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Abstract
Event cameras attract researchers’ attention due to their

low power consumption, high dynamic range, and extremely
high temporal resolution. Learning models on event-based
object classification have recently achieved massive success
by accumulating sparse events into dense frames to apply
traditional 2D learning methods. Yet, these approaches ne-
cessitate heavy-weight models and are with high computa-
tional complexity due to the redundant information intro-
duced by the sparse-to-dense conversion, limiting the po-
tential of event cameras on real-life applications. This study
aims to address the core problem of balancing accuracy
and model complexity for event-based classification mod-
els. To this end, we introduce a novel graph representa-
tion for event data to exploit their sparsity better and cus-
tomize a lightweight voxel graph convolutional neural net-
work (EV-VGCNN) for event-based classification. Specif-
ically, (1) using voxel-wise vertices rather than previous
point-wise inputs to explicitly exploit regional 2D seman-
tics of event streams while keeping the sparsity; (2) propos-
ing a multi-scale feature relational layer (MFRL) to extract
spatial and motion cues from each vertex discriminatively
concerning its distances to neighbors. Comprehensive ex-
periments show that our model can advance state-of-the-art
classification accuracy with extremely low model complex-
ity (merely 0.84M parameters).

1. Introduction
Each pixel of event cameras is independent and only re-

port lightness changes at the correspondent location (Fig.
1). This novel working principle enables their output to
be sparse and non-redundant [28, 37]. Consequently, event

*: Corresponding author
This work was supported by the National Natural Science Founda-

tion of China (61873220, 92167102, 62102083, 62173286, 61875068,
62177018), the Natural Science Foundation of Jiangsu Province
(BK20210222), the Research Grants Council of Hong Kong (CityU
11213420), and the Science and Technology Development Fund, Macau
SAR (0022/2019/AKP).

events (p=1)
events (p=-1)

Threshold

ln L

T

Y (pixels)

X (pixels)
T

Figure 1. Left: A sketch of the working principle of event cam-
eras (the detailed working principle is introduced in supplemen-
tary material). Events are produced asynchronously according to
the lightness (lnL) changes. Red and blue arrows represent pos-
itive and negative events, respectively. Right: The RGB image
captured from the traditional RGB camera (top) and event signals
in the original format produced from an event camera (bottom).

cameras hold advantages of low power consumption, high
response speed, and high dynamic range compared to tra-
ditional cameras [17]. How to tailor models for event data
with the particular format to perform core vision tasks, such
as object classification, has been a trending topic. Moti-
vated by the huge success of learning-based methods on
vision tasks, developing data-driven approaches for event
data becomes a leading choice. For instance, many stud-
ies [5, 12, 19, 50, 51] resort to 2D convolutional neural net-
works (CNNs) by converting sparse events to dense frames.
These works achieve advanced performance utilizing well-
pretrained 2D CNNs. Yet, the constructed dense representa-
tion and large size models sacrifice the sparsity of event data
(Fig. 2 (a)) while limiting the potential of event cameras on
mobile or wearable applications.

To exploit the sparsity of event data and build low-
complexity models, recent researchers migrate learning
models initially designed for point clouds to event data,
such as the works [43, 47] migrate models from pointnet-
like architecture [38] and the approaches [3, 31] utilize
graph neural networks. Although these approaches advance
in exploiting the sparsity advantage of event data, a funda-
mental question has never been investigated: Is point-wise
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input (taking event points as processing units) proper for
event-based vision tasks?

Intuitively, each point in 3D point clouds can be used
as a key point to building the external structure of an ob-
ject [8]. Therefore, these points do well in describing the
geometry, which is the key for classifying 3D objects. In-
stead, event data are more like 2D videos recorded asyn-
chronously. Event-based classification models require the
ability to accurately extract 2D semantics from the event
data rather than their “geometry” (Fig. 1), which usually
contains motion cues or motion trajectories. Thus, we be-
lieve that using raw events as input is not suitable, as it is
difficult for sparse event points to provide decisive features
(e.g., local 2D semantics) for event-based models.

To overcome the lacking of characterizing local 2D se-
mantics in the popular point-based solutions, this study pro-
poses a novel voxel-wise representation for event data. In-
spired by the traditional image domain: it is challenging to
extract decisive features from images using discrete or dis-
continuous pixels (like sparse point-wise input). Thus, we
propose a representation to encode locally coherent 2D se-
mantics by describing the regional events contained in each
voxel. In specific, we build a graph by voxelizing event
points, selecting representative voxels as vertices (Fig. 2
(c)), and connecting them according to their spatio-temporal
relationships for further processing. Each voxel in the graph
can be analogous to frame patches of still images that con-
tain essential cues such as local textures and contours [14],
which can help the network recognize 2D scenes effectively.

