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Abstract

The Skinned Multi-Person Linear (SMPL) model repre-
sents human bodies by mapping pose and shape parameters
to body meshes. However, not all pose and shape parame-
ter values yield physically-plausible or even realistic body
meshes. In other words, SMPL is under-constrained and
may yield invalid results.

We propose learning a prior that restricts the SMPL pa-
rameters to values that produce realistic poses via adver-
sarial training. We show that our learned prior covers the
diversity of the real-data distribution, facilitates optimiza-
tion for 3D reconstruction from 2D keypoints, and yields
better pose estimates when used for regression from images.
For all these tasks, it outperforms the state-of-the-art VAE-
based approach to constraining the SMPL parameters. The
code will be made available at https://github.com/
cvlab-epfl/adv_param_pose_prior.

1. Introduction

The SMPL model [17] is now widely used to parame-
terize body poses and shapes [15, 21]. However, it offers
no guarantee to produce realistic human bodies when ran-
dom values are passed as its inputs. This complicates its us-
age within an optimization, regression, or generative frame-
works, where it is desirable that any sample drawn be plau-
sible.

To mitigate this issue, several approaches have been
used. In [2], this is addressed by introducing a Gaus-
sian Mixture Model (GMM) learned on the SMPL pose.
Unfortunately, due to its unbounded nature, it still allows
poses far away from any training example and potentially
unrealistic. In SMPL-X [22], a Variational Autoencoder
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(VAE) is used instead to learn a low-dimensional represen-
tation of the SMPL parameters. This choice was motivated
by the ability of VAEs to model the distribution of valid
data samples in the latent space as a multivariate Gaussian,
which was shown to better approximate the data distribu-
tion than classical models, such as GMMs, while also fa-
cilitating sampling at test time. In both approaches, the
learned prior is then used together with other losses in an
optimization-based framework that aims at finding plausi-
ble human meshes. Unfortunately, VAEs have drawbacks.
First, their learned prior tends to be mean-centered and to
discard part of the original data distribution that are far away
from it. Furthermore, its Gaussian prior is unbounded, like
that of GMMs. Hence, one can also sample latent values
far away from any in the training set and produce unrealis-
tic bodies. Adversarial training has been used to bound the
parameter prediction of SMPL in regression-based frame-
works [5, 11]. However, this requires balancing the adver-
sarial loss with other losses. More importantly, no explicit
prior has been learned in such cases, as this training needs
to be repeated for each new task.

In short, these approaches make it necessary to bal-
ance different losses and do not bound the inputs of the
SMPL model. In contrast, we aim at learning a prior, that
once learned can be used in an optimization or learning-
based frameworks, without the requirement of enforcing
constraints on it. In other words, the learned prior should
be integrated as part of the SMPL model and the model can
be optimized only on the target loss, where the learned prior
is not added as an extra constraint. To this end, we learn an
explicit prior, that constrains the input of the SMPL model
to be realistic poses via adversarial training. This has to
be done only once and independently of the target applica-
tion so that no further adversarial training is needed. Hence,
it does not require balancing multiple losses in the down-
stream tasks.

Furthermore, one can use a bounded distribution, such as
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z
<latexit sha1_base64="OEitEl/gNmWloewsUhn/2k9e5HI=">AAAB7XicbZDJSgNBEIZr4hbjFvXopTEInsIkTpaTBrx4jGAWSELo6XSSNj09Q3eNEELewYsHRbz6Pt58Cx/ByUwQtx8aPv6qoqp/N5DCoG2/W6mV1bX1jfRmZmt7Z3cvu3/QNH6oGW8wX/q67VLDpVC8gQIlbweaU8+VvOVOLhf11h3XRvjqBqcB73l0pMRQMIqR1ezimCPtZ3N23o5F/kJhCbmLD4hV72ffugOfhR5XyCQ1plOwA+zNqEbBJJ9nuqHhAWUTOuKdCBX1uOnN4mvn5CRyBmTo6+gpJLH7fWJGPWOmnht1ehTH5ndtYf5X64Q4rPZmQgUhcsWSRcNQEvTJ4utkIDRnKKcRUKZFdCthY6opwyigTByCc1YsOWUSQ7lYTaBUrHyF0CzmC+W8c+3kaudJGpCGIziGUyhABWpwBXVoAINbuIdHeLJ868F6tl6S1pS1nDmEH7JePwFeKJCh</latexit>

