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Figure 1. The inference examples of different recurrent neural networks. From left to right: (a) source (red) and target (blue) input
point clouds from lidarKITTI scene flow dataset [23], (b) FlowStep3D that indirectly introduces Laplacian constraints on the optimization
objective [16], (c) our method that directly introduces multi-body rigidity constraints, and (d) our method that introduces an error awarded
optimization (EAO) strategy based on (c). Interesting artifacts are circled and zoomed-in at the bottom.

Abstract

Previous LiDAR scene flow estimation methods, espe-
cially recurrent neural networks, usually suffer from struc-
ture distortion in challenging cases, such as sparse reflec-
tion and motion occlusions. In this paper, we propose a
novel optimization method based on a recurrent neural net-
work to predict LiDAR scene flow in a weakly supervised
manner. Specifically, our neural recurrent network exploits
direct rigidity constraints to preserve the geometric struc-
ture of the warped source scene during an iterative align-
ment procedure. An error awarded optimization strategy
is proposed to update the LiDAR scene flow by minimizing
the point measurement error instead of reconstructing the
cost volume multiple times. Trained on two autonomous
driving datasets, our network outperforms recent state-of-
the-art networks on lidarKITTI by a large margin. The
code and models will be available at https://github.
com/gtdong-ustc/LiDARSceneFlow .

1. Introduction
LiDAR scene flow estimation is a fundamental task in

3D scene understanding, which is vital to autonomous driv-
ing and many other computer vision applications. Com-
pared with optical flow estimation, which focuses on fea-
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ture matching for ordered RGB data, scene flow estima-
tion poses an extra challenge as it involves aggregating un-
ordered data from the LiDAR sensor.

To deal with unordered data, several convolutional neu-
ral networks (CNNs) for scene flow estimation have been
proposed. In term of convolution operation, these CNN-
based methods can be divided into two categories, 2D con-
volution based methods [1, 11, 32] and 3D convolution
based methods [16, 19, 26, 35, 36]. Typically, the 2D con-
volution based methods convert 3D point clouds into 2D
representations, e.g. depth map and bird’s-eye-view map,
which inevitably brings in quantification errors. With re-
cent advances in point cloud convolution [27], methods uti-
lizing the 3D convolution operations are proposed to di-
rectly operate unordered point cloud data and achieve suc-
cess [16, 19, 34–36].

HPLFlowNet [10] and FlowNet3D [19] introduced dif-
ferent 3D convolutions to operate the unordered point
clouds directly. They both employed an end-to-end network
to learn deep hierarchical features of point clouds and cor-
relation embeddings for scene flow estimation. For small
displacements between two consecutive point clouds, these
works are effective but not satisfying in large displacements.
Then PointPWC-Net, utilizing a coarse-to-fine strategy, was
proposed to handle large displacements [36]. The scene
flow is first computed at low resolution to estimate large
displacements and then gradually refined at high resolution.
One drawback of PointPWC-Net lies in the error accumula-
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Figure 2. The overview of our scene flow estimation pipeline. The
background masks, SBG and TBG, are obtained from a pre-trained
segmentation network [8]. For implementing direct multi-body
rigidity constraints, the predicted scene flow is converted to the
rigid flow and mixed with the rigid flow as the hybrid flow, which
is the input of next iteration. In error awarded optimization, a
GRU-based recurrent neural network takes a point-metric error to
guide the iterative updating of the predicted scene flow.

tion in the early step. To tackle this problem, recent meth-
ods employ a gated recurrent unit (GRU) based optimiza-
tion architecture to update the predicted scene flow itera-
tively [19, 35]. However, this iterative mechanism suffers
from structure distortion and high time consumption.

To prevent structure distortion, previous works intro-
duced indirect constraints into iterative optimization, in the
form of adding regularization terms in the objective func-
tion of the recurrent neural network, such as Laplacian reg-
ularization [16]. However, the recurrent network with in-
direct constraints still produces scene flow that breaks the
geometric structure in some cases. Fig. 1(b) shows the
structure distortion generated by FlowStep3D [16]. Differ-
ent from indirect constraints that adding the regularization
term, we bring in direct multi-body rigidity constraints to
the recurrent neural network by converting the scene flow to
rigid flow via a differentiable converter. The explicit intro-
duction of multi-body rigidity constraints alleviates struc-
ture distortion.