Besides the proposed representation, a lightweight
graph-based learning architecture (EV-VGCNN) is intro-
duced. The critical problem for designing an event-based
graph model is how to learn the embeddings for the edges
and vertices’ features. First, we learn a scoring matrix for
each vertex according to spatio-temporal geometry and uti-
lize the learned matrix to achieve feature aggregation across
its neighbors attentively. Moreover, for a vertex in the
event-based graph, its adjacent neighbors usually convey lo-
cal spatial messages, while distant neighbors are more likely
to carry motion cues or global changes. Inspired by this
variation, we design a multi-scale feature relational layer
(MFRL) to extract semantic and motion cues from each ver-
tex discriminatively. Specifically, two learnable blocks in
MFRL are applied to adjacent and distant neighbors respec-
tively, and the obtained features are aggregated as the joint
representation of a vertex. Finally, we cascade multiple
MFRL modules with graph pooling operations and a clas-
sifier as the EV-VGCNN to perform end-to-end object clas-
sification. The proposed model achieves SOTA accuracy
while holding surprisingly low model complexity.

The main contributions of this paper are summarized
as follows: (1) We introduce a novel method to construct
event-based graph representation with correspondence to
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Figure 2. Visual comparison of three types of event-based repre-
sentation: (a) the frame-based representation by integrating events
into dense frames; (b) the point-based representation generated by
sampling a subset of event signals; (c) representative event voxels
selected as vertices in the proposed graph.

the properties of event data, which can effectively utilize
informative features from voxelized event streams while
maintaining the sparse and non-redundant advantage of
event data. (2) We introduce the MFRL module composed
of several SFRLs to discriminatively learn spatial semantics
and motion cues from the event-based graph according to
spatio-temporal relations between vertices and their neigh-
bors. (3) Extensive experiments show that our model enjoys
noticeable accuracy gains with extremely low model com-
plexity (merely 0.84M parameters).

2. Related Work
Event-based approaches can be distinguished into two

categories: frame-based method and point-based method.
(i) Frame-based method: integrating event signals into

frame-wise 2D representations to directly adopt 2D CNNs
for event data. For example, studies such as [11, 12, 29,
30, 50, 51] accumulating event points along the time axis
to frames w.r.t events’ polarities, locations and timestamps.
To adaptively embed events to frames, [19] and [5] intro-
duce learnable neural blocks to weigh the importance of
each event in the frame. Besides, The success of methods
[10, 18, 23, 40, 46] in knowledge transfer also benefits from
the frame-based representation. While these frame-based
methods achieve encouraging performance on event-based
classification, the conversion from sparse points to dense
2D maps introduces much redundant information [31]. As a
result, they typically require heavy-weight models to extract
high-level features, limiting the potential of event cameras
on mobile or wearable applications.

(ii) Point-based method: taking a single event or a set
of regional events as input units for feature extraction and
aggregation. Early studies falling in this category focus
on designing handcraft descriptors for event data to per-
form multiple vision tasks, such as corner detection [6, 33],
edge/line extraction [29, 42], optical flow prediction [4, 7],
denoising [48] and object classification [26, 44]. However,
the quality of their extracted features is usually sensitive to
the noise and scene variation, limiting their generalizability
to complex scenarios. To enable models to respond adap-
tively to various samples of event data, the development of
point-based learning methods is gradually becoming main-
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Figure 3. (a) Graph construction: We first voxelize event data and then select Np representative voxels as the graph’s input vertices
according to the event points number inside each voxel. Finally, we attain features of vertices by integrating their internal events along the
time axis. (b) EV-VGCNN: It consists of multiple multi-scale feature relational layers (MFRL) followed by graph pooling for learning
global features from the input graph, and several linear layers for object classification. The MFRL module is to aggregate features for each
vertex from k-nearest neighbors. In the figure, non-Linear(x, y) is a block with the input channel of x and output channel of y. It contains
a linear layer, a Batch Normalization, and a ReLU layer. Nn

r represents the output number of vertices of each graph pooling operation.

