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Abstract

Video frame interpolation (VFI) is currently a very ac-

tive research topic, with applications spanning computer

vision, post production and video encoding. VFI can be

extremely challenging, particularly in sequences contain-

ing large motions, occlusions or dynamic textures, where

existing approaches fail to offer perceptually robust inter-

polation performance. In this context, we present a novel

deep learning based VFI method, ST-MFNet, based on a

Spatio-Temporal Multi-Flow architecture. ST-MFNet em-

ploys a new multi-scale multi-flow predictor to estimate

many-to-one intermediate flows, which are combined with

conventional one-to-one optical flows to capture both large

and complex motions. In order to enhance interpolation

performance for various textures, a 3D CNN is also em-

ployed to model the content dynamics over an extended

temporal window. Moreover, ST-MFNet has been trained

within an ST-GAN framework, which was originally devel-

oped for texture synthesis, with the aim of further improving

perceptual interpolation quality. Our approach has been

comprehensively evaluated – compared with fourteen state-

of-the-art VFI algorithms – clearly demonstrating that ST-

MFNet consistently outperforms these benchmarks on var-

ied and representative test datasets, with significant gains

up to 1.09dB in PSNR for cases including large motions

and dynamic textures. Our source code is available at

https://github.com/danielism97/ST-MFNet.

1. Introduction

Video frame interpolation (VFI) has been extensively

employed to deliver an improved user experience across a

wide range of important applications. VFI increases the

temporal resolution (frame rate) of a video through synthe-

sizing intermediate frames between every two consecutive

original frames. It can mitigate the need for costly high

frame rate acquisition processes [27], enhance the rendering

of slow-motion content [26], support view synthesis [16]

and improve rate-quality trade-offs in video coding [56].
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Figure 1. High-level architecture of ST-MFNet, which employs a

two-stage workflow to interpolate an intermediate frame.

In recent years, deep learning has empowered a variety

of VFI algorithms. These methods can be categorized as

flow-based [26, 59] or kernel-based [30, 41]. While flow-

based methods use the estimated optical flow maps to warp

input frames, kernel-based methods learn local or shared

convolution kernels for synthesizing the output. To han-

dle challenging scenarios encountered in VFI applications,

various techniques have been employed to enhance these

methods, including non-linear motion models [43, 48, 59],

coarse-to-fine architectures [9, 42, 48, 64], attention mecha-

nisms [11, 27], and deformable convolutions [20, 30].

Although these methods have significantly improved

performance compared with conventional VFI ap-

proaches [3], their performance can still be inconsistent,

especially for content exhibiting large motions, occlusions

and dynamic textures. Large motion typically means

large pixel displacements, which are difficult to capture

using Convolutional Neural Networks (CNNs) with limited

receptive fields [40, 41]. In the case of occlusion, pixels

relating to occluded objects will not appear in all input

frames, thus preventing interpolation algorithms from

accurately estimating the intermediate locations of those
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pixels [11, 27]. Finally, dynamic textures (e.g. water, fire,

foliage, etc.) exhibit more complex motion characteristics

compared to the movements of rigid objects [13, 63]. Typi-

cally, they are spatially irregular and temporally stochastic,

causing most existing VFI methods to fail, especially those

based on optical flow [26, 32].

To solve these problems, we propose a novel video frame

interpolation model, the Spatio-Temporal Multi-Flow Net-

work (ST-MFNet), which decouples the handling of large

and complex motions using single- and multi-flows respec-

tively in a multi-branch structure to offer improved inter-

polation performance across a wide range of content types.

Specifically, ST-MFNet employs a two-stage architecture,

as shown in Figure 1. In Stage I, the Multi-InterFlow Net-

work (MIFNet) first predicts multi-interflows [12, 30] at

multiple scales (including an up-sampling scale simulating

sub-pixel motion estimation), using a customized CNN ar-

chitecture, UMSResNext, with variable kernel sizes. The

multi-flows here correspond to a many-to-one mapping

which enables more flexible transformation, facilitating the

modeling of complex motions. To further improve the per-

formance for large motions, a Bi-directional Linear Flow

Network (BLFNet) is employed to linearly approximate the

intermediate flows based on the bi-directional flows be-

tween input frames, which are estimated using a coarse-

to-fine architecture [51]. In the second stage, inspired by

recent work on texture synthesis [57, 62], we integrate a

3D CNN, Texture Enhancement Network (TENet) that per-

forms spatial and temporal filtering to capture longer-range

dynamics and to predict textural residuals. Finally, we

trained our model based on the ST-GAN [62] methodology,

which was originally proposed for texture synthesis. This

ensures both spatial consistency and temporal coherence of

interpolated content. Extensive quantitative and qualitative

studies have been performed which demonstrate the supe-

rior performance of ST-MFNet over current state-of-the-art

VFI methods on a wide range of test data including large

and complex motions and dynamic textures.

