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Figure 1. Matting results on real-world images. From the second column to right are results of IndexNet [23], GCA [18], SIM [29],
FBA [11], CA+data augmentation (DA) [14] and our method, respectively. Note that, all the methods are trained with the DIM [35]
dataset (except SIM is trained with the SIMD [29] dataset). They are comparable on benchmark images, while present varying results on
real-world images. Our method shows better generalization ability.

Abstract

Deep image matting methods have achieved increasingly
better results on benchmarks (e.g., Composition-1k/alpha-
matting.com). However, the robustness, including robust-
ness to trimaps and generalization to images from different
domains, is still under-explored. Although some works pro-
pose to either refine the trimaps or adapt the algorithms
to real-world images via extra data augmentation, none of
them has taken both into consideration, not to mention the
significant performance deterioration on benchmarks while
using those data augmentation. To fill this gap, we propose
an image matting method which achieves higher robustness
(RMat) via multilevel context assembling and strong data
augmentation targeting matting. Specifically, we first build
a strong matting framework by modeling ample global in-
formation with transformer blocks in the encoder, and fo-
cusing on details in combination with convolution layers
as well as a low-level feature assembling attention block
in the decoder. Then, based on this strong baseline, we
analyze current data augmentation and explore simple but
effective strong data augmentation to boost the baseline
model and contribute a more generalizable matting method.
Compared with previous methods, the proposed method not
only achieves state-of-the-art results on the Composition-1k

benchmark (11% improvement on SAD and 27% improve-
ment on Grad) with smaller model size, but also shows more
robust generalization results on other benchmarks, on real-
world images, and also on varying coarse-to-fine trimaps
with our extensive experiments.1

1. Introduction
Image matting, as a fundamental computer vision task,

aims to obtain the high-quality alpha matte of the fore-
ground object given an input image. Mathematically, image
matting is formulated as:

Ii = αiFi + (1− αi)Bi , (1)

where Ii, αi, Fi and Bi are observed colour value, al-
pha value, foreground value and background value of pixel
i, respectively. It is an ill-posed problem because there
are 7 unknowns given 3 equations. With recent success
of deep learning, deep matting methods [4, 11, 14, 18, 23,
29, 35] achieve promising results on benchmarks such as
Composition-1k [35] and alphamatting.com [26]. While

1This work was in part done when YD was an intern at Adobe and CS
was with The University of Adelaide. CS is the corresponding author.
Project page: https://dongdong93.github.io/RMat/
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increasingly higher accuracy have been promised on bench-
marks, due to the limited training/test data, robustness of
these methods is still under explored.

First, robustness to the trimap, the commonly used prior
input, is important for a matting algorithm. In real appli-
cations, trimaps are labeled by users, with unpredictable
precision of unknown regions. However, as shown in
Fig. 2, existing matting methods [11,29] are sensitive to the
shape/size of the given trimap so that it requires users’ more
time to accurately brush the trimap. A main reason why
existing methods are sensitive to the precision of trimap
is they focus more on detailed cues, where robustness to
trimap with varing precision, which relies more on context
information, is less cared about. One possible solution is
to optimize the trimap to be a more detailed one. This was
proposed in [1], where an extra branch was used to generate
a more precise trimap. Though multi-task learning is lever-
aged in this method to adapt the trimap, its context modeling
is still limited, which restricts its robustness in applications.
Therefore, we wonder whether it is possible to enhance the
context modeling ability (robustness) of a matting algorithm
with a simpler and more effective approach.

Meanwhile, it has been known that deep matting models
trained on synthetic data undertake the risk of poor gener-
ation to real-world domains [14, 29, 39] (Fig. 1). However,
due to the difficulty of obtaining ground-truth annotations
for real-world images, only synthetic datasets are available
to train the matting algorithms, so some works attempted to
narrow the domain gap. For example, [14,39] leverage extra
data augmentation to adapt the models to real-world images,
while significant performance degradation on the synthetic
benchmark happens at the same time. Although better pre-
diction on real-world images is appreciated, it is desirable
that the model can be generalized to broader scenes with-
out sacrificing too much performance on images from one
domain such as the benchmark data, because it is hard to
confirm which domain a test image comes from, and not to
mention that the real-world test images in [14, 39] can only
cover a tiny part of real scenes. Therefore, a model showing
better domain generalization ability is in demand.