stream. There are many visual tasks have been performed
successfully, e.g., motion estimation [43], motion segmen-
tation [31] and object classification [1, 3, 13, 35, 36, 47].
Among these approaches, the closest studies to ours are
methods inspired by 3D point cloud learning models, such
as [3, 31, 43, 47], where the RG-CNNs in [3] acquires su-
perior results over other point-based methods on various
datasets. These models are lightweight and show their po-
tential in multiple tasks. However, all these algorithms take
the original events as input units for further processing. As
stated in Section 1, this input representation is challenging
to extract regional 2D semantics effectively from event data.
As a result, their models’ performance on object classifica-
tion tasks is far behind the frame-based solutions. Instead
of using the original events as input units, this paper pro-
poses a novel voxel-wise representation. Our constructed
representation retains more semantic and motion cues while
maintaining the sparsity advantage. Moreover, the MFRL
module allows us to flexibly aggregate features from differ-
ent neighbors of each vertex in the graph. Consequently,
our model outperforms RG-CNNs [3] with a large margin
in terms of accuracy and model complexity. In the supple-
mentary, we also include connections between our models
with voxel-based approaches for 3D point cloud learning.

3. The Proposed Method

We propose a novel graph construction method for event
data and design a lightweight network EV-VGCNN for ob-
ject classification. The pipeline of our graph-based solution
is shown in Fig. 3, which can be depicted as follows. (i)

The event stream is organized into voxels, where each voxel
may contain several events. (ii) We regard each voxel as a
vertex in our graph. In specific, the coordinate of a vertex is
determined by voxel positions. The feature (temporal and
regional semantics) at each vertex is obtained by accumu-
lating event point features inside its corresponding voxel.
(iii) We utilize the EV-VGCNN for sequentially aggregat-
ing each vertex’s features to generate global representations.
In the following, we detail two crucial components in our
learning architecture sequentially, including the graph con-
struction (Sec. 3.1) and the EV-VGCNN (Sec. 3.2).

3.1. Graph construction

In this part, we build a directed graph G =
{
V, E

}
,

where V =
{
1, ..., Np

}
and E represent vertices and edges

respectively. Each vertex Vi has two attributes which are the
spatio-temporal coordinate Ui ∈ R1×3 and the feature vec-
tor Fi ∈ R1×D. As the network EV-VGCNN is capable of
finding neighbors and calculate edges’ weights for vertices,
we only need to determine the coordinate and features of
each vertex in the graph construction stage.
Voxelization. Event streams can be expressed as a 4D tu-
ple: {

ei
}
N

=
{
xi, yi, ti, pi

}
N
, (1)

where ei is a single event. The first two dimensions xi

and yi are constrained with the range of the spatial reso-
lution (

{
H,W

}
) of event cameras and ti is the timestamp

when the event is triggered. Hence, (xi, yi, ti) represents
the spatio-temporal coordinate of an event, and the last di-
mension pi can be seen as the attribute. Given an event
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Figure 4. Structure of the MFRL and its base component SFRL. (a) MFRL: The MFRL is composed of two SFRL modules and a shortcut
connection, in which the two SFRL modules are to encode features from adjacent and distant neighbor vertices respectively. This design
allows us to explore motion and spatial messages behind event signals flexibly.

⊕
: element-wise addition. (b) SFRL: This module realizes

the Eq. (4) and Eq. (5) using neural networks. Particularly, the SFRL module takes vertices with their coordinates and features as input.
For each vertex, the SFRL builds edges between the vertex and its Nneigh neighbors, computes the scoring matrix for its neighbors then
aggregates the features from neighbors using the matrix to obtain the representation of this vertex.

⊗
: matrix multiplication.

stream, we can subdivide the 3D x-y-t space into voxels,
as shown in Fig. 3 (a). Considering the value discrepancy
between (xi, yi) and (ti), we first normalize the time di-
mension with a compensation coefficient A using:

{
ti
}
N

=

{
ti − t0

}
N
×A

tN−1 − t0
. (2)

After normalization, event signals encompass 3D space
with range H,W,A along the x, y, t axes respectively.
Then, we voxelize this 3D space with the size of each voxel
as vh, vw and va. The resulting voxels in spatio-temporal
space is of size Hvoxel = H/vh, Wvoxel = W/vw and
Avoxel = A/va, where each voxel may contain several
events. In this work, we refer voxel locations to define the
coordinate of each vertex in the graph. Accordingly, the co-
ordinate of i-th vertex Ui = (xv

i , y
v
i , t

v
i ) is with the range of{

Hvoxel,Wvoxel, Avoxel

}
. For simplicity, we assume that

H,W,A are divisible by vh, vw and va.
Vertex selection. In practice, even though we only con-
sider non-empty voxels as vertices, there are still tens of
thousands of vertices that will be contained in a graph. Con-
structing a graph with all these vertices imposes a substan-
tial computational burden. In addition, due to noise points
(also known as hot pixels) produced by event cameras typ-
ically occurs isolated without any connections with other
events, plenty of vertices may only be composed of single or
a few noise points only. Accordingly, taking these uninfor-
mative vertices as input would inevitably introduce interfer-
ence to the whole learning system. Therefore, we propose
to keep only representative vertices for graph construction.
To this end, we adopt a simple yet effective selection strat-
egy, which is to find Np vertices with the largest number
of event points inside and feed them into the learning sys-
tem. On the one hand, this selection strategy can work as
a noise filter for input data purification. On the other hand,