The primary contributions of this work are:

• A novel VFI method where multi-flow based (MIFNet)

and single-flow based warping (BLFNet) are combined

to enhance the capturing of complex and large motions.

• A new CNN architecture (UMSResNext) for the MIFNet,

which predicts multiple intermediate flows at various

scales, including an up-sampling scale for high precision

sub-pixel motion estimation.

• The use of a spatio-temporal CNN (TENet) and ST-GAN,

which were originally designed for texture synthesis, to

enhance the interpolation of complex textures.

• Validation, through comprehensive experiments, that

our model consistently outperforms state-of-the-art VFI

methods on various scenarios, including large and com-

plex motions and various texture types.

2. Related Work

In this section, we summarize recent advances in video

frame interpolation (VFI) and then briefly introduce exam-

ples of dynamic texture synthesis, which have inspired the

development of our method.

2.1. Video Frame Interpolation

Most existing VFI methods can be classified as:

Flow-based VFI. This class typically involves two steps:

optical flow estimation and image warping. Input frames,

I1 and I2, are warped to a target temporal location t

based on either the intermediate optical flows Ft→1, Ft→2

(backward warping [25]), or F1→t, F2→t (forward warp-

ing [38]). These flows can be approximated from bi-

directional optical flows (F1→2 and F2→1) between the in-

put frames [4, 5, 26, 31, 38, 39, 45, 48, 59]. Such approxima-

tions often assume motion linearity, and hence are prone to

errors in non-linear motion scenarios. Various efforts have

been made to alleviate this issue, including the use of depth

information [4], higher order motion models [31, 59], and

adaptive forward warping [39]. A second group of meth-

ods [24, 32, 42, 43, 60, 64] have been developed to improve

approximation by directly predicting intermediate flows.

These approaches typically employ a coarse-to-fine archi-

tecture, which supports a larger receptive field for capturing

large motions. In all of the above methods, the predicted

flows correspond to a one-to-one pixel mapping, which in-

herently limits the ability to capture complex motions.

Kernel-based VFI. In these methods, various convolution

kernels [9–11, 14, 20, 27, 30, 33, 40, 41, 47] are learned as

a basis for synthesizing interpolated pixels. Earlier ap-

proaches [40, 41] predict a fixed-size kernel for each out-

put location, which is then convolved with co-located in-

put pixels. This limits the magnitude of captured motions

to the kernel size used, while more memory and compu-

tational capacity are required when larger kernel sizes are

adopted. To overcome this problem, deformable convolu-

tion (DefConv) [12] was adapted to VFI in AdaCoF [30],

which allows kernels to be convolved with any input pix-

els pointed by local offset vectors. This can be considered

as multi-interflows, representing a many-to-one mapping.

Further improvements to AdaCoF have been achieved by

allowing space-time sampling [47], feature pyramid warp-

ing [14], and using a coarse-to-fine architecture [9].

2.2. Dynamic Texture Synthesis

Dynamic textures (e.g. water, fire, leaves blowing in the

wind etc.) generally exhibit high spatial frequency energy

alongside temporal stochasticity, with inter-frame motions

irregular in both the spatial and temporal domains. Clas-

sic synthesis methods rely on mathematical models such as

Markov random fields [55] and auto-regressive moving av-

3522



erage model [15] to capture underlying motion characteris-

tics. More recently, deep learning techniques, in particular

3D CNNs and GAN-based training [18,54,57,61,62], have

been adopted to achieve more realistic synthesis results. It

should be noted that both dynamic texture synthesis and

VFI require accurate modeling of spatio-temporal charac-

teristics. However the techniques developed specifically for

texture synthesis have not yet been fully exploited in VFI

methods. This is a focus of our work.