Motivated by these demands, we present a more robust
matting method (RMat), which achieves higher robustness
to diverse trimap precision and better generalization to var-
ious domains. In detail, two steps are designed. The first
step is to build a strong baseline model with multilevel con-
text assembling. It is implemented by combining trans-
former blocks with convolution layers, where global con-
text is learned via self-attention modules and local context is
emphasized by convolution layers. Considering the unique-
ness of matting that needs local context information and
original test resolutions to capture details, we explore de-
signs and implementations aiming at this task to build an
efficient model. Further, founded on this strong baseline

model, we investigate strong data augmentation for matting.
We analyze the problems behind current augmentation and
propose strong augmentation strategies specifically for mat-
ting. Finally, to verify robustness of the model, a series of
experiments and visualizations are carried out in compari-
son with state-of-the-art methods.

In summary, our main contributions are: 1) A strong
matting framework with multilevel context assembling; 2)
Strong augmentation strategies targeting matting; 3) De-
signs of experiments and visualizations to verify generaliza-
tion capability of matting models; 4) State-of-the-art results
on benchmarks (w/ and w/o fitting the training sets), higher
robustness to varying trimap precision, and better general-
ization to real-world images.

2. Related Work
Deep Image Matting. Before the success of deep learn-

ing, conventional matting methods [2, 3, 13, 15, 27, 28, 31]
dominated this field by solving Equation (1) using dif-
ferent assumptions such as the local smoothness assump-
tion in [15]. Due to the nature of relying on low-level
color cues, their assumptions are easily violated in complex
images. To overcome this dilemma, deep matting meth-
ods [1, 4, 11, 14, 18, 19, 23, 29, 30, 35, 38] appeared with the
development of deep learning.

Among recent state-of-the-art deep matting methods [4,
14,18,23], context and dynamic networks are two vital and
correlated components. The context includes both global
context and local context. Global context intuitively bene-
fits better recognition of the foreground object. It motivates
studies on extra context learning modules [14, 18, 21]. It is
also one of the reasons behind using ASPP or PPM mod-
ule in recent methods [4, 11, 23, 29]. Local context instead
promotes detail capture by caring about correlations within
a local region. The convolution operations or dynamic ker-
nels learned from local regions [4, 23] model local context
into the network. On another side, dynamic networks were
introduced to matting [4,18,23] to enlarge the model capac-
ity. They also benefit the network in combination with the
context assembling [23].

Since we aim for a more robust matting method, which
needs multilevel context information as well as ample
model capacity, the first step is taking both context and dy-
namic networks into consideration efficiently. We show that
it is achievable by combining transformer blocks and convo-
lution layers. We investigate various designs and also pro-
vide our insights into them. Considering the limited training
data and a relative large capacity of our model, we study
strong data augmentation strategies to prevent overfitting
the training data and also generalize the model better.

Domain Generalization. Domain generalization aims
at learning better representations that can be transferred to
unseen domains. There are many potential solutions, such
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Figure 2. Visual results on real-world images showing robustness of methods. The methods in comparison are SIM [29], FBA [11], and
our method w/o and w/ Strong Augmentation (SA), respectively. The first two rows are results of the same RGB image with different
trimaps. Our methods are more robust to various trimap precision. In the third row, our model using SA captures better details. The last
row presents the benefit of modeling global context: the bridge component on the left top side is apart from the main bridge body, which is
recognized as foreground in SIM and FBA. Our method, however, distinguishes it from the foreground human clearly thanks to the context
assembling. Dashed lines represent zooming in.

as data augmentation [36, 40, 42], meta learning [10, 16],
and adversarial training [12, 24]. In deep matting, since
only synthetic training data is available, the trained mod-
els usually suffer from poor generalization. They may work
well on specific domains, such as the synthetic ones simi-
lar to the training set, but show obvious decreasing perfor-
mance when applied to another domain, as the examples in
Fig. 1. Extra data augmentation [14,39] has been applied to
adapt models to real-world images, but they consider lim-
ited cases only, such as the resolution gap between the fore-
ground object and background, which may bias the models
to those images. We may observe it from Table 5.

Therefore, we move a step further by rethinking strong
data augmentation for matting. We first analyze why cur-
rent extra augmentation deteriorates the benchmark perfor-
mance, then propose strong augmentation strategies target-
ing matting. Our goal is to prevent the model overfitting
the synthetic training data and help them generalize better
to real-world images.