this procedure can help us save computational costs. Please
refer to our supplementary material for more comparisons
with different selection approaches.
Feature calculation for vertices. The performance of
graph-based neural networks heavily relies on the quality of
each vertex’s input features. Since each vertex in our graph
contains several event points inside, an appropriate method
to encode the features for these points is required. Event
streams can be seen as a 2D video recorded asynchronously.
As an event voxel (vertex) is generally with a short time
span, we think it is rational to represent the 2D semantics
of voxels simulating the imaging principle of the traditional
cameras. That is, accumulating event points into 2D frame
patches along the time axis. Particularly, given a graph with
vertices

{
Vi

}
Np

and coordinates
{
(xv

i , y
v
i , t

v
i )
}
Np

, we can

attain 2D features F2d
i ∈ R1×vh×vw of its i-th vertex Vi as

formulated in Eq. (3).

F2d
i (x, y) =

Nv∑
i

pini δ(x− xin
i , y − yini )tini , (3)

where Nv denotes the number of events inside the vertex Vi.
For each internal event, its coordinate (xin

i , yini , tini ) is con-
strained with the size of voxels (

{
vh, vw, va

}
). By linearly

integrating the events w.r.t their temporal coordinates and
polarities, we want to encode the 2D semantics of each ver-
tex while retaining temporal (motion) cues to a certain ex-
tent [19,49,51]. Eventually, we flatten the resulting 2D fea-
tures

{
F2d

i

}
Np

to obtain feature vectors
{
Fi

}
Np

∈ RNp×D

of all vertices in the graph, where D = vhvw.

3.2. EV-VGCNN

The proposed learning architecture comprises three main
components: the multi-scale feature relational layer, the
graph pooling operation, and the classifier. In this section,
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Figure 5. An intuitive illustration of how the MFRL aggregate fea-
tures for a vertex from its adjacent and distant neighbors. For a
vertex (the red point) in our graph, we firstly determine its Nadj

neigh

(blue points) and Ndis
neigh (yellow points) neighbors w.r.t dis-

tances. Then, we aggregate features from these neighbors utilizing
two independent network branches, where yellow arrows and blue
arrows represent learned weights from two SFRLs.

we show how to design them and assemble these modules
into the EV-VGCNN.
Multi-scale feature relational layer (MFRL). Unlike
the traditional 3D point clouds whose coordinates only ex-
press geometric messages, event data contains two different
types of cues, i.e., 2D spatial messages, and motion infor-
mation. For a vertex in the event-based graph, its adjacent
neighbors usually carry local spatial cues. In contrast, its
distant neighbors are more likely to comprise much motion
information. Notably, though adjacent and distant neigh-
bors carry motion and spatial cues simultaneously in most
cases, the motion and spatial variances between a vertex and
its adjacent and distant neighbors are different, i.e., adjacent
neighbors hold small and local variance while distant neigh-
bors carry more global changes. Given this disparity, it is
difficult to use a shared CNN branch to learn all neighbors.
Inspired by the multi-scale learning strategy in [39], we in-
troduce the MFRL module to extract motion and semantic
messages from vertices distinguishably depending on the
distance between vertices and their neighbors. As shown
in Fig. 4 (a), the MFRL consists of one shortcut connec-
tion and two single-scale feature relational layers (SFRL) to
extract correlations from adjacent and distant neighbors re-
spectively. More specifically, for a vertex, we define Nadj

neigh

and Ndis
neigh as the numbers of its adjacent and distant neigh-

bors, respectively. The results obtained from these three
branches are then aggregated as the output. We intuitively
illustrate this learning process in Fig. 5.