3. Proposed Method: ST-MFNet

Figure 1 shows the architecture of ST-MFNet. While

conventionally VFI is formulated as generating the inter-

mediate frame It (t = 1.5) between two given consec-

utive frames I1, I2, we instead employ two more frames

I0, I3 to improve the modeling of motion dynamics. Given

the frames I0, I1, I2, I3, our model first processes I1, I2
in two branches. The Multi-InterFlow Network (MIFNet)

branch estimates the multi-scale multi-flows from It to

I1, I2, where the many-to-one pixel correspondence allows

complex transformation, benefiting interpolation of highly

complex motion, such as dynamic textures (e.g. water, fire

etc.). As the fixed receptive field of MIFNet may lead to

limited ability to capture large motion, we also included

the Bi-directional Linear Flow Network (BLFNet) branch

to approximate one-to-one optical flows from I1, I2 to It us-

ing a coarse-to-fine approach, enhancing large motion cap-

turing. The input frames are warped based on the flows

generated by MIFNet and BLFNet, and then fused by the

Multi-Scale Fusion module to obtain an intermediate result

Ĩt. This multi-branch structure combines the advantages

of both single-flow and multi-flow based methods and was

found to offer enhanced interpolation performance. In the

second stage, Ĩt is combined with all the inputs I0, I1, I2, I3
in temporal order and fed into the Texture Enhancement

Network (TENet), which captures longer-range dynamic

and generates residual signals for the final output.

3.1. MultiInterFlow Network

Multi-InterFlow warping. For self-completeness, we first

briefly describe the multi-interflow warping operation [30].

Given two images IA, IB with size H × W , conventional

optical flow FA→B = (fx, fy) from IA to IB specifies the

x- and y-components of pixel-wise offset vectors, where

fx, fy ∈ R
H×W . The pixel value at each location (x, y)

of the corresponding backwarped [25] ÎA is defined as

ÎA(x, y) = IB(x+ fx(x, y), y + fy(x, y)) (1)

where the values at non-integer grid locations are ob-

tained via bilinear interpolation. The multi-interflow pro-

posed in [30] can be defined as GA→B = (α,β,w),
but now α,β ∈ R

H×W×N represent a collection of

the x- and y-components of N flow vectors respec-

tively and w ∈ [0, 1]H×W×N is their weighting kernels

(
∑N

i=1
w(x, y, i) = 1). That is, for each location (x, y),

GA→B contains N flow vectors and N weights. The corre-

sponding warping is defined as follows.

ÎA(x, y) =

N∑

i=1

w(x, y, i)·IB(x+α(x, y, i), y+β(x, y, i)) (2)

Such multi-flow warping corresponds to a many-to-one

mapping, which allows flexible sampling of source pixels,

enabling the capture of more complex motions.

Given input frames I1, I2, the MIFNet predicts the multi-

interflows {Gl
t→1

, Gl
t→2

} from the intermediate frame It to

the inputs at three scale levels: l = −1, 0, 1, where l = i

means spatial down-sampling by 2i (i.e. l = −1 denotes up-

sampling), so that re-sampled inputs I l
1
, I l

2
can be warped to

time t using Equation (2) to produce Î lt1, Î
l
t2 respectively.

Architecture. Figure 2 (a) shows the architecture of the

MIFNet. In order to capture pixel movements at mul-

tiple scales, we devise a U-Net style feature extractor,

U-MultiScaleResNext (UMSResNext), consisting of eight

MSResNext blocks (shown in Figure 3). Each MSResNext

block employs two ResNext blocks [58] in parallel with dif-

ferent kernel sizes in the middle layer, 3×3 and 7×7, which

further increases the network cardinality [35, 58]. The out-

puts of these two ResNext blocks are then concatenated and

connected to a channel attention module [23], which learns

adaptive weighting of the feature maps extracted by the two

ResNext blocks. Such feature selection mechanism has also

been found to enhance motion modeling [11, 27]. In UM-

SResNext, the up-sampling operation is performed by re-

placing the k×k grouped convolutions in the middle layer

with (k+1)×(k+1) grouped transposed convolutions.

The features extracted by UMSResNext are then passed

to the multi-flow heads for multi-interflow prediction. In

contrast to [30], multi-flows here are predicted at various

scales l = −1, 0, 1, and occlusion maps are not generated

(occlusion is handled by the BLFNet). As shown in Figure 2

(b), each multi-flow head contains 6 sub-branches, predict-

ing the x-, y-components (α,β) and the kernel weights (w)

of Gl
t→1

, Gl
t→2

. The predicted flows are then used to back-

warp the inputs I1, I2 at corresponding scales using Equa-

tion (2). Here a bilinear filter is used for down-sampling

input frames, and an 8-tap filter originally designed for sub-

pixel motion estimation [50] is employed for up-sampling.

The down-sampled scale used here encourages the motion

search in a larger region, while the up-sampled scale allows

the motion vectors to point to finer sub-pixel locations, in-

creasing the precision of multi-flow warping.