✓
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✓̂
<latexit sha1_base64="+d9WRYAvI5SD05+X2vx8rmLeUx8=">AAAB/3icbZDLSgMxFIbPeK31VhXcuAm2gqsyrW11Z8WFLhWsFTqlZNKMhmYuJGfEMhb0Vdy4UMStr+HOt/ARnIuItwMhH/9/Qn5+O5BCo2m+GWPjE5NT07mZ/Ozc/MJiYWn5VPuhYrzFfOmrM5tqLoXHWyhQ8rNAcerakrftwX7ity+50sL3TnAY8K5Lzz3hCEYxlnqFVQv5FdpOVLJciheMyuhgVBr1CkWzbKZD/kLlE4q775DOUa/wavV9FrrcQyap1p2KGWA3ogoFk3yUt0LNA8oG9Jx3YvSoy3U3SvOPyEas9Injq/h4SFL1+4uIuloPXTveTELq314i/ud1QnR2upHwghC5x7KPnFAS9ElSBukLxRnKYQyUKRFnJeyCKsowriyfllDbqtZrDZJCo7qTQb26/VXCabVcaZRrx7Vic+8mqyMHa7AOm1CBbWjCIRxBCxhcwx08wKNxa9wbT8ZztjpmZDeswI8xXj4A/rmYIQ==</latexit>G

<latexit sha1_base64="GMuQMce9JPpQ+o0KFyyLwkMN2E8=">AAAB/3icbZDLSgMxFIbPeK31VhXcuAm2gqsyrW11Z0UXLhWsFTqlZNKMhmYuJGfEMhb0Vdy4UMStr+HOt/ARnIuItwMhH/9/Qn5+O5BCo2m+GWPjE5NT07mZ/Ozc/MJiYWn5VPuhYrzFfOmrM5tqLoXHWyhQ8rNAcerakrftwX7ity+50sL3TnAY8K5Lzz3hCEYxlnqFVQv5FdpOVLJciheMyuhgVBr1CkWzbKZD/kLlE4q775DOUa/wavV9FrrcQyap1p2KGWA3ogoFk3yUt0LNA8oG9Jx3YvSoy3U3SvOPyEas9Injq/h4SFL1+4uIuloPXTveTELq314i/ud1QnR2upHwghC5x7KPnFAS9ElSBukLxRnKYQyUKRFnJeyCKsowriyfllDbqtZrDZJCo7qTQb26/VXCabVcaZRrx7Vic+8mqyMHa7AOm1CBbWjCIRxBCxhcwx08wKNxa9wbT8ZztjpmZDeswI8xXj4A+iSYHg==</latexit>D “real” / “fake”

fixed
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Pz
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...
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zstart = z0

<latexit sha1_base64="1UhGrsGnNhKwhxPMMx83XJNG1/g=">AAAB9HicbZDLSsNAFIZPvNZ6q7p0M1gEVyWt6WWjFty4rNAbtKFMptN26GQSZyaFNvQ53LhQxK0P48638BFMkyLefhj4+P9zmMPv+JwpbZrvxsrq2vrGZmorvb2zu7efOThsKi+QhDaIxz3ZdrCinAna0Exz2vYlxa7DacsZXy/y1oRKxTxR11Of2i4eCjZgBOvIsme9kIr+HF2gWa/ey2TNnBkL/YX8ErJXHxCr1su8dfseCVwqNOFYqU7e9LUdYqkZ4XSe7gaK+piM8ZB2IhTYpcoO46Pn6DRy+mjgyegJjWL3+0aIXaWmrhNNuliP1O9sYf6XdQI9qNghE36gqSDJR4OAI+2hRQOozyQlmk8jwESy6FZERlhioqOe0nEJ1nmhaJVQDKVCJYFiofxVQrOQy5dy1q2VrV4mbUAKjuEEziAPZajCDdSgAQTu4B4e4cmYGA/Gs/GSjK4Yy50j+CHj9RPih5Mn</latexit>

zend = zT

<latexit sha1_base64="zrDvNDPZfVGlNzqMzjTXY+mKtlY=">AAAB9XicbZDJSgNBFEVfxynGKerSTWEQXIVO7AwrDbhxGcEMkG5DdaWSFKkeqHqthCb/4caFIm79F3f+hZ9gpyPidKHgcO971OO6oRQaTfPNyCwtr6yuZddzG5tb2zv53b22DiLFeIsFMlBdl2ouhc9bKFDybqg49VzJO+7kfJ53brjSIvCvcBpyx6MjXwwFo5hY1/aYYmzjmCOd9c1+vmAWzVTkL5Q+oXD2Dqma/fyrPQhY5HEfmaRa90pmiE5MFQom+SxnR5qHlE3oiPcS9KnHtROnV8/IUeIMyDBQyfORpO73jZh6Wk89N5n0KI7172xu/pf1IhzWnVj4YYTcZ4uPhpEkGJB5BWQgFGcopwlQpkRyK2FjqijDpKhcWoJ1Uq5YVZJCtVxfQKVc+yqhXS6WqkXr0io0ThdtQBYO4BCOoQQ1aMAFNKEFDBTcwQM8GrfGvfFkPC9GM8bnzj78kPHyAWHrlBE=</latexit>