3. A Strong Matting Framework with Context
Assembling

As noted in conventional sampling-based matting [27,
31] and propagation-based matting [2, 15], both nearby and
long-distance pixels contribute to alpha prediction depend-
ing on their correlations. In deep models, the correlations
are related to context. Existing deep matting methods at-
tempt to model contextual attention [18] or extra context
information [14] in the network, while the global context
is still under explored. This may limit their performance
on complex images such as Fig. 2. In order to assemble
multilevel context information, including global context, we
build a baseline combining transformer blocks and convo-
lution layers. Designs of the framework are detailed below:

Encoder Design. As shown in Fig. 3, the encoder has
two branches: a transformer-based branch modeling global
context and a convolution-based branch supplementing low-
level information for details. Driven by recent vision trans-
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formers [8, 32, 34, 41], we use a 32-stride pyramid vision
transformer backbone to obtain hierarchical features. Since
matting models do inference with various original input res-
olutions, fixed position embedding is unsuitable for the ap-
plication. We therefore take advantages of [34], where fixed
position embedding is replaced with overlapped convolu-
tions. Due to the large capacity of the transformer blocks,
only 2-stride convolution layers are used in the convolution-
based branch to form 8-stride. We use two small back-
bones in [34] (mit-b1 and mit-b2) because of the limited
training data for matting. Finally, two encoder architectures
with different capacities (E1, E2) are built. BiseNetV2 [37]
also uses multiple branches in the encoder for segmentation.
Different from our purpose on recovering missing details,
[37] aims to combine high-level and low-level information
in the encoding stage, to balance accuracy and efficiency.

Decoder Design. Various decoder designs [1,4,5,18,23,
39] have been studied in matting models. As the bridge to
recover resolutions and capture details, the decoder matters
for matting. For instance, previous methods applied feature
skip [23], attention-guided refinement [18] or dynamic up-
sampling [4] to build functional matting decoders aiming at
richer details. As the first matting method applying trans-
formers, and considering the importance of the decoder, we
investigate an efficient decoder design for our framework.

In general, options for a decoder, in order of decreasing
receptive field size, include transformer layers, convolution
layers, and MLP layers. Since the transformer branch in
the encoder promises a large capacity and global reception
field, and to reduce computation as well, we only consider
using MLP layers and convolution layers in the basic de-
coder. These also work well to combining multilevel con-
text information. As a result, several baseline models with
different decoders are investigated as listed in Table 2.

Feature Skip Design. Skip information from encoder
to decoder has been widely adopted in deep matting meth-
ods [11, 18, 23, 29]. We categorize the skip information
into two sources: 1) the transformer branch of the encoder
(TSkip), where feature maps with different resolutions are
skipped to the decoder after MLP/convolution layers. These
feature maps transport abundant global information while
recovering the resolution. Since the transformer branch
starts from 1

4 resolution, some details may be missing at the
initial downsampling stage, so we use 2) another source of
skip information learned in the convolution branch (LSkip).

Low-Level Feature Assembling Attention Block
(LFA) Design. Inspired by [4, 18], where low-level fea-
ture maps assist on refining decoder features, we ex-
plore efficient low-level feature assembling using a trans-
former block. It can be easily extended from the trans-
former block in the encoder . Let Attn(Q,K, V ) de-
notes the self-attention operation in the transformer block,
the feature fusion attention then can be represent by

concatenateskip with 

conv/upsample
skip1-stride 

conv layer

2-stride 

conv layer

Transformer 

block
LFA block

Figure 3. Model architecture of our framework.

Attn(flow, flow, fd), where flow is the skipped feature
from the encoder and fd is the feature in the decoder to
be refined. Only one LFA block is added after the 1

4 resolu-
tion decoder layer as noted in Fig. 3 in our experiments to
restrict the computation. We observe introducing this block
further improves the accuracy.

4. Domain Generalization and Data Augmen-
tation for Image Matting

As training images for matting are generated by com-
position, it inevitably results in generalization problems on
real-world images. Also, it is noticed that large-capacity
transformer-based models may encounter the overfitting
problem [6, 33], especially when the dataset is small. Mat-
ting datasets [25, 29, 35], unfortunately, have limited sizes.
They usually use only hundreds of foreground images to
generate tens of thousands of synthetic training data, so
overfitting is a potential problem. To handle this issue, we
study strong augmentation (SA) for better generalization.