Although the employment of direct rigidity constraints
preserves the object structure, the performance of object
aligning is not satisfying. Previous optimization-based
methods tackle the misalignment by re-encoding the warped
source frame to reconstruct the cost volume, which is time-
consuming. Inspired by the Iterative Closest Point (ICP)
algorithm [4], we propose an error awarded optimization
strategy that minimizes a point-metric error to iteratively
update the predicted scene flow until obtaining the perfect
alignment results. Specifically, we employ a GRU-based
recurrent network to adopt the nearest neighbor error [25]
between the warped source frame and target frame as the
optimization objective in the inference. Fig. 1(c,d) show
the inference examples of our proposed framework with di-
rect rigidity constraints and the error awarded optimization.

In Fig. 2, we show the overview of our scene flow es-
timation pipeline, which provides the abstraction of error
awarded optimization, direct multi-body rigidity constraints
and the pretrained segmentation network. Similar to [8], for
training our proposed network, we don’t need the ground-
truth scene flow. The essential supervision is the binary
background mask and ego-motion. In other words, our net-
work is trained in a weakly supervised manner. To validate
the effectiveness of the proposed network, we train the net-
work on two datasets SemanticKITTI and Waymo Open, and
test on lidarKITTI with and without ground points.

The main contributions are summarized as follows:

• We introduce direct multi-body rigidity constraints to a
GRU-based recurrent neural network for LiDAR scene
flow estimation.

• We propose an effective error awarded optimization
strategy that updates the scene flow by minimizing a
point-metric error instead of reconstructing cost vol-
ume multiple times.

• The proposed network is trained in a weakly super-
vised manner. Experimental results demonstrate that
our method outperforms state-of-the-art scene flow es-
timation methods by a large margin.

2. Related Work
Point cloud based scene flow estimation. Recently,
learning-based methods made great progresses in the field
of point clouds [18,27,37], which inspires the application in
point cloud based scene flow estimation. FlowNet3D [19]
successfully extended FlowNet [6] by directly operating
point clouds with PointNet++ [27]. HPLFlowNet [10] re-
arranged points into a permutohedral lattice [15] introduced
in SplatNet [28] to apply bilateral convolution layers [12],
which led to efficient and robust non-rigid 3D flow compu-
tation. Mittal et al. presented two self-supervised losses to
allow the end-to-end training of the deep neural network on
large-scale, unlabeled autonomous driving datasets [25]. In-
spired by the classical pyramid networks [29], PointPWC-
Net [36] designed a point-based cost volume over un-
ordered point clouds layer in a coarse-to-fine manner and
showed impressive results on synthetic datasets in both su-
pervised and self-supervised manners. Different from the
aforementioned methods, FLOT [26] proposed a simple
correspondence-based end-to-end scene flow network and
adopted the optimal transport to find correspondences.
Constraints for flow estimation. There are attempts to
estimate flow by extracting physical priors, for example,
multi-body rigidity and local smoothness. In the early stage,
these works utilized the motion characters to separate mov-
ing objects [5, 14]. Golyanik et al. used rigidity constraints
over segmentation of RGBD-frames [9], while Vogel et al.
modeled scene flow using piece-wise rigidly moving pla-
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nar patches, i.e. local smoothness [33]. Then for further
exploiting the multi-body rigidity of motion [20], Ma et
al. made use of depth and flow predictions from a stereo
RGBD setup in an optimization framework to obtain the
3D motion of each instance [21]. However, this method
needs instance segmentation as inputs, which is difficult to
achieve even for the state-of-the-art segmentation methods.
Therefore, Gojcic et al. proposed a weakly supervised train-
ing strategy for rigid scene flow estimation, which relaxes
the requirement for dense scene flow supervision with sim-
ple binary background segmentation mask and ego-motion
annotations [8]. Our proposed method expands the frame-
work of [8] by recurrently updating the scene flow predic-
tion, and achieves outstanding alignment with a lightweight
recurrent network. In contrast, RAFT-3D [32] iteratively
updated the rigid-motion embeddings during inference, but
only extended RAFT [31] from optical flow estimation to
scene flow estimation with an ordered RGBD as inputs.
With the same strategy as RAFT-3D, Baur et al. [1] rebuilt
RAFT [31] to perform iterative scene flow estimation and
motion segmentation on the PointPillar-based [17] bird’s-
eye-view feature representations of point clouds.
Recurrent updating for flow estimation. Recent works
utilize a point cloud convolution-based recurrent network to
update the predicted scene flow through iterations [16, 35].
Inspired by RAFT [31], PV-RAFT [35] estimated the point-
voxel correlation fields to integrate two types of correla-
tions and captured all-pair relations, which made the it-
erative optimization of scene flow more accurate and ef-
ficient during iterations. Different from PV-RAFT, Flow-
Step3D [16] constructed an all-to-all correlation field at the
single low resolution and updated this field at each iteration
by re-coding the warped source frame. However, the point
cloud convolution-based recurrent network suffers from ob-
ject structure distortion, even though enforcing a strong reg-
ularization term in the loss function. This observation mo-
tivates us to exploit direct rigidity constraints for the robust
iterative optimization of scene flow estimation.