✓̂0

<latexit sha1_base64="xr0cXqluK2wTgiaXDFxjlDpvpAk=">AAAB9XicbZDJSgNBFEVfxynGKerSTWEQXIVOzLTSgBuXETJBug3VlUpSpHqg6rUSmvyHGxeKuPVf3PkXfoKdThCnCwWHe9+jHtcJpNBomu9GamV1bX0jvZnZ2t7Z3cvuH7S1HyrGW8yXvuo6VHMpPN5CgZJ3A8Wp60jecSaX87xzy5UWvtfEacBtl448MRSMYmzdWGOKkYVjjnTWb/azOTNvJiJ/obCE3MUHJGr0s2/WwGehyz1kkmrdK5gB2hFVKJjks4wVah5QNqEj3ovRoy7XdpRcPSMnsTMgQ1/Fz0OSuN83IupqPXWdeNKlONa/s7n5X9YLcVizI+EFIXKPLT4ahpKgT+YVkIFQnKGcxkCZEvGthI2pogzjojJJCaWzYrlUIQlUirUFlIvVrxLaxXyhki9dl3L180UbkIYjOIZTKEAV6nAFDWgBAwX38AhPxp3xYDwbL4vRlLHcOYQfMl4/AZh7lDU=</latexit>

✓̂T
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...
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Pz

<latexit sha1_base64="xjyeyQ1AEG1Br1RC4ST7rTvoGro=">AAAB8nicbVDJSgNBFHwTtxi3qEcvjUHwFGbiZDlpQBCPEcwCkyH0dHqSJj0L3T1CGPIZXjwo4tWv8eZf+AnOEsStoKGoeo9XXU7ImVS6/q4VVlbX1jeKm6Wt7Z3dvfL+QU8GkSC0SwIeiIGDJeXMp13FFKeDUFDsOZz2ndll6vfvqJAs8G/VPKS2hyc+cxnBKpGsoYfVlGAeXy1G5Ype1TOgv8RYksrFB2TojMpvw3FAIo/6inAspWXoobJjLBQjnC5Kw0jSEJMZnlAroT72qLTjLPICnSTKGLmBSJ6vUKZ+34ixJ+Xcc5LJNKL87aXif54VKbdlx8wPI0V9kh9yI45UgNL/ozETlCg+TwgmgiVZEZligYlKWiplJZhntbrZQBlp1Fo5qdeaXyX0alWjUTVvzEr7PG8DinAEx3AKBjShDdfQgS4QCOAeHuFJU9qD9qy95KMFbblzCD+gvX4CMhiS1Q==</latexit>F

fixed

<latexit sha1_base64="rN1/itaj56QutXM6UnuV7/hCjas=">AAAB83icbZDLSsNAFIZPvNZ6q7p0M1gEVyWt6WWlBTcuK9gLNKFMptN26OTCzIlQQl/DjQtF3Poy7nwLH8E0KeLth4GP/z+HOfxuKIVG03w3VlbX1jc2c1v57Z3dvf3CwWFHB5FivM0CGaieSzWXwudtFCh5L1Sceq7kXXd6tci7d1xpEfi3OAu549GxL0aCUUws255QjG2ccKTzQaFolsxU5C+Ul1C8/IBUrUHhzR4GLPK4j0xSrftlM0QnpgoFk3yetyPNQ8qmdMz7CfrU49qJ05vn5DRxhmQUqOT5SFL3+0ZMPa1nnptMehQn+ne2MP/L+hGOGk4s/DBC7rPso1EkCQZkUQAZCsUZylkClCmR3ErYhCrKMKkpn5ZgnVeqVo2kUKs0MqhW6l8ldCqlcq1k3VjF5kXWBuTgGE7gDMpQhyZcQwvawCCEe3iEJyMyHoxn4yUbXTGWO0fwQ8brJzTFk24=</latexit>

✓̂

<latexit sha1_base64="vvcFZDHfpJnv08JlFN4kq2hzPss=">AAAB8nicbZDJSgNBEIZrXGPcoh69NAbBU5jEyXLSgBePEcwCyRB6Oj1Jk56F7hohDHkMLx4U8erTePMtfAQnM0Hcfmj4+KuKqv6dUAqNpvlurKyurW9s5rby2zu7e/uFg8OODiLFeJsFMlA9h2ouhc/bKFDyXqg49RzJu870alHv3nGlReDf4izktkfHvnAFo5hY/cGEYjxwONL5sFA0S2Yq8hfKSyhefkCq1rDwNhgFLPK4j0xSrftlM0Q7pgoFk3yeH0Sah5RN6Zj3E/Spx7UdpyfPyWnijIgbqOT5SFL3+0RMPa1nnpN0ehQn+ndtYf5X60foNuxY+GGE3GfZIjeSBAOy+D8ZCcUZylkClCmR3ErYhCrKMEkpn4ZgnVeqVo2kUKs0MqhW6l8hdCqlcq1k3VjF5kWWBuTgGE7gDMpQhyZcQwvawCCAe3iEJwONB+PZeMlaV4zlzBH8kPH6CVIKkuo=</latexit>
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Figure 1. Multiple uses of the proposed approach. (A) The adversarial game between generator G and discriminator D guarantees that
the former provides realistic body poses. (B) Given “start” and “end” latent vectors, one can render the whole sequences of plausible
and smooth body interpolations. (C) To optimize for corresponding poses given target keypoints Y , akin to VPoser [22], the pretrained
generator G can be used as an implicit pose prior. (D) The pretrained G can be dropped in as a pose prior in a pretrained off-the-shelf
human mesh regressor. It improves the prediction quality of the regressor.

