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Figure 1. The Sinkhorn operator is becoming a fundamental building block for various computer vision algorithms. Relevant applications
include (a) point cloud registration, (b) interpolation on manifolds, (c) image clustering, and many more [13,25,39,46,47]. A recent trend
to training respective neural networks efficiently is implicit differentiation [7, 11, 17,22, 26]. In this work, we provide a framework of
implicit Sinkhorn differentiation that generalizes existing methods. It is the first to derive analytical gradients for the Sinkhorn operator in
its most general form, covering all the applications (a)-(c) shown above.

Abstract

The Sinkhorn operator has recently experienced a surge
of popularity in computer vision and related fields. One
major reason is its ease of integration into deep learning
frameworks. To allow for an efficient training of respec-
tive neural networks, we propose an algorithm that obtains
analytical gradients of a Sinkhorn layer via implicit differ-
entiation. In comparison to prior work, our framework is
based on the most general formulation of the Sinkhorn op-
erator. It allows for any type of loss function, while both the
target capacities and cost matrices are differentiated jointly.
We further construct error bounds of the resulting algorithm
for approximate inputs. Finally, we demonstrate that for a
number of applications, simply replacing automatic differ-
entiation with our algorithm directly improves the stability
and accuracy of the obtained gradients. Moreover, we show
that it is computationally more efficient, particularly when
resources like GPU memory are scarce.'

1. Introduction

Computing matchings and permutations is a fundamen-
tal problem at the heart of many computer vision and ma-
chine learning algorithms. Common applications include
pose estimation, 3D reconstruction, localization, informa-
tion transfer, ranking, and sorting, with data domains rang-
ing from images, voxel grids, point clouds, 3D surface
meshes to generic Euclidean features. A popular tool to
address this is the Sinkhorn operator, which has its roots in
the theory of entropy regularized optimal transport [9]. The

'Our implementation is available under the following link: https :
//github.com/marvin-eisenberger/implicit-sinkhorn

Sinkhorn operator can be computed efficiently via a simple
iterative matrix scaling approach. Furthermore, the result-
ing operator is differentiable, and can therefore be readily
integrated into deep learning frameworks.

A key question is how to compute the first-order deriva-
tive of a respective Sinkhorn layer in practice. The stan-
dard approach is automatic differentiation of Sinkhorn’s al-
gorithm. Yet, this comes with a considerable computational
burden because the runtime of the resulting backward pass
scales linearly with the number of forward iterations. More
importantly, since the computation graph needs to be main-
tained for all unrolled matrix-scaling steps, the memory de-
mand is often prohibitively high for GPU processing.

A number of recent works leverage implicit gradients as
an alternative to automatic differentiation [7,11,17,22,26]
to backpropagate through a Sinkhorn layer. Although such
approaches prove to be computationally inexpensive, a
downside is that corresponding algorithms are less straight-
forward to derive and implement. Hence, many application
works still rely on automatic differentiation [13, 25,39, 46,

]. Yet, the computational burden of automatic differen-
tiation might drive practitioners to opt for an insufficiently
small number of Sinkhorn iterations which in turn impairs
the performance as we experimentally verify in Sec. 5.

To date, existing work on implicit differentiation of
Sinkhorn layers suffers from two major limitations: (i) Most
approaches derive gradients only for very specific settings,
i.e. specific loss functions, structured inputs, or only a sub-
set of all inputs. Algorithms are therefore often not trans-
ferable to similar but distinct settings. (ii) Secondly, beyond
their empirical success, there is a lack of an in-depth theo-
retical analysis that supports the use of implicit gradients.

Our work provides a unified framework of implicit dif-
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ferentiation techniques for Sinkhorn layers. To encourage
practical adaptation, we provide a simple module that works
out-of-the-box for the most general formulation, see Fig. 2.
We can thus recover existing methods as special cases of
our framework, see Tab. 1 for an overview. Our contribu-
tion can be summarized as follows:

1. From first principles we derive an efficient algorithm
for computing gradients of a generic Sinkhorn layer.

2. We provide theoretical guarantees for the accuracy of
the resulting gradients as a function of the approxima-
tion error in the forward pass (Theorem 5).

3. Our PyTorch module can be applied in an out-of-the-
box manner to existing approaches based on automatic
differentiation. This often improves the quantitative
results while using significantly less GPU memory.