3. Problem Definition

Given two consecutive point clouds, the source point
cloud X = {xi ∈ R3}Nx

i=1 and the target point cloud
Y = {yj ∈ R3}Ny

j=1, we define the scene flow between two
point clouds as F = {fi}Nx

i=1, where Nx and Ny are num-
bers of points in the point clouds, fi ∈ R3 represents the
motion vector that aligns a point xi ∈ X towards its cor-
responding location x

′

i in the other point cloud. It should
be noted that the number of points in the source may dif-
fer from the number of points in the target, i.e. Nx and
Ny are not necessarily equal. In general, the scene flow
provides soft correspondences between two consecutive Li-
DAR point clouds. However, because of sparse reflection

and motion occlusions existing in the LiDAR data, it is dif-
ficult to obtain accurate dense scene flow.

To address this problem, we assume that the motion of
two consecutive point clouds, i.e., scene flow F , is com-
posed of ego-motion and multi-object motions, following
[8]. Specifically, the points in the source point cloud can be
clustered into K+1 abstractions, each of which has a point
mask Mk. Points belonging to the same abstraction share a
universal SE(3) transformation. We define a set of K + 1
abstraction transformations as T = {Tk ∈ SE(3)}Kk=0.
Among these transformations, the background determines
the ego-motion T0 ∈ T and the foreground objects deter-
mine the object-level motions T1, T2, ..., TK ∈ T . It should
be noted that not all the points in the source can be clustered
in an abstraction owning a rigid transformation. For those
points not having a rigid transformation, conventional scene
flow needs to be computed. The final predicted scene flow
is a hybrid flow, which is a mix of rigid flow and scene flow.

4. Method
We first process the source and target point clouds to

generate the abstraction masks, and then estimate the scene
flow with a recurrent neural network. The input of our re-
current work is the source point cloud, the target point cloud
and the abstraction masks of the source point cloud. The
output is the hybrid flow, which is a mix of scene flow and
rigid flow. As shown in Fig. 3, our iterative framework con-
sists of two stages, the initialization stage and the recurrent
updating stage. In the initialization stage, we calculate the
initial cost volume CV 0, hidden state h0, hybrid flow HF 0

and weight, which will be used for calculation in the recur-
rent updating stage. In addition, the initial hybrid flow is
generated for further refinement. In the recurrent updating
stage, we employ an error awarded GRU to update all the
variables and refine the hybrid flow. This stage will be con-
ducted multiple times to achieve better flow estimation. The
structures of these two stages are illustrated in Fig. 3. To
avoid confusion, we use the iteration subscript l = 0 for
the initialization stage and l = 1, 2, ..., L for the recurrent
updating stage. In the following, we will describe the gen-
eration of abstraction masks and details of important com-
ponents in the two stages.

