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Abstract

Deep network architectures struggle to continually learn
new tasks without forgetting the previous tasks. A recent
trend indicates that dynamic architectures based on an ex-
pansion of the parameters can reduce catastrophic forget-
ting efficiently in continual learning. However, existing ap-
proaches often require a task identifier at test-time, need
complex tuning to balance the growing number of param-
eters, and barely share any information across tasks. As a
result, they struggle to scale to a large number of tasks with-
out significant overhead.
In this paper, we propose a transformer architecture based
on a dedicated encoder/decoder framework. Critically, the
encoder and decoder are shared among all tasks. Through
a dynamic expansion of special tokens, we specialize each
forward of our decoder network on a task distribution. Our
strategy scales to a large number of tasks while having neg-
ligible memory and time overheads due to strict control of
the expansion of the parameters. Moreover, this efficient
strategy doesn’t need any hyperparameter tuning to control
the network’s expansion. Our model reaches excellent re-
sults on CIFAR100 and state-of-the-art performances on the
large-scale ImageNet100 and ImageNet1000 while having
fewer parameters than concurrent dynamic frameworks.1

1. Introduction

Most of the deep learning literature focuses on learning
a model on a fixed dataset. However, real-world data con-
stantly evolve through time, leading to ever-changing dis-
tributions: i.e., new classes or domains appeared. When
a model loses access to previous classes data (e.g., for pri-
vacy reasons) and is fine-tuned on new classes data, it catas-
trophically forgets the old distribution. Continual learning
models aim at balancing a rigidity/plasticity trade-off where
old data are not forgotten (rigidity to changes) while learn-
ing new incoming data (plasticity to adapt). Despite recent

1Code is released at https://github.com/arthurdouillard/dytox

Figure 1: DyTox’s continual learning performance on
ImageNet1000: for each task, 100 new classes are learned
while previously learned classes are not fully accessible but
shouldn’t be forgotten. Our strategy DyTox (in red) is state-
of-the-art by a large margin. Note that at the initial step be-
fore the continual process begins (denoted by a dashed rect-
angle ), our model has performance comparable to other
baselines: the performance gain is achieved by reducing
catastrophic forgetting. Moreover, we have systematically
fewer parameters than previous approaches.

advances, it is still an open challenge.

A growing amount of efforts have emerged to tackle
catastrophic forgetting [49, 34, 63, 29, 18, 64]. Recent
works [65, 39, 30, 21, 24, 54] dynamically expand the net-
work architectures [65, 39] or re-arrange their internal struc-
tures [21, 54, 30, 24]. Unfortunately at test-time, they re-
quire to know the task to which the test sample belongs —
in order to know which parameters should be used. More re-
cently, DER [64] and Simple-DER [41] discarded the need
for this task identifier by learning a single classifier on the
concatenation of all produced embeddings by different sub-
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sets of parameters. Yet, these strategies induce dramatic
memory overhead when tackling a large number of tasks,
and thus need complex pruning as post-processing.

To improve the ease of use of continual learning frame-
works for real-world applications, we aim to design a dy-
namically expandable representation (almost) ‘for free’ by
having the three following properties: #1 limited memory
overhead as the number of tasks grows, #2 limited time
overhead at test time and #3 no setting-specific hyper-
parameters for improved robustness when faced to an un-
known (potentially large) number of tasks.

To this end, we leverage the computer vision trans-
former ViT [15]. Transformers [60] offer a very interest-
ing framework to satisfy the previously mentioned con-
straints. Indeed, we build upon this architecture to design
a encoder/decoder strategy: the encoder layers are shared
among all members of our dynamic network; the unique de-
coder layer is also shared but its forward pass is specialized
by a task-specific learned token to produce task-specific
embeddings. Thus, the memory growth of the dynamic net-
work is extremely limited: only a 384d vector per task, val-
idating property #1. Moreover, this requires no hyperpa-
rameter tuning (property #3). Finally, the decoder is explic-
itly designed to be computationally lightweight (satisfying
property #2). We nicknamed our framework, DyTox, for
DYnamic TOken eXpansion. To the best of our knowl-
edge, we are the first to apply the transformer architecture
to continual computer vision.