uniform or spherical ones, in the input space of the learned
prior, which facilitates plausible sample generation and also
its integration in regression frameworks, as by limiting the
output of the preceding component that is passed as input to
the learned prior, one is always guaranteed to have a plau-
sible human representation. Once trained, our model can
be used in many different settings without further retrain-
ing as shown in Fig. 1. We introduce GAN-based pose
prior learning technique that consistently outperforms the
VAE-based state-of-the-art approach for both optimization-
and regression-based approaches to human body pose re-
covery [22]. Also, we make a comparision between differ-
ent choices of latent spaces, out of which the spherical one
brings the most benefit.

2. Related Work

2.1. Body Representation

There have been many attempts at modeling the human
body. The earliest ones split the body into several sim-
pler shapes and combine them into a unified model. The
introduction of several datasets consisting of diverse body
scans [25] has ushered the age of learnable body models.
The SMPL body model [17] constitutes one of the most
successful and easy-to-use models. It uses a combination
of PCA coefficients to model the shape and a regressor that
poses the body from the joints angles. Several extensions
have since then been proposed. SMPL-H [26] includes a
more detailed hand model, thus removing one of the limita-
tions of the original model. More recently, SMPL-X [22],

adds facial expressions to the previous models. Instead of
using a mesh representation, NASA [4] encodes the human
body as a signed distance function. Instead of learning an
explicit prior, [24] first predicts the 3D pose and then con-
strains it using physics-based optimization. This must be
done for every video, rather than being a part of a prior
integrated into a model. The “LIMP” model [3] has been
proposed and evaluated directly on meshes, while we learn
a prior for SMPL input parameters. In this paper we fo-
cus only on SMPL as it is widely used in the community.
Here, we focus on the SMPL model as we are interested in
modeling the human body itself, and favor a mesh represen-
tation, which inherently provides correspondences across,
e.g., video frames.

2.2. SMPL Parameter Estimation

Since the introduction of the SMPL body model, many
approaches have aimed to estimate the SMPL parameters
given either an image [5, 9, 11, 23], some labels, such as 2D
or 3D pose [1, 2, 22], or body silhouettes [14]. Depending
on whether they are optimization- or regression-based, they
can be divided into three categories.

Optimization Models. The first category consists of op-
timizing the SMPL parameters so as to minimize an objec-
tive function defined in terms of different pose or image
descriptors. Such descriptors can be 2D and/or 3D joint
locations [1, 2, 22], silhouettes [14], or dense correspon-
dences [7]. SMPLify [2] constitutes one of the first such
methods. It uses a GMM to model the pose space and op-
timizes the SMPL parameters so as to match 2D joint loca-
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tions. The unboundedness of the GMM prior may result in
the optimization producing unrealistic poses. In [22], the
GMM is replaced by a VAE to model the pose space distri-
bution. While a VAE can model more complicated distribu-
tions than a GMM, it remains unbounded. Furthermore, the
mean-centered nature of VAEs makes it cover the original
data distribution only partially, because it poorly represents
data samples away from its distribution’s means. As we will
show later, our approach learns a better and smoother cov-
erage of the data while addressing the unbounded nature
of these approaches. In [28], a normalizing flow (NF) is
used to model a body prior. The mapping from the latent
distribution to the SMPL pose is invertible by construction,
which makes it suitable for weakly- or self-supervised op-
timization. On the other hand, our generative model does
not have any constraints on the architecture and the training
procedure is less demanding. Moreover, this NF model [28]
explores only a Gaussian distribution in the latent space,
while our approach is distribution-agnostic, as we show in
the experiments.

Regression Models. The second category consists of di-
rectly regressing the SMPL parameters given an input im-
age. Human Mesh Recovery (HMR) [11] is one of the ini-
tial methods that applies such a technique using deep neu-
ral networks. Since then it has been used in several other
works, such as [5, 9, 23]. These methods minimize an ad-
versarial prior together with other target losses. Therefore,
the resulting representation is only usable within the learned
model, since no explicit prior is learned. By contrast, we
learn an explicit bounded prior, which needs to be trained
only once. Then, the weights of this learned prior can be
frozen and it can be used in any regression approach by
mapping a feature space to the learned prior latent space.