4.1. Abstraction Mask Generation

We first generate a binary background mask from a
pre-trained segmentation network [8] that is trained on
SemanticKITTI. The details about the binary background
mask for LiDAR point cloud datasets are available in our
supplement. Then, we apply the DBSCAN clustering algo-
rithm [7] to the foreground points and obtain a set of binary
abstraction masks, each of which refers to a foreground ob-
ject. Assume that there are in total K + 1 abstractions in-
cluding the background, the set of abstraction masks can be
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Figure 3. The architecture of our recurrent neural network. We divide the forward inference of our method into two stages, i.e. initialization
and recurrent updating. In the initialization stage, we obtain the initial hybrid flow HF 0. While turning to recurrent updating, we introduce
a point-metric error to update the initial hybrid flow without recalculating the cost volume multiple times.
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Figure 4. Rigid flow converter. ‘Group’ operation splits the
variable into several abstraction with the guidance of abstraction
masks M. ‘Compose’ means recombine the obtained abstraction
transformations into a complete rigid flow.

denoted as M = {Mk}Kk=0, which contains the background
mask and the foreground object masks.

4.2. Initialization

Feature extractor. A feature extractor with shared weights
is utilized to extract features from both source and target
point clouds. The feature extractor is consisted of two
set conv layers proposed by FlowNet3D [19] and utilizes
the furthest point sampling algorithm for down-sampling
point clouds.
Initial cost layer. The initial cost layer calculates an all-to-
all correlation field at low resolution and then aggregate the
correlation field to construct an initial cost volume CV 0.
The initial cost volume builds the global correlations be-
tween the source and target point clouds. Details of the
feature extractor and initial cost layer are available in the
supplement.
Initial heads. Based on the initial cost volume, we in-
troduce two initial heads, a flow head and a weight head,
to compute the initial scene flow and weight, respectively.
The flow head comprises two one-dimensional convolu-
tional layers and takes the initial cost volume CV 0 as input
to generate the inital scene flow F 0. In practice, due to the
sparse reflection and motion occlusions, not every point has
its correspondence. Therefore, we employ a weight head to
indicate whether the soft correspondences, denoted as F 0,

are inliers or outliers. Unlike the flow head, the weight head
additionally introduces the flow and its corresponding fea-
ture embedding as inputs to generate the initial weight W 0.
Rigid flow converter. In order to introduce direct rigidity
constraints, we employ a non-parametric converter to pre-
serve the object structure in the warped source scene during
iterations. The architecture of our rigid flow converter is
shown in Fig. 4. Specifically, we first utilize the abstraction
masks to split the scene into multiple abstractions, and then
employ the differentiable weighted Kabsch algorithm [13]
to calculate the transformations for each abstraction, pro-
ducing a set of abstraction transformations T = {Tk}Kk=0.
Finally, the rigid flow is obtained by composing T with the
guidance of M. Besides, the initial hybrid scene flow HF 0

is the mix of scene flow F 0 and rigid flow RF 0.

4.3. Recurrent Updating

Unlike the initialization stage, in order to generate ac-
curate scene flow prediction, we implement an optimizer
with an error awarded gated recurrent unit (EGRU) and
two residual heads. The optimizer updates the hybrid flow
through iterations. At each iteration, the optimizer updates
the variables as

HF l +∆F l+1 → F l+1,

W l +∆W l+1 → W l+1,

RFC(F l+1, σ(W l+1),M) → RF l+1,

RM ·RF l+1 + (1−RM) · F l+1 → HF l+1,

(1)

where ∆F l and ∆W l are the intermediate residuals com-
puted by the residual heads. The residual heads including
flow and weight head, don’t share parameters with the initial
heads in the initialization stage. They use the new hidden
state hl+1 as input instead of the initial cost volume CV 0.
The σ(·) is the sigmoid function that normalizes the weight
W l to the range [0, 1]. RFC means the rigid flow conver-
sion.
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Figure 5. Structure of the error awarded gated recurrent unit.

Error awarded gated recurrent unit. Inspired by the
ICP algorithm [3], our EGRU updates the previous hid-
den state by minimizing the point-metric error in infer-
ence. The point-metric error El measures the nearest neigh-
bor distance between two consecutive point clouds [25] at
{l + 1}-th iteration. Given a warped source point cloud
X l = {xl

i ∈ R3}Nx
i=1, which is calculated from previous it-

eration, and the target point cloud Y = {yj ∈ R3}Ny

j=1, the
nearest neighbor distance is computed between the warped
source point xl

i and its closest correspondences yj ∈ Y ,
i.e. El(xl

i) = ||xl
i − yj ||1, where || · ||1 is the L1 norm.