2. Related work

There is a vast literature on computational optimal trans-
port (OT) [33,43]. In the following, we provide an overview
of related machine learning applications. Our approach is
based on entropy regularized optimal transport pioneered by
[9]. The resulting differentiable Sinkhorn divergence can be
used as a loss function for training machine learning models
[8, 16, 18]. To allow for first-order optimization, two com-
mon approaches for computing gradients are implicit differ-
entiation [1 1,22, 26] and automatic differentiation [1, 19].
Relevant applications of the Sinkhorn divergence include
computing Wasserstein barycenters [10,27,41], dictionary
learning [40], as well as using a geometrically meaningful
loss function for autoencoders [3 | ] or generative adversarial
networks (GAN) [19,37].

More recently, several approaches emerged that use the
Sinkhorn operator as a differentiable transportation layer in
a neural network. Potential applications include permuta-
tion learning [28, 38], ranking [2, 12], sorting via reinforce-
ment learning [14], discriminant analysis [17] and comput-
ing matchings between images [39], point clouds [25,46,47]
or triangle meshes [13,29]. Most of these approaches rely
on automatic differentiation of the Sinkhorn algorithm to
address the resulting bilevel optimization problem. In our
work, we follow the recent trend of using implicit differ-
entiation for the inner optimization layer [3, 5, 20]. Other
approaches compute the input cost matrix via Bayesian in-
verse modeling [42] or smooth the OT linear assignment
problem (LAP) directly [34].

There are a number of methods that compute analytical
gradients of a Sinkhorn layer, see Tab. | for an overview.
The idea of our work is to provide a unifying framework
that generalizes specific methods, as well as providing addi-
tional theoretical insights. The pioneering work of Luise ef
al. [26] computes gradients for the Sinkhorn divergence

Method Viawpl Vel Vcl Loss Ob;.
Luise et al. [26] v X X Wasserstein dual
Klatt e al. [22] v X X Wasserstein ~ primal
Ablinetal. [1] v X X Wasserstein dual
Flamary et al. [17] X 4 X Discr. analysis  primal
Campbell et al. [7] X v v any primal
Xie et al. [45] X v v any dual
Cuturi etal. [11] v v X any dual
Ours v v v any primal

Table 1. Overview of prior work. We provide an overview of
related approaches that, like ours, derive implicit gradients of a
Sinkhorn layer. For each method, we denote admissible inputs,
i.e. which inputs are differentiated. In the most general case, we
want to optimize both the marginals a and b and the cost matrix
C defined in Sec. 3. As a special case, [11, 17] provide gradients
V = for low rank cost matrices of the form C; ; := ||@; — y,||5.
We furthermore denote which types of loss functions are permitted
and whether gradients are derived via the primal or dual objective.

loss, while optimizing for the marginals. [1] and [22] pro-
vide further theoretical analysis. Flamary et al. [17] com-
pute explicit gradients for the application of discriminant
analysis. However, they directly solve the linear system
specified by the implicit function theorem which leads to an
algorithmic complexity of O(n°). Similar to ours, [7] and
[45] compute gradients of the cost matrix C, but they as-
sume constant marginals. The recent approach by Cuturi et
al. [11] derives implicit gradients from the dual objective
for the special case of low rank cost matrices C(x, y).

3. Background

Optimal transport. Optimal transport enables us to com-
pute the distance between two probability measures on the
same domain  C R?. In this work, we consider dis-
crete probability measures p := > ", a;0, and v =
> i1 bjdy,, defined over the sets of points {z1,...,Zm}
and {y1,...,yn}, where d5, is the Dirac measure at x;.
Such measures are fully characterized by the probability
mass vectors a € A, and b € A,, that lie on the proba-
bility simplex

Ap,={aeR"a; >0,a'1,, =1}, (D)

where 1,, € R™ is the vector of all ones. We can then
define the distance between p and v as
d = i P,C)p. 2

(nv) = mmin (P, C)r 2
The transportation plan P € II(a, b) determines a discrete
probability measure on the product space {x1, ..., T} X
{y1,...,Yn}, Whose marginal distributions coincide with
1 and v. Consequently, P is contained in the transportation
polytope II(a, b) defined as

I(a,b) := {P e R}*"|Pl, =a,P 1, =b}. (3)
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Figure 2. Overview of a typical workflow with an embedded Sinkhorn layer. We consider a neural network whose inputs are e.g.
images, 3D point clouds, voxel grids, surface meshes, etc. The Sinkhorn layer maps the cost matrix C' and marginals a, b to the transporta-
tion plan P via iterative matrix scaling. During training, we compute respective gradients (V¢ f, Vaf, Vuf) in closed form via implicit
differentiation. Our algorithm applies to the most general formulation of the Sinkhorn operator: Both the cost matrix C' and marginals a, b
are learnable and the whole network potentially contains learnable weights before and after the Sinkhorn layer.