Our strategy is robust to different settings, and can easily
scale to a large number of tasks. In particular, we validate
the efficiency of our approach on CIFAR100, ImageNet100,
and ImageNet1000 (displayed on Fig. 1) for multiple set-
tings. We reach state-of-the-art results, with only a small
overhead thanks to our efficient dynamic strategy.

2. Related work
Continual learning models tackle the catastrophic for-
getting of the old classes [56, 22]. In computer vision,
most of continual learning strategies applied on large-scale
datasets use rehearsal learning: a limited amount of the
training data of old classes is kept during training [50]. This
data is usually kept in raw form (e.g., pixels) [49, 4, 9] but
can also be compressed [26, 31], or trimmed [17] to reduce
memory overhead; others store only a model to generate
new samples of past classes [33, 55, 38]. In addition, most
approaches aim at limiting the changes in the model when
new classes are learned. These constraints can be directly
applied on the weights [34, 66, 1, 7], intermediary features
[29, 14, 69, 18, 16], prediction probabilities [40, 49, 4, 5], or
on the gradients [43, 8, 20, 52]. All these constraint-based
methods use the same static network architectures which
doesn’t evolve through time, usually a ResNet [27], a LeNet
[36], or a small MLP.

Continual dynamic networks In contrast, our paper and
others focus on designing dynamic architectures that best
handle a growing training distribution [65, 39], in partic-
ular by dynamically creating (sub-)members each special-
ized in one specific task [21, 24, 30, 51, 10, 61]. Unfor-
tunately, previous approaches often require the sample’s
task identifier at test-time to select the right subset of pa-
rameters. We argue this is an unrealistic assumption in a
real-life situation where new samples could come from any
task. Recently, DER [64] proposed a dynamic expansion
of the representation by adding a new feature extractor per
task. All extractors’ embeddings would then be concate-
nated and fed to a unified classifier, discarding the need for
a task identifier at test-time. To limit an explosion in the
number of parameters, they aggressively prune each model
after each task using the HAT [54] procedure. Unfortu-
nately, the pruning is hyperparameter sensitive. Therefore,
hyperparameters are tuned differently on each experiment:
for example, learning a dataset in 10 steps or in 50 steps
use different hyperparameters. While being impracticable,
it is also unrealistic because the number of classes is not
known in advance in a true continual situation. Simple-DER
[41] also uses multiple extractors, but its pruning method
doesn’t need any hyperparameters; the negative counter-
part is that Simple-DER controls less the parameter growth
(2.5x higher than a base model). In contrast, we propose a
framework dedicated to continual learning that seamlessly
enables a task-dynamic strategy, efficient on all settings,
without any setting-dependant modification and at almost
no memory overhead. We share early class-agnostic [45]
layers similarly to TreeNets [37] and base our strategy on
the Transformer architecture.

Transformers were first introduced for machine transla-
tion [60], with the now famous self-attention. While the
original transformer was made of encoder and decoder lay-
ers, later transformers starting from BERT [13] used a suc-
cession of identical encoder blocks. Then, ViT [15] pro-
posed to apply transformers to computer vision by using
patches of pixels as tokens. Multiple recent works, includ-
ing DeiT [58], CaiT [59], ConVit [11], and Swin [42], im-
proved ViT with architecture and training procedures mod-
ifications. PerceiverIO [32] proposed a general architecture
whose output is adapted to different modalities using spe-
cific learned tokens, and whose computation is reduced us-
ing a small number of latent tokens. Despite being success-
ful across various benchmarks, transformers have not yet
been considered for continual computer vision to the best
of our knowledge. Yet, we don’t use the transformer ar-
chitecture for its own sake, but rather because of the intrin-
sic properties of transformers; in particular, the seminal en-
coder/decoder framework allows us to build an efficient ar-
chitecture with strong capabilities against catastrophic for-
getting.
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Figure 2: DyTox transformer model. An image is first split into multiple patches, embedded with a linear projection. The
resulting patch tokens are processed by 5 successive Self-Attention Blocks (SAB) (Sec. 3.1). For each task (t = 1 . . . T ),
the processed patch tokens are then given to the Task-Attention Block (TAB) (Sec. 3.2): each forward through the TAB
is modified by a different task-specialized token θt for t ∈ {1 . . . T} (Sec. 3.3). The T final embeddings are finally given
separately to independent classifiers Clft each predicting their task’s classesCt. All |C1:T | logits are activated with a sigmoid.
For example, at task t = 3, one forward is done through the SABs and three task-specific forwards through the unique TAB.