We then detail how to design the SFRL module. In con-
trast to aggregating neighbors’ features only using pooling
operations like PointNet++ [39], we introduce a scoring ma-
trix computed with correspondence to spatio-temporal rela-
tionships between each vertex and its neighbors to achieve
feature aggregation attentively. In specific, through the
construction procedure depicted in Sec. 3.1, we have ob-
tained features (F) and coordinates (U) of vertices (V) in
the graph. The SFRL takes these features and coordinates
as inputs and is entailed to accomplish three functions: (i)
building connections among vertices with edges, (ii) com-
puting the scoring matrix for neighbors of the vertex, and

(iii) integrating features from the neighborhood for each
vertex. As shown in Fig. 4 (b), to achieve these goals, we
first utilize the K-Nearest Neighbor algorithm (K-NN) to
determine Nneigh neighbors for each vertex and link them
with edges [16]. The graph includes a self-loop, meaning
that each vertex also links itself as a neighbor [25]. Then,
for the i-th vertex Vi with edges Ei (Ei ∈ R1×Nneigh ) and
coordinates Ui, the scoring matrix can be calculated using:

Mi = Q( SG
j:(i,j)∈Ei

(gi,j);Wm), (4)

where gi,j = [Ui,Ui − Uj ] ∈ R6 represents the geomet-
ric relation between a vertex and its neighbors. [·, ·] de-
notes the concatenation of two vectors. SG(·) is a func-
tion that stacks all geometric relations of the vertex’s neigh-
bors (

{
gi,j : (i, j) ∈ Ei

}
) and its output is in RNneigh×6. Q

is parameterized by Wm and comprises a linear mapping
function, a Batch Normalization, and a Tanh function to
explore geometric messages from neighbor vertices. The
output Mi ∈ RNneigh×Nneigh is the scoring matrix for
Vi, which aims to re-weight features from its neighbors
based on spatio-temporal relationships when aggregating
the neighbors’ features for the central vertex. Finally, we
formulate the function of aggregating features from neigh-
bors into the vertex as:

F
′

i =
∑

Mi(H( SF
j∈Ei

(Fj);Wf )), (5)

where SF (·) is a function that stacks all features (Fj ∈
R1×Din ) from neighbor vertices and its output is in
RNneigh×Din . H is a non-linear transform function with
parameters Wf and consists of a linear mapping function,
a Batch Normalization and a ReLU. The function H takes
the stacked features as input and produces transformed fea-
tures in RNneigh×Dout . After that, the scoring map Mi is
utilized to re-weight neighbors’ features. We then apply a
summation operation on the feature space over all neighbors
to generate the aggregated features F ′

i ∈ R1×Dout for the
i-th vertex.
Graph pooling operation. The pooling operation is to
reduce the vertex number in the network progressively. The
pooling layer in 3D vision models commonly aggregates
local messages of each point and then selects a subset of
points with the dominant response for the following pro-
cessing. In our case, the feature aggregation step has been
fulfilled by the MFRL module. Hence, in our pooling lay-
ers, we only need to randomly select vertices from the graph
to enlarge the receptive field for the feature aggregation of
each vertex. We denote the output number of vertices of the
graph pooling operation as Nr.
Classifier. Following the operation used in [38, 39], we
apply symmetry functions on the high-level features to
achieve a global representation for the input. Specifically,
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we use max and average pooling operations to process these
high-level features respectively, and then concatenate them
to form a one-dimensional feature vector. Finally, we feed
the global feature vector to three fully connected layers for
classification.
Network architecture. The structure of EV-VGCNN is
the same for all datasets. As shown in Fig. 3 (b). We embed
four relational learning modules (MFRL) into our model to
obtain the global representation of an event stream. Besides,
we apply the pooling operation after each of the first three
MFRLs. We further apply a non-linear block consisting of
a linear layer, a Batch Normalization, and a ReLU after the
fourth MFRL and then feed the output feature of this non-
linear block to the classifier.

4. Experimental Evaluation
In this section, we use several benchmark datasets to

evaluate the proposed method on the classification accuracy,
the model complexity (measured in the number of trainable
parameters), and the number of floating-point operations
(FLOPs). Also, please refer to the supplementary material
for details about the effectiveness of our method on the ac-
tion recognition task.

4.1. Datasets

We validate our method on five representative event-
based classification datasets: N-MNIST (N-M) [34], N-
Caltech101 (N-Cal) [15, 34], CIFAR10-DVS (CIF10) [27],
N-CARS (N-C) [44] and ASL-DVS (ASL) [2]. In general,
there are two alternatives to generate these datasets. Par-
ticularly, N-M, N-Cal and CIF10 are obtained by recording
traditional images displayed on monitors with fixed motion
trajectories. This recording method may suffer from arti-
ficial noise introduced by the shooting and emulation en-
vironments. On the contrary, N-C and ASL are recorded
in the real-world environment using event cameras, which
means that the evaluation results on these two datasets
should better reflect the performance of event-based models
in practice. We train models separately for each dataset and
evaluate the performance of our approach on their testing
sets. For those datasets (N-Cal, CIF10, and ASL) without
official splitting, we follow the experiment setup adopted
in [3, 44], in which 20% data are randomly selected for
testing, and the remaining is used for training and valida-
tion. We average over five repetitions with different random
seeds as our reported results.