Additionally, the warped source point cloud is calculated as
X l = X +HF l. We take the point-metric error as the op-
timization objective to supervise the updating of the initial
hybrid flow, which makes our recurrent neural network lo-
cate the unaligned region and progressively refine the initial
hybrid flow through iterations.

We show the architecture of EGRU in Fig. 5. Three fea-
ture embedding modules, i.e., gW (·), gF (·), and gE(·), are
first employed to project weight W l, hybrid flow HF l, and
point metric error El into high-dimensional spaces. Then,
we define cl+1 as the concatenation of the initial cost vol-
ume CV 0, the low-dimensional variables and their cor-
responding high-dimensional feature representations. The
low-dimensional variables include the current point-metric
error El, the hybrid flow HF l and the weight W l. Finally,
given previous iteration hidden state hl, together with cur-
rent iteration information cl+1, our EGRU produces a new
hidden state hl+1. The calculations inside EGRU are as fol-
lows

zl+1 = σ(set convz([h
l, cl+1])),

rl+1 = σ(set convr([h
l, cl+1])),

h̃l+1 = tanh(set convh([r
l+1 ⊙ hl, cl+1])),

hl+1 = (1− zl+1)⊙ hl + zl+1 ⊙ h̃l+1,

(2)

where ⊙ is the Hadamard product, [·, ·] is the concatenation
operation and σ(·) is the sigmoid function. We obtain the
initial hidden state h0 by passing with the features of the
source point cloud X through two set conv layers.

The recurrent updating stage of our optimization archi-
tecture starts from the initial hybrid flow HF 0 to iteratively
update itself by minimizing a point-metric error and even-

tually achieves the final result, i.e., HF l → HF ∗. The
final hybrid flow is a combination of final scene flow and
rigid flow with the supervision of the rigidity mask RM ,
i.e., HF ∗ = RM ·RF ∗ + (1−RM) · F ∗.

4.4. Training Loss

To train our recurrent neural network, we unroll L itera-
tions and apply a loss function for each iteration prediction.
We define the overall loss function L as the sum of losses
at each iteration in the sequence, i.e., L =

∑L
l=1 Ll. Here,

Ll means the weakly supervised loss for constraining the
predicted scene flow F l and rigid flow RF l at l-th itera-
tion. The loss at each iteration consists of ego-motion loss,
rigidity loss and chamfer distance loss.
Ego-motion loss (Lego). We utilize an ego-motion error
Lego that measures the L1-discrepancy between the back-
ground points transformed with the estimated (Rego, tego)

and the ground-truth parameters (R̂ego, t̂ego). Mathemati-
cally, the ego-motion loss is formulated as

Lego =
1

NBG

NBG∑
j=1

∥(Regox
b
j + tego)− (R̂egox

b
j + t̂ego)∥1,

(3)
where NBG denotes the number of background points in

the source point cloud X .
Rigidity loss (Lrigid). The loss Lrigid computes the average
distance between warped source points by the scene flow
and the rigid flow for all the foreground points in the K ab-
stractions, which is formulated as

Lrigid =
1

K

K∑
k=1

1

Nk

Nk∑
j=1

∥Rkx
k
j + tk − (xk

j + fk
j )∥1, (4)

where Nk denotes the number of points in the k-th cluster
of the source point cloud X .
Chamfer distance loss (LCD). Following previous works
[16, 36], we introduce a two-way Chamfer Distance (CD)
across all the foreground points Xf , which is formulated as

LCD =
∑

x∈Xf
warp

min
y∈Y

∥x−y∥2+
∑
y∈Y

min
x∈Xf

warp

∥x−y∥2, (5)

where Xf
warp = Xf +HF f .

The overall loss at each iteration is a weighted sum of
the above objectives

Ll = Lego + λ1Lrigid + λ2LCD, (6)

where λ1 = 1.0 and λ2 = 0.5 in all our experiments.