Targeting the domain gap between synthetic data and
real-world images, extra data augmentation (DA) was pro-
posed [14, 39]. It mainly includes Re-JEPG and Gaussian
blur. Experiments in [14, 39] show DA improves results
on real-world images, but deteriorates the performance on
the benchmark significantly, as shown in Table 4 (CA vs.
CA+DA). Therefore, SA firstly needs to overcome the per-
formance degradation on the benchmark.

4.1. Rethinking Domain Generalization and Gaps

Why Current Extra Data Augmentation (DA) Dete-
riorates Performance on the Benchmark. An example
of using Re-JPEG and Gaussian blur is shown in Fig. 4a.
As observed, some background pixels mix values with fore-
ground pixels after augmentation. Their alpha values there-
fore change from 0 to a value in range (0, 1). This kind of
alpha value blending also exists in transparent regions and
in some foreground pixels close to the background. In pre-
vious works [14,39], however, the same alpha ground truths
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Original Augmented GT

(a)
B3 B2

(b)
Figure 4. (a) A comparison between images before and after DA

. The augmented image loses its structure and does not match the
ground truth. (b) A comparison between B3 and B2 (Table 2). The
hairs in B2 are blurred.

are used after DA, which violates the matting equation. The
image after augmentation loses the structure and does not
match the alpha ground truth any more. Using these image-
alpha pairs for training could mislead the network to wrong
predictions. Hence, we argue it is at least one of the main
reasons behind the performance deterioration. To verify this
assumption, we carry out a toy-level experiment on DIM.
By using Gaussian blur and Re-JPEG with the possibility
0.25 for each as DA, two models are trained: 1) a model
trained with DA using original alpha ground truths; 2) a
model trained with DA using modified alpha ground truths
generated by applying the same augmentation as was ap-
plied to the RGB image. To ease the difficulty, only L1
alpha prediction loss is applied and fewer training iterations
are used. Other training details match the main experiments,
as detailed in Section. 5. As present in Table 1, DA makes
the errors higher, and adjusting the ground truth slightly re-
lieves the problem. Hence, it is at least reasonable to claim
that modification of ground truth matters for using DA. The
correct ground truth, however, is hard to obtain.

What are the Domain Gaps for Matting. During the
data loading stage, we assume the composition process sat-
isfies the Equation (1). Hence, no matter how the fore-
ground and the background are processed individually, the
composited image satisfies this linear equation. Under this
assumption, what are the main domain gaps for matting?

1) Complexity of Surrounding Context. For example,
the third example in Fig. 2 is challenging because it is
rarely found in the synthetic datasets. 2) Source of Im-
ages. In real-world images, foreground and background are
from the same source, while this condition is not met in
synthetic data. There could be many differences between
them: brightness, saturation, sharpness, noise level, etc. 3)
Manual Operations During Photography and Modifications
Made to the Images. For instance, unfocused boundaries,
blurred regions, mosaic generated by image compression,
etc. They rarely exist in synthetic datasets.

In this work, we rely on the network to deal with the
context domain gap by assembling multilevel context infor-
mation. As for remaining feature-level gaps, we investigate
simple but efficient strong augmentation strategies to gen-
eralize the algorithm to real-world images better.

DA Modified α SAD Grad
32.65 18.13

✓ 35.79 20.16
✓ ✓ 34.00 20.12

Table 1. DA using different ground truths. This toy experiment is
trained with a batch size of 32, 45k iterations.

4.2. Strong Data Augmentation for Matting

Driven by above analysis, we study SA for matting. The
augmentations are divided into three categories:

1) Linear Pixel-Wise Augmentation. By pixel-wise, we
mean no interpolation happens on the image. Linear de-
notes the operations that can be linearly represented. It
includes linear contrast, brightness adjustment, noise, etc.
Only pixel-level changes happen without any information
exchange among different pixels and even different chan-
nels. If we look at one channel of location i on image I , it
can be formulated by:

I ′i = aIi + b

= a [αFi + (1− α)Bi] + [αb+ (1− α) b]

= α (aFi + b) + (1− α) (aBi + b)

, (2)

where a and b are constant parameters for the linear trans-
formation. According to this equation, linear pixel-wise
augmentation obeys Equation (1) no matter it happens on
Ii, Fi or Bi. Augmentation on an image can also be viewed
as processing the foreground and background individually.
It is natural to extend this equation by:

I ′i = α (aFi + b) + (1− α) (mBi + n) , (3)

where different linear transformations happen on the fore-
ground and the background.