4.2. Implementation details

Graph construction. We fix the compensation coeffi-
cient A for all datasets as 9 to normalize event data. We
set the input vertex number Np as 512 for N-MNIST and
ASL as the objects in them are small size, set Np as 1024
for N-CARS, and Np = 2048 for more complex datasets

Table 1. Comparison of the classification accuracy between ours
and other point-based methods. † Using our proposed representa-
tion as input. Blue and green color indicate the first and second
best performance.

Method N-M N-Cal N-C CIF10 ASL
H-First [35] 0.712 0.054 0.561 0.077 -
HOTS [26] 0.808 0.21 0.624 0.271 -
HATS [44] 0.991 0.642 0.902 0.524 -
EventNet [43] 0.752 0.425 0.750 0.171 0.949
PointNet++ [47] 0.841 0.503 0.809 0.465 0.947
PointNet++ [47]† 0.955 0.621 0.907 0.533 0.956
RG-CNNs [3] 0.990 0.657 0.914 0.540 0.901
Ours (w/ SFRL) 0.992 0.737 0.944 0.652 0.962
Ours 0.994 0.748 0.953 0.670 0.983

N-Cal and CIF10. According to the spatio-temporal dis-
crepancy across different datasets, we set the voxel size as
(vh, vw, va) = (2, 2, 1) for N-MNIST, (7, 7, 1) for CIF10
and (5, 5, 3) for other datasets. Please refer to supplemen-
tary materials for details about voxel size settings.
Network. The values of Nadj

neigh and Ndis
neigh for all MFRL

modules are fixed as 10 and 15 respectively. We set the
output vertex number of three graph pooling operations as
896, 768, and 640 for N-Cal, N-C, and CIF10 datasets. For
the other two datasets, which only take 512 vertices as in-
put, we remove the pooling operation between MFRL mod-
ules. We add dropout layers with a probability of 0.5 af-
ter the first two fully-connected layers in the classifier to
avoid overfitting. Each fully-connected layer is followed
by a LeakyReLU and a Batch Normalization except for the
prediction layer.
Training. We train our model from scratch for 250
epochs by optimizing the cross-entropy loss using the SGD
[45] optimizer (except for the ASL) with a learning rate of
0.1 and reducing the learning rate until 1e-6 using cosine
annealing. As for the ASL, we experimentally find that us-
ing the Adam [24] optimizer with a learning rate of 0.001
and decaying the learning rate by a factor of 0.5 every 20
epochs contributes to better performance. The batch size
for training is set to 32 for all datasets.

4.3. Classification accuracy

In this section, we report the comparison to two main-
stream event-based object classification solutions, namely
point-based and frame-based methods, to show the advan-
tages of our model comprehensively.
Comparison with point-based methods. As our pro-
posed work also falls under the category of point-based
methods, we firstly compare it to SOTA point-based mod-
els. As shown in Table 1, the proposed method outper-
forms SOTA point-based models consistently. Especially,
our approach improves the model’s performance by a large
margin on four challenging datasets such as N-Cal, N-C,
CIF10, and ASL. Surprisingly, when alternative the input
from point-wise to voxel-wise representation, the method
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Table 2. Comparison of different event-based classification mod-
els on the model complexity (#Params) and the number of FLOPs.
† GFLOPs = 109 FLOPs. ‡ Using our proposed representation as
input. ¶T(CPU) represents that both input generation and infer-
ence process run on CPU. T(GPU) means that input construction
is on CPU and network inference is on GPU.

Method #Params GFLOPs† T(CPU)¶ T(GPU)¶
EST [19] 21.38 M 4.28 27.1 ms 6.41 ms
M-LSTM [5] 21.43 M 4.82 34.8 ms 10.89 ms
MVF-Net [11] 33.62 M 5.62 42.5 ms 10.09 ms
AsyNet [30] 3.69 M 0.88 - -
EventNet [43] 2.81 M 0.91 9.3 ms 3.35 ms
PointNet++ [47] 1.76 M 4.03 174.3 ms 103.85 ms
PointNet++‡ [47] 1.77 M 4.17 178.4 ms 107.97 ms
RG-CNNs [3] 19.46 M 0.79 1236 ms -
Ours 0.84 M 0.70 26.1 ms 7.12 ms

in [47] achieves a significant performance gain, suggesting
the effectiveness of our newly introduced event-based repre-
sentation. Furthermore, Table 2 illustrates that our method
shows huge advantages on the model and computational
complexity, e.g., our model can achieve 20 times parameter
reduction and are with fewer FLOPs compared to the SOTA
method RG-CNNs. We attribute the two-sided improve-
ment to two designs in our model. (i) Our graph is con-
structed by setting an event voxel instead of a single event
point as the vertex. This modification retains more power-
ful regional semantics than other strategies. The resulting
compact and informative inputs largely ease the following
network to learn distinguishable features in various scenar-
ios. (ii) The MFRL module in our network can exploit se-
mantics and motion cues from each vertex distinguishably
concerning its distances to neighbors, allowing us to con-
struct a shallow and lightweight network while achieving
SOTA accuracy.