5. Experiments
5.1. Experimental settings

Datasets and evaluation metrics. The datasets used
in our experiments are SemanticKITTI [2], Waymo Open
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Dataset Method Sup.
lidarKITTI (with ground) lidarKITTI (w/o ground)

EPE3D [m] ↓ Acc3DS↑ Acc3DR↑ Outliers3D↓ EPE3D [m] ↓ Acc3DS↑ Acc3DR↑ Outliers3D↓

FT3D

PointPWC-Net [36] Full 0.710 0.114 0.219 0.932 0.390 0.387 0.550 0.653
FLOT [26] Full 0.660 0.046 0.153 0.957 0.323 0.248 0.512 0.684
FlowStep3D [16] Full 0.797 0.087 0.184 0.929 0.433 0.343 0.530 0.686
PV-RAFT [35] Full 0.658 0.139 0.267 0.895 0.434 0.292 0.516 0.673

SemanticKITTI
Gojcic et al. [8] Weak 0.133 0.460 0.746 0.527 0.150 0.521 0.744 0.450
Gojcic et al.++ [8] Weak 0.102 0.686 0.819 0.410 0.094 0.784 0.885 0.314
Ours Weak 0.065 0.857 0.940 0.290 0.071 0.824 0.913 0.295

Waymo Open
Gojcic et al. [8] Weak 0.106 0.670 0.799 0.420 0.158 0.455 0.702 0.482
Gojcic et al.++ [8] Weak 0.111 0.625 0.796 0.433 0.147 0.437 0.691 0.573
Ours Weak 0.077 0.812 0.906 0.333 0.075 0.819 0.911 0.307

Table 1. Quantitative comparison on lidarKITTI. Gojcic et al.++ utilizes a non-parametric test-time optimization as post-processing [8].

[30], FlyingThings3D (FT3D) [22], lidarKITTI [23, 24]
and stereoKITTI [23, 24]. Among these datasets, se-
manticKITTI and Waymo Open are large-scale autonomous
driving datasets with the ego-motion and binary background
mask labels. In our experiment, we train our recurrent
neural network on the LiDAR datasets, SemanticKITTI [2]
and Waymo Open [30] with ground points. For inference,
we test our trained model on lidarKITTI with and with-
out ground points, respectively. Moreover, we utilize the
ground truth of the background mask as inputs when train-
ing the recurrent network, and employ a pre-trained seg-
mentation network for inference. Details of the datasets are
available in the supplement.
Evaluation metrics. We use the same evaluation metrics
as [10, 19, 26, 36].

• EPE3D(m) average end-point-error over each point.
• Acc3DS(0.05) percentage of points whose EPE3D<

0.05m or relative error < 5%.
• Acc3DR(0.1) percentage of points whose EPE3D<

0.1m or relative error < 10%.
• Outliers3D percentage of points whose EPE3D>

0.3m or relative error > 10%.
Implementation details. Our training follows the mini-
batch strategy and the batch size is 6 for all training data.
Adam optimizer is utilized with parameters β1 = 0.9 and
β2 = 0.999. The learning rate is initially set to 1×10−3 and
is later down-scaled by a factor of 0.98 after every epoch till
40 epochs. For the most important hyper-parameter L, i.e.
number of iterations, we set L = 4 for training and L = 5
for inference. In addition, the details about the generation of
the binary background label for LiDAR point cloud datasets
are also available in our supplement. All the models in the
experiments are implemented using PyTorch 1.4 and trained
with NVIDIA GeForce GTX1080Ti GPUs.

5.2. Evaluation

We quantitatively compare our recurrent neural net-
work with recent state-of-the-art methods, as shown in Ta-

ble 1. After training on SemanticKITTI in a weakly su-
pervised manner, our method predicts the most accurate
scene flow on lidarKITTI. Specifically, the EPE3D values
drop to 0.065m and 0.071m on lidarKITTI with and with-
out ground points. Compared with the rigid flow estima-
tion method proposed by Gojcic et al. [8] on lidarKITTI
with ground points, our recurrent neural network reduces
EPE3D from 0.102m to 0.065m, a 36.3% drop. In con-
trast, the state-of-the-art methods, e.g., PointPWC-Net [36],
FlowStep3D [16] and PV-RAFT [35], trained on FT3D in
a fully supervised manner, achieve poor accuracy in scene
flow estimation because of the motion occlusions and sparse
reflection in raw LiDAR data. Especially, compared with
the optimization-based methods, e.g., FlowStep3D [16], on
the lidarKITTI without ground points, our method trained
on SemanticKITTI reduces EPE3D from 0.433m to 0.071m.
The lidarKITTI and SemanticKITTI are from the same data
source. To investigate the generalization ability of our
method, we also train the proposed network on Waymo
Open and test on lidarKITTI. The quantitative results are
also shown in Table 1. We observe that the domain gap
caused by different sensors leads to a tiny drop in the accu-
racy of our method’s scene flow estimation, i. e., increasing
EPE3D from 0.065m to 0.077m.