2) Nonlinear Pixel-Wise Augmentation. In the oppo-
site to linear operations, there are also non-linear augmenta-
tions, such as gamma correction, hue/saturation adjustment,
etc. Due to their nonlinear nature, Equation (1) is violated
if the augmentations happen on I .

3) Region-Wise Augmentation. Region-Wise augmen-
tation means operations applied using multiple pixels. For
instance, blur, jpeg compression, etc. After interpolations
on I , Equation (1) is violated, which needs alpha ground
truth to be modified accordingly.

Based on this categorization, we propose strong data
augmentation strategies:

i) Augment the Foreground Alone (AF). Motivated by
the random jitter in [18], augmenting foreground alone is
effective and obeys the composition equation. The ground
truth does not need to be modified no matter which augmen-
tation is taken because it happens before composition.

ii) Augment the Foreground and the Background In-
dividually (AFB). It is an extended version of option i) and
inspired by Equation (3). Through augmenting foreground
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No. Encoder Decoder TSkip LSkip #Params SAD(↓) MSE(↓) Grad(↓) Conn(↓)
B1 E1 MLP MLP 13.6M 39.55 0.0102 24.22 37.35
B2 E1 Conv MLP 15.4M 29.85 0.0063 13.04 25.61
B3 E1 Conv MLP ✓ 15.8M 28.94 0.0055 12.75 24.66
B4 E1 Conv MLPConv ✓ 18.2M 29.99 0.0064 15.98 25.86
B5 E1 MLPDW MLP ✓ 14.0M 29.79 0.0062 14.18 25.78
B6 E1 MLPDW MLPConv ✓ 16.1M 31.45 0.0065 15.59 27.65
B7 E2 Conv MLP ✓ 26.8M 26.11 0.0048 10.59 21.38
B8 E2 Conv MLPConv ✓ 29.2M 25.66 0.0045 10.40 20.90
B9 E2 MLPDW MLP ✓ 25.1M 28.42 0.0055 12.98 24.15

B10 E2 MLPDW MLPConv ✓ 27.2M 30.66 0.0064 14.26 26.88

Table 2. Ablation study on decoder, feature skip designs on the Composition-1k test set. ‘MLPDW’ denotes ‘MLP+DepthWise Conv’.

No. LFA llap lg lgp #Params SAD Grad
- 15.8M 28.94 12.75
- ✓ 15.8M 27.64 10.68
- ✓ 15.8M 27.71 10.23
- ✓ 15.8M 27.00 9.50

N3 ✓ ✓ 15.8M 25.86 9.69
- ✓ 16.8M 27.67 12.44

M3 ✓ ✓ ✓ 16.8M 25.70 9.50
- 26.8M 26.11 10.59

M7 ✓ ✓ ✓ 27.9M 25.00 9.02

Table 3. Ablation study on the LFA module and loss functions on
the Composition-1k. The upper part(containing N3/M3) and the
lower part(containing M7) are based on B3 and B7, respectively.

and background individually before composition, the linear
composition equation is still satisfied, the ground truth al-
pha matte hence does not need to be modified no matter
what augmentation is taken.

iii) Augment the Composited Image (AC). This strat-
egy can be further divided into two sub types. If linear pixel-
wise augmentation is applied, the composition equation is
satisfied as Equation (2). Using other strategies instead vi-
olates the equation, where a new ground truth is needed.
Due to the expense of obtaining the real ground truth, we
propose to generate pseudo label to facilitate the training.
The strategy is to predict the pseudo label using the param-
eters from the last training iteration by rotating or channel-
shuffling the input to generate a new training sample. We
anticipate this operation promotes the network to learn fea-
tures of the augmented images without sacrificing accuracy.

5. Experiments and Discussions
5.1. Implementation Details

Our models are trained on the deep image matting (DIM)
dataset [35] only. It contains 431 foreground images in
the training set and 50 foreground images in the test set.
We generate the training samples using background images
randomly selected from MS COCO [20], and use the same
rules as [35] to produce test images using background im-
ages selected from Pascal VOC [9]. The evaluation metrics
are commonly-used Sum of Absolute Differences (SAD),

Mean Squared Error (MSE), Gradient (Grad) error, and
Connectivity (Conn) error. Implementation of [35] is used.