Combined Models. The two previous categories are
compatible with each other and can be used together.
SPIN [13] mixes the two by fine-tuning the regression es-
timate with an optimization procedure. EFT [10] takes the
pretrained regression network of [13] and uses its weights
as an implicit body prior. It fine-tunes the weights of the
network for every sample in a weakly-annotated dataset to
obtain the body parameters. Although we demonstrate our
method separately on optimization and regression-based
tasks, it can be used in the combined approach, as these
models merge the individual components from optimization
and regression-based approaches.

3. Method
To constrain the SMPL poses we rely on a GAN ap-

proach [6]. It involves two competing networks, a generator
G and a discriminator D. The generator samples vectors z,
known as latent vectors, from a set Pz ⊆ Rd and generates
a SMPL pose vector Θ̂ = G(z), which can be passed to the

SMPL decoder φ to generate a body mesh B = φ((z), β),
where β denotes the SMPL body shape parameters. The
task of the discriminator is to distinguish poses generated in
this manner from those of a large dataset of poses known to
be realistic. By contrast, the generator is trained to produce
poses that fool the discriminator. This process is shown in
Fig. 1 (A).

Constraining shape and pose. Training our models, we
leave the SMPL shape parameters β untouched to be able
to compare with other models, i.e. VPoser [22], as they
only learn a prior for pose. Moreover, the shape part of
the model is already data-driven (with PCA). However, the
PCA weights for the shape are also unbounded by the model
and eliminating this problem is also worth further research.
We trained a model in such combined fashion, more infor-
mation on this can be found in the supplementary material.

3.1. Distribution over Latent Vectors

GAN-based approaches [12, 20, 27] have used several
types of distributions from which to draw their latent vec-
tors, including Gaussian, Uniform, and Spherical distribu-
tions. To test all three, we learn three different sets of latent
vectors:

• GAN-N: zN ∼ Pz = N (0, Id) ⊂ Rd (Normal)

• GAN-U: zU ∼ Pz = U[−1,1]d ⊂ Rd (Uniform)

• GAN-S: zS ∼ Pz = S ⊂ Rd (Spherical)

where the spherical vectors are sampled by drawing vectors
zN from a normal distribution and computing zS := zN

‖zN‖2 .
The unbounded nature of the Gaussian distribution

N (0, I) prevents sampling from rare modes and may make
the resulting prior suffer from the same drawbacks as
GMMs and VAEs when used in regression tasks. While
the Uniform distribution does not have such a limitation, it
imposes artificial bounds [−1, 1]d that do not have a clear
meaning in the output pose space. Intuitively, because one
can smoothly move from one pose to another, we would
rather expect a latent pose space to be continuous, with-
out strict boundaries as the uniform space. The desirable
properties of the latent space, such as continuity and bound-
edness are all inherent to the Spherical distribution. Our
experiments show that, in practice, it does indeed tend to
perform better than the others.

3.2. Training

We define the generator G in our GAN architecture to
have the same structure as the decoder of the VAE in
VPoser [22]. As for our discriminatorD, we base our struc-
ture on that of the HMR approach [11], using K + 1 dis-
criminators, one for each joint angle and one for the whole
set of pose parameters.
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As can be seen in Fig. 1 (A), we draw samples from the
latent space Pz and train the generator to map them to the
SMPL pose space. The discriminators are trained to dis-
tinguish the SMPL pose vectors Θ, obtained by a real pose
dataset, from the ones produced by the generator Θ̂. The
training loss function, aiming to balance the two opposing
goals of the generator and discriminator, can thus be ex-
pressed as

min
G

max
D
L(G,D) = EΘ[logD(Θ)]+ (1)

+ Ez∼Pz
[log(1−D(G(z))] .

When training image-generating GANs, the usual prac-
tice is to take the ratio of training steps for G and D to be
10:1 because the former requires more updates to produce
realistic “fake” samples. In our setting the competing mod-
els have similar capacities. Hence, using that ratio yields
a severe mode collapse. Thus, we update the discriminator
weights 10 times for every update of the generator.

We train the model using the common splits of the
AMASS dataset [19], following the procedure for VPoser
in SMPL-X [22]. As AMASS provides SMPL-H parame-
ters [26], the body pose is a bit different from the original
SMPL [2, 17] one; it only contains K = 21 joint angles,
with 2 angles from SMPL having been moved to SMPL-H
“hands” articulations.

3.3. Using the Generator as a Universal Prior

Being trained once, our generative model can be used in
many applications. We introduce some of them here and
present the results in the following section.

Interpolation in Latent Space. One way to gauge the
quality of a latent representation is to check how smooth
the interpolation from one latent vector to another is. Ide-
ally, the transition should vary equally in each step from
the source to the target samples, rather than most of the
transformation occurring in only a few steps. To check
this, we randomly select N samples {Bt1, . . . ,BtN} from
the test set and optimize (similar to the paragraph below)
for every body Bti the corresponding latent vector zri that
yields the closest mesh Bri = φ(G(zri ), β). For each pair of
such latent vectors, we construct an interpolation sequence
{zr0, zr1, . . . , zrT } and {B0,B1, . . . ,BT } using either linear
interpolation

zrt =
(
1− t

T

)
zr0 +

t

T
zrT (2)

for GAN-N and GAN-U, or spherical interpolation

zrt =
sin
(
(1− t

T )θ
)

sin θ
zr0 +

sin
(

t
T θ
)

sin θ
zrT (3)

for GAN-S, with Brt = φ(G(zrt ), β), and θ representing the
angular distance between two points zr0 and zrT on a sphere.