3.2. Bidirectional Linear Flow Network

To improve large motion interpolation, bi-directional

flows F1→2, F2→1 between inputs I1, I2 are also predicted

3523



Multi-InterFlow

warping

MSResNext block

Multi-flow head

UMSResNext

(a) MIFNet

S
o

ft
m

ax

R
eL

U

C
o

n
v
 3

x
3

C
o

n
v
 3

x
3

R
eL

U

C
o

n
v
 3

x
3

R
eL

U

C
o

n
v
 3

x
3

U
p

sa
m

p
le

(b) Multi-flow head

Figure 2. Illustration of the MIFNet. (a) The overall architecture of MIFNet, with a U-Net style backbone and multi-flow estimation heads

at three scales. (b) The convolutional layers inside the multi-flow head at each scale.
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Figure 3. Illustration of the MSResNext block, which consists of

two ResNext branches with different kernel sizes, followed by a

channel attention module.

using a pre-trained flow estimator [51], which is based on a

coarse-to-fine architecture. The intermediate flows are then

linearly approximated as follows.

F1→t = 0.5F1→2 F2→t = 0.5F2→1 (3)

According to the intermediate flows, the frames I1, I2 are

forward warped using the efficient softsplat operator [39],

which learns occlusion-related softmax-alike weighting of

reference pixels in the forward warping process. Another

advantage of softsplat is that it is differentiable, allowing the

flow estimator to be end-to-end optimized. Finally, BLFNet

branch outputs warped frames Îsoft
t1 , Îsoft

t2 . The employment

of the BLFNet branch was found to be essential for han-

dling large motion and occlusion and improving the overall

capacity of the proposed model.

3.3. MultiScale Fusion Module

The Multi-Scale Fusion Module is employed to produce

an intermediate interpolation result using the frames warped

at multiple scales in the previous steps. Here we adopt the
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Figure 4. The architecture of the Texture Enhancement Network.

GridNet [17] architecture due to its superior performance

on fusing multi-scale information [38, 39]. The GridNet

is configured here to have 4 columns and 3 rows, with

the first, second and third rows corresponding to scales of

l = −1, 0, 1 respectively. The first and third rows take

{Î−1

t1 , Î−1

t2 } and {Î1t1, Î
1

t2} as inputs, while the second row

takes {Î0t1, Î
0

t2, Î
soft
t1 , Îsoft

t2 }, where {·} denotes channel-wise

concatenation. Finally, this module outputs the intermediate

result Ĩt at the original spatial resolution (l = 0).

3.4. Texture Enhancement Network

At the end of the first stage, the output of the Multi-Scale

Fusion module, Ĩt, is concatenated with four original inputs

to form {I0, I1, Ĩt, I2, I3}, which are then fed into the Tex-

ture Enhancement Network (TENet). Including additional

frames here allows better modeling of higher-order motions

and also provides more information on longer-term spatio-

temporal characteristics. Motivated by recent work in dy-

namic texture synthesis [57, 62], where spatio-temporal fil-

tering was found to be effective for generating coherent

video textures, we integrate a 3D CNN for texture enhance-

ment. This CNN architecture (shown in Figure 4) is a mod-

ified version of the network developed in [27], but with re-

duced layer widths. This is based on the consideration that

the intermediately warped frame Ĩt has already been pro-

duced which is relatively close to the target. It is different

from the original scenario in [27], where the network is ex-

pected to directly synthesize the interpolated output using

the four original input frames. Finally, the TENet is ex-

pected to output a residual signal containing textural differ-

ence between Ĩt and the target frame, which contributes to

the final output of ST-MFNet.
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3.5. Loss Functions

We trained two versions of ST-MFNet in this work. For

the distortion oriented model, a Laplacian pyramid loss [7]

(Llap) was used as the objective function. This model was

further fine-tuned using an ST-GAN based perceptual loss

(Lp) to obtain the perceptually optimized version.

Laplacian pyramid loss. ST-MFNet was trained end-to-

end by matching its output Ioutt with the ground-truth in-

termediate frame I
gt
t using the Laplacian pyramid loss [7],

which has been previously used for VFI in [31,38,39]. The

loss function is defined below.

Llap =

S
∑

s=1

2s−1
∥

∥Ls(Ioutt )− Ls(Igtt )
∥

∥

1
(4)

Here Ls(I) denotes the sth level of the Laplacian pyramid

of an image I , and S is the maximum level.