3. DyTox transformer model
Our goal is to learn a unified model that will classify

an increasingly growing number of classes, introduced in
a fixed amount of steps T . At a given step t ∈ {1 . . . T},
the model is exposed to new data belonging to new classes.
Specifically, it learns from samples {(xti, yti)}i, where xti is
the i-th image of this task t and yti is the associated label
within the label set Ct. All task label sets are exclusive:
C0 ∩ C1 . . . CT = ∅. The main challenge is that the data are
fully available only temporarily: following most previous
works, only a few samples from previous tasks {1 . . . t−1}
are available for training at step t as rehearsing data. Yet,
the model should remain able to classify test data coming
from all seen classes C1:t. A table of notations is provided
in the supplementary materials.

The Fig. 2 displays our DyTox framework, which is
made of several components (SAB, TAB, and Task Tokens)
that we describe in the following sections.

3.1. Background

The vision transformer [15] has three main components:
the patch tokenizer, the encoder made of Self-Attention
Blocks, and the classifier.

Patch tokenizer The fixed-size input RGB image is
cropped into N patches of equal dimensions and then pro-
jected with a linear layer to a dimension D. Both oper-

Self
Attention

Layer 
Norm MLP!5 !56%

Patch Tokens
Layer 
Norm

Figure 3: The Self-Attention Block (SAB) combines a
Self-Attention (SA), two Layer Norms, and one MLP with a
single hidden layer. As in a ResNet, two shortcuts are used
with element-wise addition.
ations, the cropping and projection, are done with a sin-
gle 2D convolution whose kernel size is equal to its stride
size. The resulting tensor x0 ∈ RN×D is extended with a
learned class token xcls ∈ RD resulting in a tensor of shape
R(N+1)×D. Following [23], a learned positional embedding
p ∈ R(N+1)×D is added (element-wise).

Self-Attention (SA) based encoder The tokens are fed
to a stack of transformer blocks that we denote here as Self-
Attention Blocks (SABs):

x′l = xl + SAl (Norml,1 (xl)) ,

xl+1 = x′l +MLPl (Norml,2 (x
′
l)) ,

(1)

with SA a Self-Attention layer [60], Norm a layer normal-
ization [2], and MLP a Multi-Layer Perceptron with a sin-
gle hidden layer. We repeat these operations for each SAB,
from l = 1 to l = L. The resulting tensor (which keeps the
same dimension after every block) is xL ∈ R(N+1)×D. We
display a visual illustration of a SA Block in Fig. 3.
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Classifier In the original vision transformer (ViT [15]), a
learned vector called the “class token” is appended to the
patch tokens after the tokenizer. This special class token,
when processed after all the SABs, is given to a linear clas-
sifier with a softmax activation to predict the final probabil-
ities. However, more recent works, as CaiT [59], propose
instead to introduce the class token only at the ultimate or
penultimate SAB to improve classification performance.

3.2. Task-Attention Block (TAB)

Contrary to previous transformer architectures, we don’t
have a class token, but rather what we nicknamed “task to-
kens”; the learned token of the ith task is denoted θi. This
special token will only be added at the last block. To exploit
this task token, we define a new attention layer, that we call
the Task-Attention. It first concatenates the patch tokens xL
produced by the ultimate SAB with a task token θi:

zi = [θi, xL] ∈ R(N+1)×D . (2)

This is then given to the Task-Attention (TA), inspired by
the Class-Attention of Touvron et al. [59]:

Qi =Wqθi ,

Ki =Wkzi ,

Vi =Wvzi ,

Ai = Softmax
(
Qi ·KT

i /
√
d/h

)
,

Oi =WoAiVi + bo ∈ R1×D ,

(3)

with d being the embedding dimension, and h the num-
ber of attention heads [60]. Contrary to the classical Self-
Attention, the Task-Attention defines its query (Qi) only
from the task-token θi without using the patch tokens xL.
The Task-Attention Block (TAB) is then a variation of the
SAB where the attention is a Task-Attention (TA):

c′ = c+TA(Norm1 (z)) ,

c′′ = c′ +MLP (Norm2 (c
′)) .