We discuss spherical interpolation (SLERP) in more detail,
including the proof of Eq. 3 for high dimensions, in the sup-
plementary material. Ideally, the samples Bt−1 and Bt+1

should be roughly equidistant from Bt, indicating smooth
transitions. The per-vertex mesh distance is computed as
follows:

d(Br,Bt) =
1

Nverts

Nverts∑
v=1

‖Brv − Btv‖2 , (4)

where v sums over the vertices. The sampling process is
depicted in Fig. 1 (B).

Optimization from Keypoints. Given the 2D joint tar-
gets Y obtained from a monocular observation and as-
suming neutral SMPL shape parameters β = 0, our
goal is to find the SMPL pose parameters Θ̂ that produce
the target Y using the SMPL model φ, which translates
from SMPL space (Θ̂, β) to the space of body meshes B.
Fig. 1 (C) describes the idea. The recovered mesh can
be projected to 2D joints using camera parameters, i.e.,
Π(φ(Θ̂, β)) = Y , where Π is the camera projection func-
tion. To find the optimal SMPL parameters, one can mini-
mize L(Π(φ(Θ̂, β)),Y), where L is a loss function such as
the L2 distance between the 2D mesh joints and the corre-
sponding target joints.

To better constrain the pose output by SMPL, we make
use of our pose prior. That is, instead of directly optimizing
Θ̂, we optimize a vector z in the GAN’s latent space and
obtain the corresponding Θ̂ by feeding z to the generator G.
Altogether, we therefore solve the optimization problem

min
z
‖Π(φ(G(z), β)− Y‖22 . (5)

Image-to-Mesh Regression. Our GAN models can also
be used as drop-in priors to improve existing pretrained
image-to-mesh algorithms [10,11,13]. To demonstrate this,
we start from the model of [10], whose architecture is a
Resnet50 model based on the one of [11]. It is pretrained on
pseudo ground-truth COCO [16] dataset obtained by [10].
We then inject our model into it as shown in Fig. 1 (D).
More specifically, we introduce an additional MLP F that
maps intermediate features of Resnet50 to a latent vector z
of the pre-trained SMPL prior, which then can be mapped
by G(z) into the pose vector Θ of SMPL. One can then de-
code pose parameters Θ into a human mesh B using the
SMPL model φ. In turn, F can be used in conjunction with
the pre-trained SMPL prior G and the SMPL decoder φ to
reconstruct a complete body mesh, which can then be com-
pared to the ground-truth targets. We used this process to
train only the F in an end-to-end setup and obtain the cor-
responding body mesh B.

4. Experiments
We now compare the three versions of our approach to

sampling the latent vectors, GAN-N, GAN-U, and GAN-S,
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Table 1. Statistics for Recall experiment on Train/Test splits of
AMASS dataset [19]. The values are the mean, variance and
medians of distances between real samples and closest neighbors
among generated samples for every model (in mm). GAN models
demonstrate indistinguishable behaviour, while VPoser [22] pro-
vides consistently larger discrepancy with real set.

Train set Test set
µ± σ (↓) median (↓) µ± σ median

GAN-S (Ours) 4.0±1.9 5.5 6.3±2.6 5.5
GAN-U (Ours) 3.9±1.9 5.4 6.2±2.5 5.4
GAN-N (Ours) 4.0±1.9 3.6 6.2±2.5 5.6

VPoser [22] 5.2±3.2 4.3 6.3±4.0 7.3

with the VPoser VAE-based approach of SMPL-X [22] and
the NF model of [28].

4.1. Dataset Coverage

(a) Recall. “Do real samples live in latent
spaces?”

(b) Precision. “How close are fake
samples to real?”

Figure 2. Empirical estimation of data coverage of generative
models for both Recall (a) and Precision (b). Experiments with
data from the Train set are drawn with solid lines, and from the
Test set with dashed lines. Higher means better in all charts.

An ideal latent representation should cover the whole
space of realistic human poses and nothing else. In other
words, it should have good Recall and Precision. By recall,
we mean that all samples in the training set should be well
approximated by poses our model generates. By precision,
we mean that these generated poses should never deviate
too far from the training set. While recall indicates how
well the generated samples cover the dataset distribution,
precision indicates how realistic the generated samples are.
We define these metrics as follows.