Spatio-temporal adversarial loss. To further improve the

perceptual quality of the ST-MFNet output, we also trained

our model using the Spatio-Temporal Generative Adversar-

ial Networks (ST-GAN) training methodology [62]. Dif-

ferent from the conventional GAN [19] focusing on a sin-

gle image, the discriminator D here also processes adjacent

video frames which improves temporal consistency. This is

key for video frame interpolation. The architecture of the

discriminator is provided in the Supplementary. This dis-

criminator was trained with the following loss.

LD = − log(1−D(Ioutt , I1, I2))−log(D(Igtt , I1, I2)) (5)

The corresponding adversarial loss for the generator (ST-

MFNet) is given below.

Ladv = − log(D(Ioutt , I1, I2)) (6)

This is then combined with the Laplacian pyramid loss to

form the perceptual loss for ST-MFNet fine-tuning,

Lp = Llap + λLadv (7)

where λ is a weighting hyper-parameter that controls the

perception-distortion trade-off [6].

4. Experimental Setup

Implementation details. In our implementation, we set the

number of flows N = 25 (the default value in [30]) for the

MIFNet branch. The maximum level S for Llap was set to

5, and the weighting hyper-parameter λ = 100. We used the

AdaMax optimizer [28] with β1 = 0.9, β2 = 0.999. The

learning rate was set to 0.001 and reduced by a factor of 0.5

whenever the validation performance stops improving for 5

epochs. The pre-trained flow estimator [51] in the BLFNet

branch was frozen for the first 60 epochs and then fine-tuned

for 10 more epochs to further improve VFI performance.

The network was trained for a total number of 70 epochs

using a batch size of 4. All training and evaluation were

executed with NVIDIA P100 [52] and RTX 3090 GPUs.

Training datasets. We used the training split of Vimeo-90k

(septuplet) dataset [60] which contains 91,701 frame septu-

plets (448×256). As Vimeo-90k was produced with con-

strained motion magnitude and complexity, to further en-

hance the VFI performance on large motion and dynamic

textures, we used an additional dataset, BVI-DVC [34],

which covers a wide range of texture/motion types, frame

rates (24 to 120 FPS) and spatial resolutions (2160p, 1080p,

540p, and 270p). We randomly sampled 12800, 6400, 800,

800 septuplets from videos at each of these resolutions re-

spectively, leaving out a subset of frames for validation.

We augmented all septuplets from both datasets by ran-

domly cropping 256×256 patches and performing flipping

and temporal order reversing. This resulted in more than

100,000 septuplets of 256×256 patches. In each septuplet,

the 1st, 3rd, 5th and 7th frames were used as inputs and the 4th

as the training target. The test split of Vimeo-90k together

with unused subset of BVI-DVC was utilized as the valida-

tion set for hyper-parameter tuning and training monitoring.

Evaluation dataset. Since our model takes four frames as

input, the evaluation dataset should be able to provide frame

quintuplets I0, I1, I
gt
t , I2, I3 (t = 1.5). In this work, we

used the test quintuplets in [59], which were extracted from

the UCF-101 [49] (100 quintuplets) and DAVIS [44] (2847

quintuplets) datasets. We also evaluated on the SNU-FILM

dataset [11], which specifies a list of 310 triplets at four mo-

tion magnitude levels. As original sequences are provided

in the SNU-FILM dataset, we extended its pre-defined test

triplets into quintuplets for the evaluation here.

To further test interpolation performance on various tex-

ture types, we developed a new test set, VFITex, which con-

tains twenty 100-frame UHD or HD videos at 24, 30 or 50

FPS, collected from the Xiph [37], Mitch Martinez Free 4K

Stock Footage [1], UVG database [36] and the Pexels web-

site [2]. This dataset covers diverse textured scenes, includ-

ing crowds, flags, foliage, animals, water, leaves, fire and

smoke. Based on the computational capacity available, we

center-cropped HD patches from the UHD sequences, pre-

serving the original UHD characteristics. All frames in each

sequence were used for evaluation, totaling 940 quintuplets.

More details of the training and evaluation datasets and their

license information are provided in the Supplementary.