(4)

Overall, our new architecture can be summarized by the rep-
etition of SA Blocks {SABl}Ll=1 (defined in Eq. 1) ended by
a single TA Block TAB (defined in Eq. 4):

ei = TAB ◦ ([θi, SABl=L ◦ ...SABl=1(x0)]) ∈ RD . (5)

The final embedding ei is fed to a classifier clf made of a
Normc and a linear projection parametrized by {Wc, bc}:

ỹi = Clf(ei) =Wc Normc(ei) + bc . (6)

3.3. Dynamic task token expansion

We defined in the previous section our base network,
made of a succession of SABs and ended by a single TAB.

As detailed, the TAB has two inputs: the patch tokens xL
extracted from the image and a learned task-token θi. We’ll
now detail how our framework evolves in a continual situa-
tion at each new step.

During the first step, there is only one task token θ1.
At each new step, we propose to expand our parameter
space by creating a new task token while keeping the pre-
vious ones. Thus, after t steps, we have t task tokens
(θi for i ∈ {1 . . . t}). Given an image x— belonging to any
of the seen tasks {1 . . . t}— our model tokenizes it into x0,
and processes it through the multiple SABs: this outputs the
patch tokens xL. Finally, our framework does as many for-
ward passes through the TAB as there are tasks: critically,
each TAB forward passes is executed with a different task
token θi, resulting in different task-specific forwards, each
producing the task-specific embeddings ei (see Fig. 2):

e1 = TAB([θ1, xL]) ,

e2 = TAB([θ2, xL]) ,

. . .

et = TAB([θt, xL]) .

(7)

Rather than concatenating all embeddings {e1, e2, . . . , et}
together and feeding them to one classifier, we leverage
task-specific classifiers. Each classifier clfi is made of a
Normi and a linear projection parametrized by {Wi, bi},
with Wi ∈ RCi×D and b ∈ RCi . It takes as input its task-
specific embedding ei and returns:

ŷi = Clfi(ei) = σ(Wi Normi ei + bi) , (8)

the predictions for the classes yi ∈ Ci, where σ(x) =
1/(1+e−x) is the sigmoid activation. In comparison with the
softmax activation, the element-wise sigmoid activation re-
duces the overconfidence in recent classes. Consequently,
the model is better calibrated, which is an important at-
tribute of continual model [3, 63, 68]. The loss is the binary-
cross entropy. The independent classifiers paradigm cou-
pled with the sigmoid activation and binary cross-entropy
loss exclude explicitly a late fusion [48] of the task embed-
dings resulting in more specialized classifiers.

The overall structure of the DyTox strategy is illus-
trated in Fig. 2. We also show in Algo. 1 the pseudo-code
of a forward pass at test-time after having learned the task t.
Critically, the test image can belong to any of the previously
seen tasks {1 . . . t}. Our dynamic task token expansion is
more efficient than a naive parameter expansion that would
create a new copy of the whole network for each new task.
(1) Our expansion is limited to a new task token per new
task, which is only d = 384 new parameters. This is small
compared to the total model size (≈ 11 million parameters).
The memory overhead is thus almost null. (2) The com-
putationally intensive blocks (i.e., the SABs) are executed
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Algorithm 1 DyTox’s forward pass at step t
Input: x0 (initial patch tokens), y ( ground-truth labels)
Output: ŷ1:t (predictions for all classes of C1:t)

1: xL ← SABl=L ◦...SABl=1(x0) . Sec. 3.1
2: for i← 1; i ≤ t; i++ do
3: ei ← TAB([θi, xL]) . Sec. 3.2
4: ŷi ← Clfi(ei) . Sec. 3.3
5: end for
6: ŷ1:t ← [ŷ1, . . . , ŷt]

only once despite learning multiple tasks. In contrast, the
TAB has as many forwards as there are tasks. Though, this
induces minimal overhead because the Task-Attention has
a linear complexity w.r.t the number of patches while the
Self-Attention is quadratic. Therefore, the time overhead is
sub-linear. We quantitatively show this in Sec. 4.