Moreover, we introduce a baseline model which replaces
the MFRL with the SFRL module in the EV-VGCNN. In
contrast to learning local and distant cues discriminatively,
all neighbors of a vertex are equally treated in the SFRL
to learn their correlations with shared parameters. For a fair
comparison, we set Nneigh for each SFRL as the summation
of Nadj

neigh and Ndis
neigh in MFRL. As shown, the MFRL con-

sistently improves the performance on listed datasets, sug-
gesting that the adopted mutli-scale learning strategy can ef-
fectively enhance the discriminativeness of features by con-
sidering the spatial-temporal variation across neighbors.
Comparison with frame-based methods. To have a
comprehensive analysis, we also compare our method with
several representative frame-based approaches as shown in
Table 3. In particular, MVF-Net has achieved SOTA perfor-
mance on different classification datasets. From the table,
we can see that EST, M-LSTM, and MVF-Net have been
consistently improved after using pretrained networks, es-
pecially on two datasets (N-Cal, CIF10) converted from tra-
ditional images. This is because that the frame-based classi-

Table 3. Comparison of the classification accuracy between ours
and frame-based methods. † Results are acquired by using the
classifier with Resnet-34 [21] as the backbone. ‡ We train these
approaches from scratch and adopt the same training and testing
sets used in this paper. Blue and green color indicate the first and
second best performance.

Method N-M N-Cal N-C CIF10 ASL
Pretrained on ImageNet [9]

EST [19] 0.991 0.837 0.925 0.749 0.991
M-LSTM [5] † 0.989 0.857 0.957 0.730 0.992
MVF-Net [11] 0.993 0.871 0.968 0.762 0.996

Without pretraining
EST [19] ‡ 0.990 0.753 0.919 0.634 0.979
M-LSTM [5] ‡ 0.986 0.738 0.927 0.631 0.980
MVF-Net [11] ‡ 0.981 0.687 0.927 0.599 0.971
AsyNet [30] - 0.745 0.944 0.663 -
Ours 0.994 0.748 0.953 0.670 0.983

fication models can take advantage of the weights pretrained
on large-scale traditional image datasets (e.g., ImageNet)
[41]. However, without utilizing the prior knowledge from
conventional images, our approach can still achieve com-
parable accuracy to these frame-based methods on N-M,
N-C, and ASL datasets. More importantly, the proposed
method obtains better results on all evaluated datasets than
most frame-based methods trained from scratch. These
comparisons demonstrate that our architecture and designs
are greatly suitable for extracting distinguishable represen-
tations from event data.

4.4. Complexity and computation analysis

We follow the calculation method described in [3,20,22,
32] to compute FLOPs for these methods. Since models’
architecture may vary when evaluated on different datasets,
we obtain results from these models on the same dataset N-
Cal. The model complexity and the number of FLOPs of
these frame-based methods are listed in Table 2, in which
our approach is capable of performing classification with
lower computational cost and fewer parameters. Compared
to frame-based solutions which introduce much redundant
information, our graph network learns decisive features di-
rectly from the sparse inputs, thus effectively relieving the
learning pressure of the neural network. For instance, the
18-channel frame-based representation of samples from the
N-Cal dataset with a spatial resolution of 180× 240 used in
[19] has 777600 input elements, while our proposed graph
only contains 2048 ones.

In addition, we compute the averaged computation time
for processing each sample in the dataset N-C and list the re-
sults in Table 2. We implement various methods on a work-
station with a CPU (Intel i7), a GPU (GTX 1080Ti), and
64GB of RAM. From the table, we can find that the process-
ing speed of our lightweight model is the same level with
frame-based methods (e.g. EST). However, our method
shows weakness in computation speed compared to Event-
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Table 4. Impact of different value of Nadj
neigh and Ndis

neigh on the
performance evaluated on the N-Cal dataset.