Evaluation Methods. Two most commonly used quality

metrics, PSNR and SSIM [53], were employed here for ob-

jective assessment of the interpolated content. We note that

these metrics do not always correlate well with video qual-

ity as perceived by a human observer [22, 27]. Therefore,

a more perceptually motivated metric, LPIPS [65], were

used. Furthermore, in order to directly compare the percep-

tual quality of the video frames interpolated by our method
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(a) Overlay (b) GT (c) w/o MIFNet (d) w/ MIFNet (e) Overlay (f) GT (g) w/o BLFNet (h) w/ BLFNet

(i) Overlay (j) GT (k) U-Net (l) UMSResNext (m) Overlay (n) GT (o) w/o TENet (p) w/ TENet

(q) Overlay (r) GT (s) Ours-Llap (t) TGAN (u) FIGAN (v) Ours-Lp

Figure 5. Qualitative results interpolated by different variants of our method. Here “Overlay” means the overlaid adjacent frames. Figures

(a)-(d): w/ MIFNet vs w/o MIFNet; figures (e)-(h): w/ BLFNet vs w/o BLFNet; figures (i)-(j): UMSResNext vs U-Net; figures (m)-(p): w/

TENet vs w/o TENet; figures (q)-(v): comparison of different GANs.

UCF101 DAVIS VFITex

Ours-w/o BLFNet 33.218/0.970 27.767/0.881 28.498/0.915

Ours-w/o MIFNet 33.202/0.969 27.886/0.889 28.357/0.911

Ours-w/o TENet 32.895/0.970 27.484/0.880 28.241/0.910

Ours-unet 33.378/0.970 28.096/0.892 28.898/0.925

Ours 33.384/0.970 28.287/0.895 29.175/0.929

Table 1. Ablation study results (PSNR/SSIM) for ST-MFNet.

and the benchmark references, a user study was conducted

based on a psychophysical experiment. The details of the

user study are described in Section 5.3.

5. Results and Analysis

In this section, we analyze our proposed model through

ablation studies, and compare it with 14 state-of-the-art

methods both quantitatively and qualitatively.

5.1. Ablation Study

The key ablation study results are summarized in Ta-

ble 1, where five versions of ST-MFNet have been evalu-

ated. Figure 5 provides a visual comparison between the

frames generated by each test variant and the full ST-MFNet

model. Additional ablation study results, visualizations and

analyses are available in the Supplementary.

MIFNet and BLFNet branches. To verify that the MIFNet

and BLFNet branches are both effective, two variants of ST-

MFNet, Ours-w/o MIFNet and Ours-w/o BLFNet, were cre-

ated by removing the two branches respectively. Both vari-

ants were trained and evaluated using the same configura-

tions described above. It is observed that, firstly, both Ours-

w/o MIFNet and Ours-w/o BLFNet achieve lower overall

performance compared to the full ST-MFNet (Ours). Sec-

ondly, compared to Ours, the model performance on large

motion (DAVIS) drops more significantly when BLFNet is

removed, and that on complex motion (VFITex) degrades

more severely when MIFNet is removed. It can also be ob-

served in Figure 5, for the case without MIFNet (sub-figures

(a-d)), that the model fails to capture the complex motion of

the wave. When BLFNet was removed from the original

ST-MFNet (sub-figures (e-h)), the occluded region which

is also undergoing a large movement has not been interpo-

lated properly. These observations mean that the contribu-

tion of each branch aligns well with our original motiva-

tion, hence implying the unique advantages of both multi-

flow (for complex motion) and single-flow (for large mo-

tion) branches have been enabled.

UMSResNext for multi-flow estimation. To measure the

efficacy of the new UMSResNext, we replaced the UM-

SResNext described in Section 3.1 with the U-Net used

in [30] to predict similar multi-flows. This is denoted as

Ours-unet. As shown in Table 1, ST-MFNet with UMSRes-

Next achieves enhanced performance on all test sets, and

this is also demonstrated by the visual comparison example

in Figure 5 (i-l). Another advantage of UMSResNext is that

it has much fewer parameters (∼4M) than U-Net (∼21M).

Texture Enhancement. The importance of the TENet was

also analyzed by training another variant Ours-w/o TENet,

where the TENet is removed. Table 1 shows that there is a

significant performance decrease compared to the full ver-

sion, especially on DAVIS and VFITex. This demonstrates

the contribution of the spatio-temporal filtering on frames

over a wider temporal window for content with large and

complex motions. Figure 5 (m-p) also shows an example,
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UCF101 DAVIS
SNU-FILM

VFITex RT

(sec)

#P

(M)Easy Medium Hard Extreme

DVF [32] 32.251/0.965 20.403/0.673 27.528/0.876 24.091/0.817 21.556/0.760 19.709/0.705 19.946/0.709 0.157 3.82

SuperSloMo [26] 32.547/0.968 26.523/0.866 36.255/0.984 33.802/0.973 29.519/0.930 24.770/0.855 27.914/0.911 0.107 39.61

SepConv [41] 32.524/0.968 26.441/0.853 39.894/0.990 35.264/0.976 29.620/0.926 24.653/0.851 27.635/0.907 0.062 21.68