Context The current transformer paradigm starting from
BERT [13] and continuing with ViT [15] is based on a en-
coder+classifier structure. Differently, our dynamic frame-
work strays is a resurgence of the encoder/decoder struc-
ture of the original transformer [60]: the encoder is shared
(both in memory and execution) for all outputs. The de-
coder parameters are also shared, but its execution is task-
specific with each task token, with each forward akin to a
task-specific expert chosen from a mixture of experts [44].
Moreover, multi-tasks text-based transformers have natural
language tokens as an indicator of a task [46] (e.g. ”sum-
marize the following text”), in our context of vision we used
our defined task tokens as indicators.

Losses Our model is trained with three losses: (1) the
classification loss Lclf, a binary-cross entropy, (2) a knowl-
edge distillation [28] Lkd applied on the probabilities, and
(3) the divergence loss Ldiv. The distillation loss helps to
reduce forgetting. It is arguably quite naive, and more com-
plex distillation losses [53, 29, 18] could further improve
results. The divergence loss, inspired from the “auxiliary
classifier” of DER [64], uses the current last task’s embed-
ding et to predict (|Ct| + 1) probabilities: the current last
task’s classes Ct and an extra class representing all previous
classes that can be encountered via rehearsal. This classifier
is discarded at test-time and encourages a better diversity
among task tokens. The total loss is:

L = (1− α)Lclf + αLkd + λLdiv , (9)

with λ a hyperparameter set to 0.1 for all experiments. α
correspond to the fraction of the number of old classes over
the number of new classes |C

1:t−1|
|C1:t| as done by [68]. There-

fore, α is automatically set; this removes the need to finely
tune this hyperparameter.

Hyperparameter CIFAR ImageNet
# SAB 5
# CAB 1
# Attentions Heads 12
Embed Dim 384
Input Size 32 224
Patch Size 4 16

Table 1: DyTox’s architectures for CIFAR and ImageNet.
The only difference between the two architectures is the
patch size, as the image sizes vary between datasets.

4. Experiments
4.1. Benchmarks & implementation

Benchmarks & Metrics We evaluate our model on CI-
FAR100 [35], ImageNet100 and ImageNet1000 [12] (de-
scriptions in the supplementary materials) under different
settings. The standard continual scenario in ImageNet has
10 steps: thus we add 10 new classes per step in Ima-
geNet100, and 100 new classes per step in ImageNet1000.
In CIFAR100, we compare performances on 10 steps (10
new classes per step), 20 steps (5 new classes per step), and
50 steps (2 new classes per step). In addition to the top-1 ac-
curacy, we also compare the top-5 accuracy on ImageNet.
We report the “Avg” accuracy which is the average of the
accuracies after each step as defined by [49]. We also re-
port the final accuracy after the last step (“Last”). Finally,
in our tables, “#P” denotes the parameters count in million
after the final step.

Implementation details As highlighted in Table 1, our
network has the same structure across all tasks. Specif-
ically, we use 5 Self-Attention Blocks (SABs), 1 Task-
Attention Block (TAB). All 6 have an embedding dimen-
sion of 384 and 12 attention heads. We designed this shal-
low transformer to have a comparable parameters count to
other baselines, but also made it wider than usual ”tiny”
models [15, 58, 59]. We tuned all hyperparameters for CI-
FAR100 with 10 steps on a validation set made of 10%
of the training set, and then kept them fixed for all other
settings, ImageNet included. The only difference between
the two datasets is that ImageNet images are larger; thus
the patch size is larger, and overall the base transformer
has slightly more parameters on ImageNet than on CIFAR
(11.00M vs 10.72M) because of a bigger positional embed-
ding. We use the attention with spatial prior (introduced
by ConViT [11]) for all SABs which allows training trans-
formers on a small dataset (like CIFAR) without pretrain-
ing on large datasets or complex regularizations. Following
previous works [49, 64], we use for all models (baselines
included) 2,000 images of rehearsal memory for CIFAR100
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ImageNet100 10 steps ImageNet1000 10 steps