Training Details. Our baseline models follow the dat-
aloader pipeline in [18]. To be specific, the 4-channel in-
put concatenates the RGB image and the trimap. The RGB
image is generated on-the-fly through the following basic
augmentation: foreground random affine, foreground ran-
dom combination, random resize, random crop, foreground
random jitter, and composition. More details are explained
in [18]. 512×512 patches are finally generated for training.
We initialize the weights of the mit backbones using the pre-
trained weights on ImageNet-1K [7] from [34] for the trans-
former branch. Other parameters are initialized with Xavier.
The training stage is optimized by AdamW [22] optimizer
using initial learning rate 6 × 10−4 with cosine decay. The
warm up stage takes 1000 iterations. Without specially clar-
ifying, we update parameters for 90k iterations with a batch
size of 32. Batch size 64 and 120k iterations are used for
final benchmark results, as detailed in Table 4 and 5.

Loss Functions. Our baseline models only use L1 alpha
prediction loss and composition loss as [23]. Since other
loss functions, such as laplacian loss (llap) and gradient loss
(lg), are applied in previous pure convolution-based meth-
ods [11,14], here we validate their effects in our framework.
Besides using the usual llap and lg , we define a new gradient
loss with gradient penalty(lgp) for local smoothness:

lgp = ∥∇αx −∇α̂x∥1 + ∥∇αy −∇α̂y∥1
+ λ

(
∥∇αx∥1 + ∥∇αy∥1

) , (4)

where λ is set as 0.01 in our experiments.

5.2. Results on the Deep Image Matting Dataset

Ablation Study on Model Architecture. Based on the
two-branch encoder, here we investigate designs of the de-
coder, the skip layer and the additional attention module.

According to the results in Table 2 and Table 3, we draw
the following observations: 1) Compared with the MLP
layer and the MLPDW layer, the Conv layer suits the de-
coder of matting better (B1 vs. B2, B5 vs.B3, B6 vs. B4, B9
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Method SAD MSE Grad Conn # Params
CF [15] 168.1 0.091 126.9 167.9 -
KNN [2] 175.4 0.103 124.1 176.4 -
DIM [35] 50.4 0.014 31.0 50.8 > 130.55M
IndexNet [23] 45.8 0.013 25.9 43.7 8.15M
CA [14] 35.8 0.0082 17.3 33.2 107.5M
CA+DA [14] 71.3 0.0236 38.8 72.0 107.5M
GCA [18] 35.28 0.0091 16.9 32.5 25.27M
A2U [4] 32.15 0.0082 16.39 29.25 8.09M
SIM [29] 28.0 0.0058 10.8 24.8 70.16M
FBA [11] 26.4 0.0054 10.6 21.5 34.69M
FBA+TTA [11] 25.8 0.0052 10.6 20.8 34.69M
M3‡ 23.98 0.0042 8.54 18.88 16.8M
M7‡ 22.87 0.0039 7.74 17.84 27.9M

Table 4. Benchmark results on the Composition-1k test set. The
best performance is in boldface. ‡ denotes training with a batch
size of 64, 120k iterations using our SA.

vs.B7, B10 vs. B8); 2) Skipped information from the trans-
former branch to the decoder can be efficiently achieved
by a simple MLP layer (B3 vs. B4, B5 vs. B6, B9 vs.
B10); 3) Low-level skip fusion is important for recovering
details (B2 vs. B3, also see Fig. 4b); 4) Additional low-
level feature assembling attention module further improves
the results (Table 3); 5) The advantage of larger backbone is
gradually weakened with improvement on the architecture
and loss functions (B3−→M3 vs. B7−→M7 in Table 3).

Ablation Study on Loss Functions. Here we justify
effectiveness of laplacian loss (llap), gradient loss (lg) and
the proposed gradient loss with gradient penalty (lgp) in our
framework. Results are reported in Table 3. Compared with
using only basic loss functions, llap, lg , and lgp all reduce
the errors, and our lgp works better than normal lg . Com-
bining llap and lgp together builds the best prediction. We
use these two losses in the following experiments.

Comparison with State of the Art. Benchmark re-
sults on the Composition-1k are list in Table 4. Our mod-
els achieve significantly better results on all the metrics.
Compared with a currently top-performing FBA+TTA [11]
model, our method (M7‡) gains 11% improvement on SAD
and 27% improvement on Grad without any augmentation
on the test images. Moreover, our method is more robust to
trimap precision, as shown in Fig. 2 and 5, and the detailed
evaluations in the supplement.