In Fig. 6, we visualize the scene flow estimation re-
sults produced by state-of-the-art methods and our proposed
method. It can be observed that our method outputs the
best alignments and preserves the structure. Compared with
methods utilizing indirect constraints, e.g., PointPWC-Net
and FlowStep3D, our method preserves the geometric struc-
ture of the warped source scene. To be concrete, at the
zooming circles around the ground area, the red and blue
points are thoroughly blended for PointPWC-Net and Flow-
Step3D, which differs from the ground truth. Similar to
us, the method proposed by Gojcic et al. introduces direct
constraints and warps the source scene without structure
distortion. However, the misalignment caused by rigidity
constraints is still challenging, which can also be observed
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Input FlowStep3D

Ours Ground TruthGojcic 𝑒𝑡 𝑎𝑙.

PointPWC-Net

Figure 6. Qualitative comparisons with the state-of-the-art methods. Compared with other methods, our aligning result is more close to the
ground truth.

Ground Truth

Input

Ours (𝑙 = 1) Ours (𝑙 = 2) Ours (𝑙 = 3) Ours (𝑙 = 4)

FlowStep3D (𝑙 = 3)FlowStep3D (𝑙 = 2)FlowStep3D (𝑙 = 1) FlowStep3D (𝑙 = 4)

Figure 7. Qualitative comparisons between aligning results of our method and FlowStep3D [16] during iterations. The l represents the
iteration index.

in the zooming circles of the two vehicles. In contrast,
our method preserves the structure of the warped source
scene and achieves outstanding alignment. To compare with
other GRU-based optimization methods, we pick a scene
from lidarKITTI and visualize the alignment results of ours
and FlowStep3D at each iteration. It can be observed that
there is severe structure distortion in the results generated
by FlowStep3D during the iterative optimization, especially
around the ground points. As a comparison, our method
preserves structure effectively and gradually aligns source
and target point clouds during iterations, as shown in Fig. 7.

5.3. Ablation Studies

Number of iterations. To investigate appropriate number
of iterations, we perform an ablation experiment to look up

the balance between accuracy and iteration count. We test
our recurrent network with different iteration numbers on
lidarKITTI with and without ground points, the results of
which are shown in Table 2. From the table, we can see
that with increase of iteration number, the performance gets
improved in terms of all metrics. It should be noted that in
the experiment in Sec. 5, we use 5 iterations for compar-
ison. Table 3 presents the time consumption and parame-
ter amount of state-of-the-art methods, as well as our net-
work with 3 iterations and 5 iterations. All models are run
in the inference mode and the time is measured at a ma-
chine equipped with NVIDIA GeForce GTX1050Ti GPU
and Intel i7-8700 CPU. This table demonstrates that our
method achieves excellent performance while keep a com-
pact model size and a relatively small running time.
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Dataset Iter. EPE3D [m] ↓ Acc3DS↑ Acc3DR↑ Outliers3D↓
3 0.086 0.670 0.895 0.376

lidarKITTI 5 0.065 0.857 0.940 0.290
(with ground) 7 0.063 0.866 0.943 0.280

9 0.062 0.869 0.945 0.279
3 0.090 0.621 0.805 0.388

lidarKITTI 5 0.071 0.824 0.913 0.295
(w/o ground) 7 0.069 0.835 0.926 0.288

9 0.067 0.848 0.936 0.287

Table 2. Ablation results of numbers of iterations for our proposed
recurrent network in inference. All the models are trained on Se-
manticKITTI with 4 iterations.