#P top-1 top-5
#P top-1 top-5

Methods Avg Last Avg Last Avg Last Avg Last
ResNet18 joint 11.22 - - - 95.10 11.68 - - - 89.27
Transf. joint 11.00 - 79.12 - 93.48 11.35 - 73.58 - 90.60

E2E [4] 11.22 - - 89.92 80.29 11.68 - - 72.09 52.29
Simple-DER [41] - - - - - 28.00 66.63 59.24 85.62 80.76
iCaRL [49] 11.22 - - 83.60 63.80 11.68 38.40 22.70 63.70 44.00
BiC [29] 11.22 - - 90.60 84.40 11.68 - - 84.00 73.20
WA [68] 11.22 - - 91.00 84.10 11.68 65.67 55.60 86.60 81.10
RPSNet [47] - - 87.90 74.00 - - - - -
DER w/o P [64] 112.27 77.18 66.70 93.23 87.52 116.89 68.84 60.16 88.17 82.86
DER† [64] - 76.12 66.06 92.79 88.38 - 66.73 58.62 87.08 81.89
DyTox 11.01 77.15 69.10 92.04 87.98 11.36 71.29 63.34 88.59 84.49

Table 2: Results on ImageNet-100 and ImageNet-1000 datasets, learned with 10 steps of respectively 10 and 100 new
classes. E2E [4] and Simple-DER [41] results come from their respective papers, and used a different class ordering. Other
results come from [64]. The † symbol means that [64] needed setting-sensitive hyperparameters. Moreover, its reported
parameters count was an average over all steps ([64] reported 14.52M on ImageNet1000): the final parameters count (neces-
sarily higher) was not available.

Figure 4: Performance evolution on ImageNet100. The
top-5 accuracy (%) is reported after learning each task. Our
model DyTox (in red) surpasses significantly most base-
lines, and is of equal performance as the complex DER that
uses pruning with setting-specific hyperparameters.

and ImageNet100, and 20,000 images for ImageNet1000.
The implementations of the continual scenarios are pro-
vided by Continuum [19]. Our network implementation is
based on the DeiT [58] code base which itself uses exten-
sively the timm library [62]. The code is released publicly2.
The full implementation details are in the appendix.

2https://github.com/arthurdouillard/dytox

4.2. Quantitative results

ImageNet We report performances in Table 2 on the com-
plex ImageNet dataset. The † marks the DER with setting-
specific pruning, and DER w/o P is for the DER without
pruning. In ImageNet100, DyTox reaches 69.10% and out-
performs DER† by +3.04 percentage points (p.p ) in “Last”
top-1 accuracy. Though, DyTox and DER w/o P somehow
perform similarly in “Avg” accuracy on this setup, as high-
lighted in the performance evolution displayed in Fig. 4.
Most importantly, on the larger-scale ImageNet1000, Dy-
Tox systematically performs best on all metrics despite hav-
ing lower parameters count. Specifically, DyTox reaches
71.29% in “Avg” top-1 accuracy, and 63.34% in “Last” top-
1 accuracy. This outperforms the previous state-of-the-art
DER w/o P (68.84% in “Avg”, 60.16% in “Last”) which
has 10 ResNet18 in parallel and 116.89M parameters. Com-
pared to the pruned DER†, DyTox has a +4.56 p.p in top-1
and a +1.51 p.p in top-5 for the “Avg” accuracy. All mod-
els evolutions on ImageNet1000 are illustrated in Fig. 1:
DyTox constantly surpasses previous state-of-the-art mod-
els — despite having a comparable performance at the first
step and fewer parameters.