DAIN [4] 32.524/0.968 27.086/0.873 39.280/0.989 34.993/0.976 29.752/0.929 24.819/0.850 27.314/0.909 0.896 24.03

BMBC [42] 32.729/0.969 26.835/0.869 39.809/0.990 35.437/0.978 29.942/0.933 24.715/0.856 27.337/0.904 1.425 11.01

AdaCoF [30] 32.610/0.968 26.445/0.854 39.912/0.990 35.269/0.977 29.723/0.928 24.656/0.851 27.639/0.904 0.051 21.84

FeFlow [20] 32.520/0.967 26.555/0.856 39.591/0.990 35.014/0.977 29.466/0.928 24.607/0.852 OOM 1.385 133.63

CDFI [14] 32.653/0.968 26.471/0.857 39.881/0.990 35.224/0.977 29.660/0.929 24.645/0.854 27.576/0.906 0.321 4.98

CAIN [11] 32.537/0.968 26.477/0.857 39.890/0.990 35.630/0.978 29.998/0.931 25.060/0.857 28.184/0.911 0.071 42.78

SoftSplat [39] 32.835/0.969 27.582/0.881 40.165/0.991 36.017/0.979 30.604/0.937 25.436/0.864 28.813/0.924 0.206 12.46

EDSC [10] 32.677/0.969 26.689/0.860 39.792/0.990 35.283/0.977 29.815/0.929 24.872/0.854 27.641/0.904 0.067 8.95

XVFI [48] 32.224/0.966 26.565/0.863 38.849/0.989 34.497/0.975 29.381/0.929 24.677/0.855 27.759/0.909 0.108 5.61

QVI [59] 32.668/0.967 27.483/0.883 36.648/0.985 34.637/0.978 30.614/0.947 25.426/0.866 28.819/0.926 0.257 29.23

FLAVR [27] 33.389/0.971 27.450/0.873 40.135/0.990 35.988/0.979 30.541/0.937 25.188/0.860 28.487/0.915 0.695 42.06

ST-MFNet (Ours) 33.384/0.970 28.287/0.895 40.775/0.992 37.111/0.985 31.698/0.951 25.810/0.874 29.175/0.929 0.901 21.03

Table 2. Quantitative comparison results (PSNR/SSIM) for ST-MFNet and 14 tested methods. In some cases, underlined scores based on

the pre-trained models are provided in the table, when they outperform their re-trained counterparts. OOM denotes cases where our GPU

runs out of memory for the evaluation. For each column, the best result is colored in red and the second best is colored in blue. The average

runtime (RT) for interpolating a 480p frame as well as the number of model parameters (#P) for each method are also reported.

where the full ST-MFNet with the TENet produces richer

textural detail compared to the version without TENet.

ST-GAN. To investigate the effectiveness of the ST-GAN

training, we compared the perceptual quality of the interpo-

lated content generated by the fine-tuned network Ours-Lp

and the distortion-oriented model Ours-Llap. We also re-

placed the ST-GAN with two existing GANs used for VFI,

FIGAN [30] and TGAN [46]. Example frames produced by

these variants are shown in Figure 5 (q-v), where the result

generated by Ours-Lp exhibits sharper edges and clearer

structures compared to those produced by other variants.

Quantitative evaluation results of these variants based on

LPIPS are provided in the Supplementary.

5.2. Quantitative Evaluation

We compared the proposed ST-MFNet with 14 state-of-

the-art VFI models including DVF [32], SuperSloMo [26],

SepConv [41], DAIN [4], BMBC [42], AdaCoF [30],

FeFlow [20], CDFI [14], CAIN [11], Softsplat [39],

EDSC [10], XVFI [48], QVI [59] and FLAVR [27]. For fair

comparison, we re-trained all benchmark models with the

same training and validation datasets used for ST-MFNet

under identical training configurations. The comprehensive

evaluation results are summarized in Table 2. For all these

models, we additionally evaluated their pre-trained versions

provided in the original literature (where applicable). If

the pre-trained results are better than the re-trained coun-

terparts, the former are presented and underlined.