Method Recurrent EPE3D [m] Time [ms] Param. [M]

PointPWC-Net [36] No 0.710 647 7.72
Gojcic et al. [8] No 0.133 423 8.08
Gojcic et al.++ [8] No 0.102 1245 8.08
FlowStep3D [16] Yes 0.797 2658 0.69
PV-RAFT [35] Yes 0.658 5296 0.19
Ours-Iter. 3 Yes 0.086 538 1.37
Ours-Iter. 5 Yes 0.065 750 1.37

Table 3. Time consumption of different method on lidarKITTI
with ground points in inference. The running time of ours contains
the time consumption on segmenting background, about 170 ms.

Direct constraints and error awarded optimization. We
conduct experiments to demonstrate the effectiveness of di-
rect multi-body rigidity constraints and learning-based error
awarded optimization under two scenarios: updating cost
volume or not. We construct many networks, which em-
ploy different modules under different scenarios, as vari-
ants of our recurrent network. These variants of our recur-
rent network are trained on SemanticKITTI and tested on
lidarKITTI with ground points. The quantitative results are
shown in Table 4. We observe that the rigid flow converter
improves the performance by a large margin. Combining
these two modules together provides the best performance
in terms of all metrics. Moreover, updating of the initial cost
volume brings in additional computing burden and impair
the time efficiency of optimization methods without perfor-
mance improvement.
Direct rigidity constraints vs. Indirect rigidity con-
straints. We compare the performance of networks with
two rigidity constraints, direct and indirect, and show the
results in Table 5 (2nd and 3rd rows). Indirect rigidity con-
straints means introducing rigidity constraints as a regular-
ization term in loss function. We conclude that our pro-
posed direct rigidity constraints are better in improving per-
formance of scene flow estimation.
Error awarded optimization vs. non-parametric opti-
mization. Similar to the previous comparison, we compare
two optimization strategies and show the results in Table 5
(1st and 3rd rows). In this experiment, the non-parametric
optimization, which is from [8], is added as post-processing
to our recurrent network in place of error awarded optimiza-

Cost Volume
EGRU RFC

lidarKITTI
Updating EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers3D↓

No
✓ ✓ 0.065 0.857 0.940 0.290
✓ 0.686 0.105 0.213 0.938

✓ 0.152 0.156 0.536 0.676

Yes
✓ ✓ 0.069 0.843 0.925 0.301
✓ 0.652 0.008 0.036 0.975

✓ 0.132 0.252 0.660 0.573

Table 4. Ablations of proposed two modules under different up-
dating strategies on cost volume. ‘EGRU’ and ‘RFC’ represent the
error awarded GRU and the rigid flow converter respectively.

DC IC EAO NPO
lidarKITTI

EPE3D [m] ↓ Acc3DS↑ Acc3DR↑ Outliers3D↓
✓ ✓ 0.140 0.252 0.643 0.601

✓ ✓ 0.149 0.244 0.603 0.652
✓ ✓ 0.071 0.824 0.913 0.295

Table 5. Direct constraints (DC) vs. indirect constraints (IC)
and error awarded optimization (EAO) vs. non-parametric opti-
mization (NPO). The results are achieved on lidarKITTI without
ground points.

tion. The quantitative comparison demonstrates the advan-
tages of learning-based error awarded optimization.

6. Conclusion and Limitations

We propose a weakly supervised optimization based
method for LiDAR scene flow estimation. Concretely, we
exploit the rigidity constraints by directly converting scene
flow to hybrid flow on a GRU-based recurrent neural net-
work, which preserves the object structure during iterations.
We also propose an error awarded optimization strategy
to refine the predicted scene flow and obtain outstanding
alignment. Extensive experiments performed on lidarKITTI
demonstrate superiority of our method.

The limitations of our work include: (1) The perfor-
mance of scene flow estimation may be sensitive to the ac-
curacy of background mask. (2) The prerequisite of our
work is the rigidity assumption. For scenes with many non-
rigid motions, our method may fail.

In addition, due to space limitations, we also present
the results of the following experiments in our supple-
ment, i. e., influence of different loss terms and pre-
segmentation methods, quantitative comparison on the
stereoKITTI dataset and time consumption without error
awarded optimization.
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