5.3. Generalization on Various Benchmarks

To verify the generalization ability of matting methods
to unseen domains, comparison experiments are carried out
in Table 5. Specifically, we test models trained merely
with the DIM dataset [35] on several different benchmarks
without fitting on their training set (except that SIM [29]
is trained on SIMD [29], which has 763 foregrounds, 332
more foregrounds than DIM). The test benchmarks in-
clude Distinction-646 [25], SIMD [29], and AIM-500 [17].
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Figure 5. Robustness to trimap precision on AIM-500

Distinction-646 and SIMD are synthetic benchmarks, and
AIM-500 is a real-world one but with simple scenes, so
none of them alone is perfect for measuring generalization
ability of a model. However, since they contain images from
different sources and various domains, it is at least reason-
able to combine them together to see how algorithms per-
form quantitatively on all of them, and the overall results
should reflect how well a model can adapt to diverse images
to some extent. Note that, since SIMD has only provided al-
pha ground truths and foregrounds until the submission, we
generate the test set following the rule of [35] and name it
as SIMDour. To ensure all the methods can be test on a nor-
mal modern graphic card, we restrict the maximum length
of the test images in SIMDour by 2000.

Ablation Study on Strong Data Augmentation. Here
we investigate the SA strategies. We either use AF,
AFB alone, or combine them with AC. Specifically, the
linear pixel-wise augmentations include: linear contrast,
brightness adjustment, channel inversion/shuffling, gaus-
sian/poisson noise, random dropout, cloud, snow, multiply,
salt and pepper; the nonlinear pixel-wise augmentations in-
clude: gamma contrast, hue and saturation add on, his-
togram equalization; and region-wise augmentations con-
sist of gaussian blur and jpeg compression. If AF or AFB
is applied alone, we set the possibility as 0.5 and keep the
ground truths unmodified; if they are combined, possibility
of each is changed to 0.25; further, if AC is added on, we
set its possibility as 0.1 when AF and AFB do not happen,
and generate pseudo labels for the augmented samples as
explained in Section 4 when needed. More details are in
supplement. As shown in Table 5, both AF or AFB improve
the AIM-500 results, especially AFB, but they also make
errors on Distinction-646, SIMDour, and Composition-1k
(supplement) slightly higher. AF is more stable on syn-
thetic benchmarks compared with AFB. Hence, we carry
out ‘AF+AFB’. It averages the effects of AF and AFB.
Based on ‘AF+AFB’, AC further improves results on AIM-
500 and keeps results on other synthetic benchmarks com-
parable, so we use ‘AF+AFB+AC’ as the final SA.

Comparison with State of the Art. Compared with
other methods, our M3‡ ans M7‡ models achieve best per-
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Distinction-646 [25] SIMDour [29] AIM-500 [17]
Method SAD MSE Grad Conn SAD MSE Grad Conn SAD MSE Grad Conn

IndexNet* [23] 42.64 0.0256 40.17 42.76 92.45 0.0388 45.85 93.14 28.49 0.0288 18.15 27.95
CA* [14] 49.07 0.0557 114.77 48.27 79.46 0.0291 51.03 77.88 26.33 0.0266 18.89 25.05

CA+DA* [14] 46.03 0.0356 55.45 46.18 102.97 0.0469 74.39 103.52 32.15 0.0388 30.25 31.00
GCA* [18] 31.00 0.0171 21.19 29.62 75.81 0.0271 40.57 74.45 35.10 0.0389 25.67 35.48
A2U* [4] 28.74 0.0143 17.42 27.62 68.70 0.0268 39.00 66.76 30.38 0.0307 22.60 30.69
SIM* [29] 22.68 0.0137 20.11 21.03 37.07 0.0099 22.29 33.30 27.05 0.0311 23.68 27.08
FBA* [11] 30.70 0.0150 18.89 29.65 41.55 0.0109 23.21 35.07 19.05 0.0162 11.42 18.30
AF AFB AC