DyTox is able to scale correctly while handling seam-
lessly the parameter growth by sharing most of the weights
across tasks. In contrast, DER had to propose a complex
pruning method; unfortunately, this pruning required dif-
ferent hyperparameter values for different settings. De-
spite this, the pruning in DER† is less efficient when
classes diversity increase: DER† doubles in size between
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10 steps 20 steps 50 steps
Methods #P Avg Last #P Avg Last #P Avg Last
ResNet18 Joint 11.22 - 80.41 11.22 - 81.49 11.22 - 81.74
Transf. Joint 10.72 - 76.12 10.72 - 76.12 10.72 - 76.12
iCaRL [49] 11.22 65.27± 1.02 50.74 11.22 61.20± 0.83 43.75 11.22 56.08± 0.83 36.62
UCIR [29] 11.22 58.66± 0.71 43.39 11.22 58.17± 0.30 40.63 11.22 56.86± 0.83 37.09
BiC [63] 11.22 68.80± 1.20 53.54 11.22 66.48± 0.32 47.02 11.22 62.09± 0.85 41.04
WA [68] 11.22 69.46± 0.29 53.78 11.22 67.33± 0.15 47.31 11.22 64.32± 0.28 42.14
PODNet [18] 11.22 58.03± 1.27 41.05 11.22 53.97± 0.85 35.02 11.22 51.19± 1.02 32.99
RPSNet [47] 56.5 68.60 57.05 - - - - - -
DER w/o P [64] 112.27 75.36± 0.36 65.22 224.55 74.09± 0.33 62.48 561.39 72.41± 0.36 59.08
DER† [64] - 74.64± 0.28 64.35 - 73.98± 0.36 62.55 - 72.05± 0.55 59.76
DyTox 10.73 73.66± 0.02 60.67± 0.34 10.74 72.27± 0.18 56.32± 0.61 10.77 70.20± 0.16 52.34± 0.26

DyTox+ 10.73 75.54± 0.10 62.06± 0.25 10.74 75.04± 0.11 60.03± 0.45 10.77 74.35± 0.05 57.09± 0.13

Table 3: Results on CIFAR100 averaged over three different class orders. Baselines results are come from [64]. The †
symbol means that [64] needed setting-sensitive hyperparameters. Moreover, its reported parameters count was an average
over all steps: the final parameters count (necessarily higher) was not available.

Figure 5: Performance evolution on CIFAR100. The top-1 accuracy (%) is reported after learning each task. Left is
evaluated with 10 steps, middle with 20 steps, and right with 50 steps.

ImageNet100 and ImageNet1000 ([64] reports 7.67M vs.
14.52M) while handling the same amount of tasks (10).
Note that these parameter counts reported for DER† in [64]
are in fact averages over all steps: the final parameters count
(necessarily higher) was not available and thus is not re-
ported in our tables. Simple-DER also applies pruning but
without hyperparameter tuning; while simpler, the pruning
is also less efficient and induces larger model (28.00M pa-
rameters).

CIFAR100 Table 3 shows results for all approaches on
CIFAR100. The more steps there are, the larger the for-
getting is and thus the lower the performances are. Those
settings are also displayed in Fig. 5 after each task. In every
setting, DyTox is close to DER w/o P for much fewer pa-
rameters (up to 52x less). Critically, DyTox is significantly

above other baselines: e.g. DyTox is up to +25% in “Last”
accuracy in the 50 steps setup.

Improved training procedure To bridge the gap between
DyTox and DER w/o P on CIFAR100, we introduce a new
efficient training procedure for continual learning. Using
MixUp [67], we linear interpolate new samples with exist-
ing samples. The interpolation factor λ ∼ Beta(α, α) is
sampled with α = 0.8: the pixels of two images are mixed
(x = λx1+(1−λ)x2) as their labels (y = λy1+(1−λ)y2).
MixUp was shown to have two main effects: (1) it di-
versifies the training images and thus enlarges the train-
ing distribution on the vicinity of each training sample [6]
and (2) it improves the network calibration [25, 57], reduc-
ing the overconfidence in recent classes. Thus MixUp has
shared motivation with the sigmoid activation. When Dy-
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1 step 50 steps

Training Last (↑) Last (↑) Forgetting (↓)
DyTox 76.12 52.34 33.15
DyTox+ 77.51+1.39 57.09+4.75 31.50-1.65

Table 4: “Last” accuracy and forgetting [7] on CIFAR100
for the joint (1 step, no continual) and 50 steps settings.