Recall. To evaluate recall, we use our pose generator to
produce SMPL poses and take the shape parameters to be a
zero vector, which yields a neutral body shape. Hence, for
all models we produce a body mesh B = φ(G(z), β) given
a sampled latent vector z and a fixed β. We first generate
6M samples from the pose generator of each model. Then,
given a ground-truth body Bt from either the training or test
set, we select the generated body Br = φ(G(zr), β) with
minimum vertex-to-vertex distance Eq. 4.

We then repeat this operation for 10k bodies randomly
sampled from either the training or test set. We report
the mean, variance and median of the resulting distances
in Table 1. In Fig. 2a, we plot the cumulative distribution
P(d < ε) given the values d(Br,Bt) for each training sam-
ple. Note that all versions of our approach deliver consis-
tently higher values than the VPoser [22], indicating that
our models better cover the entire distribution.

In Fig. 3, we show the t-SNE projection [18] of the re-
sulting SMPL Θr pose vectors superposed on the Θt vec-
tors that were used to generate the training examples. All
GANs cover the space spanned by the training examples
more completely than VPoser, which is consistent with the
previous result. In other words, our learned prior can repre-
sent more diverse poses than the other ones.

We provide more Recall experiments for various sam-
pling strategies in the supplementary material.

Precision. Our approach to computing precision mirrors
the one we used for recall. We randomly generate 10k
latent points zr from every model, and for each sample
Br = φ(G(z), β), with a fixed β, look in the training or test
datasets for the nearest neighbor in terms of the distance
given in Eq 4. If the latent representation only produces
poses similar to those seen in training, this distance should
be consistently small.

As shown in Fig. 2b, GAN models tend to produce
meshes that are further away from the training distribution
than the VAE model. This could be interpreted as a fail-
ure to produce realistic poses. However, these unseen sam-
ples correspond to plausible bodies. They are nothing but
the result of semantic interpolation that GANs implicitly
learn from the data. In Fig. 4, we show the worst 10 sam-
ples based on the distance metric of Eq. 4 and their nearest
neighbors from the training set. Note that all of these sam-
ples look realistic even though they are far from the closest
neighbor in the dataset. This indicates that our generators
are able to produce novel samples that were not observed
in the training set, however, this is more observed in GAN-
S and GAN-U compared to GAN-N, as GAN-N generates
samples closer to its mean, hence deviating less to more di-
verse poses.

4.2. Interpolation in Latent Space

To evaluate our model on the first application described
in Section 3.3 and in Fig. 1 (B), we randomly select N =
128 samples {Bt1, . . . ,BtN} from the test set, and, for each
pair, we construct the corresponding interpolation sequence
{zr0, zr1, . . . , zrT } and {B0,B1, . . . ,BT }. We use the mean
per-vertex position error (Eq. 4) between body meshes Bi
and Bj and compute pairwise distances between their body
meshes by ∆(Bi,Bj), which we represent by ∆ij .

The minimal transformation ∆ij between every consec-
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(a) t-SNE on GAN-S samples (b) t-SNE on GAN-U samples (c) t-SNE on GAN-N samples (d) t-SNE on VPoser [22] samples

Figure 3. t-SNE projections of “real” samples from the training set and of “fakes” generated by GAN-S (a), GAN-U (b), GAN-N (c) and
VPoser [22] (d) models.
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Figure 4. “Worst” samples according to the precision metric In Figure 2b. For each GAN model we show 10 samples with the largest
distance to the first nearest neighbor (1NN) in the training set, ordered from the worst sample on the right. Generated samples themselves
are absolutely plausible human bodies, despite being away from training samples. Note that in GAN-S and GAN-U these samples are
further away from 1NN compared to GAN-N.

utive bodies is equal to ∆0T =
∆(Bi

0,B
i
T )

T . For different ini-
tial pairs, this value can be drastically different, as the cor-
responding bodies might be very close to or very far from
each other. Hence, we normalize the transformation ∆ij

of every sequence by the expected average transformation
∆0T , yielding ∆̄ij , which should be 1 in the minimal case.
Note, however, that such an ideal case can typically only be
achieved by going through physically-impossible poses, for
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Figure 5. Average normalized mesh transformation of consecu-
tive generated samples in interpolations between source and tar-
get examples. x axis depicts the number of iterations and the y
axis shows the normalized mesh deviation in log-scale. The ideal
transformation should be represented as a flat line. VPoser applies
most of transformations at the beginning or at the end of the inter-
polations. GAN-N reduced this affect, while GAN-S obtains the
smoothest transitions.
Table 2. Comparison of interpolation smoothness between differ-
ent models. max-to-min ratios of consecutive deformations for
every pair of interpolation is measured according to Eq. 6. Mean,
median, and standard deviation of Rij over a set of interpolations
is then reported for each model.

µ± σ (↓) median (↓)
GAN-S (Ours) 4.3±3.0 3.5
GAN-U (Ours) 7.1±7.7 5.1
GAN-N (Ours) 5.7×102±5.3×102 8.6

VPoser [22] 1.8×105±6.9×105 9.1

instance by shrinking the arms to go from a body with arms
up to one with arms down. Hence, actual transformations
will typically obtain values higher than 1, but a good latent
space should nonetheless yield values as constant as pos-
sible throughout the entire interpolation steps, indicating a
smooth gradual transition.