Two key observations can be made from Table 2. Firstly,

by using our training set (Vimeo-90k+BVI-DVC), the re-

trained performance of all compared models has been im-

proved over their pre-trained versions on large and complex

motions, i.e. on DAVIS, SNU-FILM (medium, hard, ex-

treme) and VFITex. For seven models, the pre-trained ver-

sions achieved higher PSNR and SSIM values on the UCF-

101 dataset. This may be due to the similar characteristics

between their pre-training dataset, Vimeo-90k and UCF-

101. We also noted that our ST-MFNet offers the best re-

sults for DAVIS, SNU-FILM (all subsets) and VFITex, with

a significant improvement of 0.36-1.09dB (PSNR) over the

runner-up for each test set. It is only outperformed by the

pre-trained FLAVR on UCF101 with marginal difference of

0.005dB (PSNR) and 0.001 (SSIM). This demonstrates the

excellent generalization ability of the proposed ST-MFNet.

Additional evaluation results in terms of LPIPS, and results

on 4×/8× interpolation can be found in the Supplementary.

Complexity. The model complexity was measured on the

480p sequences from DAVIS test set. The average runtime

(RT, in seconds) for interpolating one frame is reported in

Table 2 for each tested network, alongside its total number

of parameters. We noticed that ST-MFNet has a relatively

high computational complexity among all tested models.

The reduction of model complexity remains one of our fu-

ture works.

5.3. Qualitative Evaluation

Visual comparisons. Examples frames interpolated by our

model and several best-performing state-of-the-art methods

are shown in Figure 6. It can be observed that the results

generated by the perceptually trained ST-MFNet (Ours-Lp)

are closer to the ground truth, containing fewer visual arti-

facts and exhibiting better perceptual quality.

User Study. As single frames cannot fully reflect the per-

ceptual quality of interpolated content, we conducted a user

study where our method was compared against three com-

petitive benchmark approaches, QVI, FLAVR and Softsplat
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(a) Overlay (b) BMBC (c) DAIN (d) Softsplat (e) FLAVR (f) QVI (g) Ours (h) Ours-Lp (i) GT

Figure 6. Qualitative interpolation examples by different methods. The first column (a) shows the overlaid adjacent frames. Columns (b-f)

correspond to some of the best-performing benchmark methods. The results of our distortion-oriented model (g) and perception-oriented

model (h) are also included, along with the ground truth frames (i). Video comparison examples can be found in the Supplementary.
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Figure 7. Results of the user study showing preference ratios for

the tested interpolation methods. The error bars denote standard

deviation over test videos.

(re-trained using its original perceptual loss [39]). For this

study, 20 videos randomly selected from DAVIS, SNU-

FILM and VFITex were used as the test content for the

three tested models. In each trial of a test session, partic-

ipants were shown a pair of videos including one interpo-

lated by perceptually optimized ST-MFNet and the other

one by QVI, FLAVR or Softsplat. This results in a total

of 60 trials in each test session. The order of video pre-

sentation was randomized in each trial (the order of trials

was also random), and the subject in each case was asked to

choose the sequence with higher perceived quality. Twenty

subjects were paid to participate in this study. See more

details of the user study in the Supplementary.

The collected user study results are summarized in Fig-

ure 7. We observed that approaching 70% of users on av-

erage preferred ST-MFNet against QVI, and this figure is

statistically significant for 95% confidence based on a t-test

experiment (p < .00000003). The average preference dif-

ference between our method and FLAVR is smaller, with

56% users in favor of ST-MFNet results. This was also sig-

nificant at a 95% confidence level (p < .0001). Finally,

when comparing against Softsplat, around 60% of subjects

favored our method, where the significance holds again at

95% level (p < .000005).

6. Limitations and Potential Negative Impacts

Although superior interpolation performance has been

observed from the proposed method, we are aware of the

relatively low inference speed associated with this model.

This is mainly due to its large network capacity. Training

such large models can also potentially introduce negative

impact on the environment due to the significant power con-

sumption of computational hardware [29]. This can be mit-

igated through model complexity reduction based on net-

work compression [8] and knowledge distillation [21].

7. Conclusion

In this paper, we propose a novel video frame interpo-

lation algorithm, ST-MFNet, which consistently achieved

improved interpolation performance (up to a 1.09dB PSNR

gain) over state-of-the-art methods on various challenging

video content. The proposed method features three main

innovative design elements. Firstly, flexible many-to-one

multi-flows were combined with conventional one-to-one

optical flows in a multi-branch fashion, which enhances the

ability of capturing large and complex motions. Secondly, a

novel architecture was designed to predict multi-interflows

at multiple scales, leading to reduced complexity but

enhanced performance. Thirdly, we employed a 3D CNN

architecture and the ST-GAN originally proposed for

texture synthesis to enhance the visual quality of textures

in the interpolated content. Our quantitative and qualitative

experiments showed that all of these contribute to the final

performance of our model, which consistently outperforms

many state-of-the-art methods with significant gains.
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