N3 25.86 0.0105 13.25 24.11 41.83 0.0099 22.19 34.98 16.08 0.0122 11.69 15.55
N3 ✓ 25.18 0.0108 13.45 23.35 44.14 0.0122 23.46 37.96 16.38 0.0112 10.75 16.00
N3 ✓ 27.02 0.0123 14.44 25.34 44.46 0.0113 23.93 38.30 13.46 0.0097 9.98 12.47
N3 ✓ ✓ 26.46 0.0117 14.18 24.87 42.89 0.0110 23.37 36.05 14.63 0.0108 10.46 13.75
N3 ✓ ✓ ✓ 26.32 0.0119 14.40 24.56 43.49 0.0109 23.96 36.84 14.18 0.0093 9.36 13.61
M3‡ ✓ ✓ ✓ 23.67 0.0100 11.30 21.37 42.68 0.0121 21.20 35.84 13.68 0.0091 9.36 13.06
M7‡ ✓ ✓ ✓ 23.25 0.0097 11.09 21.00 37.31 0.0090 20.00 30.10 13.97 0.0094 8.89 13.21

Table 5. Generalization results on the Distinction-646, SIMDour and AIM benchmarks. The best performance is in boldface. The second
is underlined. All the models are merely trained with the DIM training set (431 foregrounds), except that SIM is trained with the
SIMD training set (736 foregrounds), so we set SIM’s results on SIMD as blue color to represent SIM is trained with this dataset.
* means using the officially provided model. ‡ denotes training with a batch size of 64, 120k iterations using our SA (AF+AFB+AC).

formance on all three benchmarks in Table 5, especially
with MSE and Grad metrics. Note that, DA in [14]
degrades its performance on Composition-1k (Table 4),
SIMDour and AIM-500 significantly, even though AIM-
500 is a real-world benchmark. Our SA instead promises
comparable results on the synthetic benchmarks and much
better results on the real-world benchmark. The advantages
of SA against DA can also be noticed from visual exam-
ples in Fig. 1 and 6. Moreover, when longer training time is
taken, stable improvements are observed. The examples in
Fig. 2 and 6 further verify the effectiveness of our model and
SA. More visual results on real-world images and bench-
marks are shown in the supplement.

5.4. Results on the alphamatting.com

We show the results of M7‡ on the alphama-
tting.com [26] online benchmark in Table. 6. Note that,
SIM is trained with the SIMD training set, which has 736
foregrounds in the training set, while DIM only has 431
foregrounds in the training set; GCA and A2U retrain their
models with the whole DIM dataset (including both train-
ing set and test set). Our result is directly reported from
M7‡ without using extra data or fine-tuning the model, but
it still achieves top-performing ranks, especially on MSE
and Grad. See the full table in the supplement.

Method MSE Grad
overall S L U overall S L U

Ours-M7‡ 6.8 5.9 5.5 9.1 4.7 4.8 3.8 5.5
SIM [29] 7 8.1 5.5 7.4 6.9 8.5 5.9 6.5
A2U [4] 15.5 13 12.6 20.8 12.3 11.3 9.4 16.1
GCA [18] 15.3 15.1 14.5 16.4 13.7 13.6 12.5 15
CA [14] 17.6 20.9 18.6 13.3 14.6 15.8 15.5 12.6
IndexNet [23] 22.9 25.3 21.5 22 18.6 17.3 17.3 21.4

Table 6. Results on the alphamatting.com online benchmark.

RGB GT SIM FBA

CA w/o DA CA w/ DA Ours w/o SA Ours w/ SA

Figure 6. Visual results on the AIM-500 benchmark. The methods
in comparison are SIM [29], FBA [11], CA w/o DA [14], CA w/
DA [14], Ours w/o SA, Ours w/ SA.

6. Conclusion

We propose RMat, a matting method showing higher ro-
bustness to various trimap precision and images from dif-
ferent domains. The efforts behind this include a new mat-
ting framework and strong augmentation strategies specifi-
cally designed for matting. We first build the strong baseline
by assembling multilevel context information, then analyse
the problems behind current data augmentation and design
strong augmentation strategies. To verify generalization ca-
pability of the model, we not only show visual results on
real-world images, but also design a series of evaluation ex-
periments on several benchmarks without fitting their train-
ing sets. Our method achieves state-of-the-art results on all
the benchmarks. We hope our work opens up more possi-
bilities for future works on deep matting.

Limitations There are still many challenging cases, such
as strong light in the background, cannot be handled by our
method. We show failure cases in the supplement. To tackle
those cases, we may need to better learn the structure of the
foreground objects. We leave it as future work.
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