Value
Variants A B C D E F G
Nadj

neigh 10 10 10 5 20 5 20
Ndis

neigh 15 10 20 15 15 20 5
Accuracy 0.748 0.742 0.751 0.737 0.740 0.743 0.730

Net [43], which is developed on PointNet. We attribute this
phenomenon to two points. (i) The integration operations
for graph construction cost much computation time. (ii)
The neighbor searching and feature embedding functions
that do not exist in EventNet, though enlarge our model’s
performance by a large margin, also increase our computa-
tion time. Considering the low computational complexity
(FLOPs) of our approach, we believe that there will be a
large room for our method to speed up with the help of cod-
ing optimization. Moreover, though our approach cannot
reach the temporal resolution of event data, the processing
rate (only need 7.12 ms for each sample, which is equivalent
to 140 Hz as frame-rate) is fast enough for most high-speed
applications.

4.5. Ablation study

In this part, we conduct ablation studies to verify advan-
tages of our voxel-wise graph representations and discuss
the impact of hyper-parameters Nadj

Neigh and Ndis
Neigh to the

system. Also, please refer to the supplementary material for
details about the robustness of our model to the input vertex
density.
The value setting for Nadj

Neigh and Ndis
Neigh. In this part,

we set up a series of experiments on the N-Cal dataset to
discuss how the variation of Nadj

Neigh and Ndis
Neigh affects the

final performance of our model. Results of the controlled
experiment are listed in Table 4. Comparing the settings A,
B and C, we can find that when Nadj

Neigh is fixed, a larger
value of Ndis

Neigh results in better performance. Intuitively,
when we involve more distant neighbors to aggregate the
features of a vertex, a denser neighborhood, carrying more
global messages and cross-vertex spatio-temporal relation-
ships, is encoded to aggregate the features for the central
vertex. Differently, when we fix the Ndis

Neigh and change the
value of Nadj

Neigh (e.g., settings A, D, and E) from 10 to 20,
the final performance drops considerably. We argue that this
is due to only a small number of adjacent neighbors being
informative to characterize the local semantic information
of a vertex. If a considerable part of adjacent neighbors
is actually with large distance, then these “adjacent” neigh-
bors are difficult to characterize this vertex’s local semantics
and tend to be interference. For the value chosen of these
two hyper-parameters in this work, we firstly fix the sum-
mation of neighbors as 25 considering computational bud-
get, then experimentally set Nadj

Neigh and Ndis
Neigh as 10 and

15 respectively according to the comparison among settings

Table 5. Comparison between voxel-wise and point-wise graph
construction strategies with the same network architecture.

Vertex type #Vertex Accuracy GFLOPs
Original events 2048 0.565 0.63
Original events 4096 0.601 0.66
Original events 8192 0.619 0.72
Event voxels (Ours) 2048 0.748 0.70

A, F and G.
Comparison of graph construction strategies. To vali-
date that our proposed voxel-wise graph is more effective in
semantics encoding over point-wise inputs, this section per-
forms comparisons of our voxel-wise graph to point-wise
graph [3], which is constructed by selecting a random subset
of event data as vertices and assigning the polarity of events
to vertices as their features. We feed these two graphs to
the same model EV-VGCNN and test their performance on
the N-Cal dataset. The results in Table 5 show that with
the same number of vertices (2048) inside, our graph con-
struction strategy contributes to a significant accuracy gain,
indicating that it encodes more informative features from
the event data than the point-wise graph. We then increase
the vertex number of the point-wise graph to 8192, which is
much larger than ours. Even so, our method still has a con-
siderable accuracy leading. We credit these superiorities to
that our voxel-wise graph construction strategy enables the
vertex to encode local correlations among points, thus car-
rying a more powerful representation for a point region. In
contrast, although the compared point-wise graph reduces
the complexity of the input, it leads to a severe loss of local
2D appearance and motion information in each vertex.

5. Limitation
First, this study is based on the assumption that the input

event data to the model always relate to objects. When this
assumption does not hold, our neighbor searching strategy
in Euclidean space may not be able to find proper neighbors
for vertices. Second, the potential of our model has not been
fully facilitated at the current stage due to the lack of a prior
knowledge support from large datasets. Third, the adopted
synchronous processing pattern can normally provide more
robust global features compared to asynchronous methods
[30, 43] while inevitably sacrifice real-time performance.

6. Conclusion
In this work, we introduce a novel graph-based learn-

ing framework for event data. The proposed voxel-wise
graph construction method retains more local information
than previous point-wise methods while maintaining the
sparsity of event data. Moreover, we tailor a MFRL mod-
ule to explore spatial-temporal relationships between ver-
tices and their neighbors discriminatively. Extensive exper-
iments show the advantages of our designs, as well as the el-
egant improvement on both accuracy and model complexity
achieved by the proposed lightweight EV-VGCNN.
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