Tox is combined with this MixUp procedure, nicknamed as
DyTox+, this significantly improves the state-of-the-art in
“Avg” accuracy in all three settings of Table 3. We also
provide in the appendix further improvement for this new
continual training procedure providing even larger gain on
both CIFAR100 and ImageNet100.

4.3. Model introspection on CIFAR100

Memory overhead We only add a vector of size d = 384
per task; thus, the overhead in memory (not considering the
growing classifier which is common for all continual mod-
els) is only of +0.004% per step. Even in the challenging
setting of CIFAR100 with 50 tasks, our memory overhead
is almost null (+0.2%).

Computational overhead The vast majority of the com-
putation is done in the SABs, thus shared among all tasks.
The dynamical component of our model is located at the ul-
timate TAB. Moreover, the Task-Attention, contrary to the
Self-Attention, has a time complexity linear in terms of to-
kens and not quadratic reducing the time overhead to an
acceptable sub-linear amount. Overall, for each new task,
one forward pass takes 2.24% more time than for the base
transformer.

Training procedure introspection Our DyTox+ strategy
with MixUp really reduces catastrophic forgetting and does
not just improve raw performances. This is shown in Ta-
ble 4, where we compare DyTox vs. DyTox+ strategies on
CIFAR100. While MixUp only slightly improves by 1.39
p.p the accuracy in joint learning (no continual, 1 step),
MixUp greatly improves the performance by 4.75 p.p in
the 50 steps continual scenario. To further illustrate this,
we also report the Chaudhry et al.’s forgetting [7] measure
which compares how performances dropped compared to
previous steps. MixUp reduces this forgetting by 1.65 p.p .

Model ablations We ablate the importance of the differ-
ent components of DyTox in Table 5. We add on the base
transformer a naive knowledge distillation [28] and a fine-
tuning [4, 29, 18, 64] applied after each task on a balanced
set of new data and rehearsal data. Finally, our DyTox strat-
egy exploits directly the very nature of transformers (sepa-
rated task information from the pixels information) to tackle
catastrophic forgetting with three components: (1) a task to-
ken expansion, (2) a divergence classifier, and (3) indepen-
dent classifiers. All three greatly improve over the baseline
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Table 5: Ablations of the different key components of our
DyTox architecture. We report the average accuracy and the
last accuracy on CIFAR100 for the setting with 50 steps.

transformer (42.21%→ 52.34% in “Last”) while having al-
most no memory overhead (+0.2%). The divergence clas-
sifier improves the diversity between task tokens: we ob-
served that the minimal Euclidean distance between them
increases by 8%. Moreover, we also remarked that having
independent classifiers reduces the Chaudhry et al.’s forget-
ting [7] by more than 24%.

5. Conclusion
In this paper, we propose DyTox, a new dynamic strategy

for continual learning based on transformer architecture. In
our model, self-attention layers are shared across all tasks,
and we add task-specific tokens to achieve task-specialized
embeddings through a new task-attention layer. This ar-
chitecture allows us to dynamically process new tasks with
very little memory overhead and does not require complex
hyperparameter tuning. Our experiments show that our
framework scales to large datasets like ImageNet1k with
state-of-the-art performances. Moreover, when a large num-
ber of tasks is considered (i.e. CIFAR100 50 steps) our
number of parameters increases reasonably contrary to pre-
vious dynamic strategies.
Limitations: True continual learning aims at learning an
almost unlimited number of tasks with low forgetting. No
current approaches are yet able to do so. Thus, forgetting is
not yet solved for continual learning but our model is a step
forward in that direction.
Broader impact: Machine learning models often are bi-
ased, with some classes suffering from lower performances.
Studying forgetting in continual learning provides insights
about the difference in performances between classes. Our
task-specialized model could help reduce these biases.
Acknowledgments: This work was partly supported by
ANR grant VISA DEEP (ANR-20-CHIA-0022), and the
HPC resources of IDRIS AD011011706.
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