We illustrate the behavior of different models in Fig. 5,
where we average the consecutive interpolation distances
∆̄ij across all pairs. The closer the curve is to being hori-
zontal, the smoother is the interpolation. The VPoser [22]
curve indicates that interpolation with this model is subject
to jumping from Bi0 to BiT in very few steps, either at the
beginning or the end of the sequence, and the remaining
steps are spent performing small pose adjustments. This ef-
fect can also be seen in GAN-N but to a lesser degree. In
contrast, GAN-S and GAN-U both produce smooth interpo-
lations, with a slight advantage to the spherical distribution.
More plots with interpolation distances for particular pairs
can be found in the supplementary material.

To measure the smoothness of an interpolation, we com-
pute the ratio between the maximal and minimal transitions
in a sequence ∆ij , i.e.,

Rij =
max(∆ij)

min(∆ij)
. (6)

Table 3. Reporting 3D pose error (in mm) for the bodies recovered
through optimization from 2D joint targets.

P-MPJPE (↓)
GAN-S (Ours) 84.3
GAN-U (Ours) 90.7
GAN-N (Ours) 85.4

NF [28] 89.6
VPoser [22] 90.1
GMM [2] 92.3

Table 4. Reporting 3D pose error (in mm) for the bodies recovered
through regression from input images.

MPJPE (↓) P-MPJPE (↓)
HMR[COCO EFT] [10] 75.91 68.02

GAN-S (Ours) 63.24 56.32
GAN-U (Ours) 64.28 57.30
GAN-N (Ours) 67.19 59.92

VPoser [22] 69.18 61.71

We report the mean, variance and median of the ratios Rij

in Table 2. These results confirm our previous conclu-
sions: GAN-S yields the smoothest interpolations, closely
followed by GAN-U. In Fig. 6 we show interpolation be-
tween two pairs of samples for different models.

We provide more ablation on interpolation experiments
in the supplementary material.

4.3. Mesh Optimization from 2D Joints

We now turn to the optimization application discussed in
Section 3.3 and in Fig. 1 (C). Given the 2D joint locations,
the optimal latent vector can be found using an iterative op-
timization algorithms. In our experiments, we use L-BFGS-
B for all models. For GAN-S and GAN-U, we renormalize
the estimated z given their input bound at each optimiza-
tion step. Projecting the 3D body joints to the observed 2D
joints on the image via the camera project Π requires access
to the camera parameters and the body orientations. We ob-
tain them in the same way as in [2].

In Table 3, we report the 3D pose errors (after rigid align-
ment) obtained by recovering the SMPL parameters Θ̂ from
2D joints for the H3.6M dataset [8], following Protocol 2.
Note that GAN-S again yields the best results for this appli-
cation, this time closely followed by GAN-N. By contrast,
GAN-U yields a higher error, indicating its input bounds
makes it less suitable for the optimization-based tasks. To
compare against the the NF model [28], we trained a Real-
NVP version of it ourselves because we did not have access
to the code or the weights.

4.4. Image to Mesh Regression

We train the approach to body regression from an image
introduced in Section 3.3 and in Fig. 1 (D) for the three
versions of our approach and for VPoser [22]. We report
accuracy results on test data in Table 4 in terms of 3D pose
error of the recovered bodies after Procrustes alignment (P-
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Figure 6. Examples of interpolations for different generative models. All GAN models provide smooth (yet semantically very different)
interpolations, while VPoser [22] sticks at one pose for most of the path and “jumps” into the ending pose. More examples can be found in
the supplementary material.

MPJPE), according to Protocol 2 of [8]. Once again GAN-
S performs the best, with GAN-U and GAN-N outperform-
ing VPoser. Our models deliver better accuracy than [10],
even though its accuracy is reported for pre-trained models.

4.5. Limitations

Using our GAN priors, the diversity of their learned dis-
tributions is limited by their training sets, which might not
be diverse enough for downstream tasks. This is, however,
similar to any other model that learns a distribution such as
VPoser or HMR, which is also limited by its training distri-
bution.

5. Conclusion
In this paper we proposed a simple yet effective prior for

SMPL model to bound it to realistic human poses. We show

that the learned prior can cover the diversity of the training
distribution, while also being capable of generating novel
unseen samples. Further, we demonstrate the advantage of
learning such a prior in generation, optimization, and re-
gression based frameworks, where the learned prior can be
trained once and for all, then used in any downstream task
without requiring to balance different losses. Our results
show that using a spherical distribution for the learned prior
leads to smoother transition in the generated samples from
the latent space, while also yielding more accurate results
for optimization- and regression-based tasks, indicating this
prior is better suited for learning human poses.
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