (iii) there is a global minimum in CSFID
scores when we vary each hyper-parameter independently
(top panel). Regularization constraints are indeed useful
to prevent inserting unnatural visual artifacts; however, too
much regularization penalizes our algorithm as the distribu-
tion of output images gets closer to the input distribution,
and thereby farther from the target distribution.

The parameter λS , similarly to the regularization param-
eters, has a an optimal value which minimizes the CSFID.
It is beneficial to give a hint to the optimization algorithm
which semantic content should be changed, however focus-
ing too much this objective reduces image realism.

For our main experiments, we set our hyper-parameters

to minimize the CSFID score on the development set. This
is a natural choice given the convex shape of the CSFID
scores, whereas optimizing for accuracy would remove the
regularizers which is detrimental for image quality.

5. Conclusion

Contributions. We propose FlexIT, a novel method for
semantic image translation. By relying on an autoencoder
latent space, rather than specialized GAN latent spaces, it
can operate on a wide range of images. Using a general
pre-trained multi-modal embedding space provides flexibil-
ity, giving FlexIT the ability to process free-text transfor-
mation queries without training. We also propose an evalu-
ation protocol for semantic image translation, based on Im-
ageNet, which we use to thoroughly evaluate our approach
and its components.

Limitations. Our method works best for semantic transla-
tion when the input image provides guidance, but has dif-
ficulties synthesizing realistic novel objects from scratch.
Also, while we studied transformations that change the
class or color of the main object in a scene, other trans-
formations of interest could consider changing the action
of a subject (person walking vs. running), changing object
attributes, adding or deleting objects, or consider more elab-
orate textual descriptions which require non-trivial ground-
ing in the image (“change the color of car parked next to
the bicycle.”). Importantly, progress in this direction will
require to identify the right data and evaluation metrics.

Broader impacts. As our algorithm relies on CLIP for
editing, it could potentially inherit its biases. The authors of
CLIP have demonstrated that their model is subject to fair-
ness issues such as misclassifying human faces into non-
human or crime-related categories, and producing gender
biased associations. Our editing method could reflect such
biases if prompted transformations such as doctor → news-
caster, although we have not observed experimental evi-
dence of this. A potential bias mitigation strategy would be
to add constraints with CLIP prompts to control bias before
and after editing.

Our model provides new capabilities to an expanding set
of image editing and synthesis tools based on deep gener-
ative models. As any generative image model, synthetic
images generated by our method can potentially be used
in unintended ways with undesirable effects. We believe
however that open publication of research in this area con-
tributes to a good understanding of such techniques, and can
aid the community in efforts to develop method that detect
unauthentic content.
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