The cost matrix C' € R™*™ specifies the transportation cost
from individual points x; to y;. Choosing

Cij = |l —y;ll

forp > 1, e.g. yields the so-called Wasserstein distance
d(?) :W[Z;(7),SCC[ 1.

Entropy regularization. Evaluating the distance d(u, v)
in practice requires solving the linear assignment problem
(LAP) from Eq. (2). This can be done via specialized al-
gorithms like the Hungarian algorithm [23] or the Auction
algorithm [4], as well as recent solvers [32, 36]. However,
most approaches are computationally heavy and slow in
practice [9]. A popular alternative is augmenting the LAP
objective in Eq. (2) with an additional entropy regularizer,
giving rise to the Sinkhorn operator

Sx\(C,a,b) .= argmin (P,C)p — Ah(P), (4)
PcIl(a,b)

where A > 0 weights the regularization. The seminal work
of Cuturi et al. [9] shows that the additional entropy regu-
larization term h(P) = — 3, . P ;(log P; j—1) allows for
an efficient minimization of Eq. (4). Specifically, this can be
done via a scheme of alternating Sinkhorn projections

SE\O) :=exp <—iC> , and
Sy =TT (SY)). 5)

The operators 7.(S) = S @ (1,,1,;.8) ® (1,,b") and
T.(S) :=S©(S1,1,)) ® (al.l) correspond to renormal-
izations of the columns and rows of S (t), where ® denotes
the Hadamard product and @ denotes element-wise divi-
sion. As shown by [9], in the limit this scheme converges

to a minimizer Sgt) LimicN S of Eq. (4). In practice, we
can use a finite number of iterations 7 € N to achieve a
sufficiently small residual.

4. Method
4.1. Problem formulation

Integrating the Sinkhorn operator from Eq. (4) into deep
neural networks has become a popular tool for a wide range
of practical tasks, see our discussion in Sec. 2. A major con-
tributing factor is that the entropy regularization makes the
mapping Sy : R™*" x R™ x R™ — R™*" differentiable.
To allow for first-order-optimization, we need to compute

(C,a,b)
fo —

P*:=5,(C,a,b) and (6)
(VC€7 vaga Vb£)7 (7)

which denote the forward pass and the backpropagation of
gradients, respectively. Those expressions arise in the con-
text of a typical workflow within a deep neural network with
a scalar loss ¢ and learnable parameters before and/or after
the Sinkhorn operator S, see Fig. 2 for an overview.

A common strategy is to replace the exact forward pass
Sx(C,a,b) in Eq. (6) by the approximate solution Sg\T)
from Eq. (5). Like the original solution in Eq. (4), Sg\T)
is differentiable w.r.t. (C,a,b). Moreover, the mapping
(C,a,b) — Sg\T) consists of a small number of matrix
scaling operations that can be implemented in a few lines
of code, see Eq. (5).

4.2. Backward pass via implicit differentiation

The goal of this section is to derive the main result stated
in Theorem 3, which is the key motivation of our algorithm
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in Sec. 4.3. To this end, we start by reframing the optimiza-
tion problem in Eq. (4) in terms of its Karush—-Kuhn—Tucker
(KKT) conditions, see Appendix C.1 for a proof:

Lemma 1. The transportation plan P* is a global mini-
mum of Eq. (4) iff K(c, a, b, p*, a*, 3*) = 0, with

c+Alog(p*) + 1, @ a* +B* @ 1,
(1) @ In)p" —a ®)
(I, ®1,,)p* —b
where | := mn + m + n. Here, a* € R™ and B* €
R™ are the dual variables corresponding to the two equality
contraints in Eq. (3). We further define c, p* € R™" as the
vectorized versions of C, P* € R™*™ respectively, and
assume log(p) := —oo,p < 0.

K() =

Establishing this identity is an important first step to-
wards computing a closed-form gradient for the backward
pass in Eq. (7). It reframes the optimization problem in
Eq. (4) as aroot-finding problem [C(-) = 0. In the next step,
this then allows us to explicitly construct the derivative of
the Sinkhorn operator .S (+) via implicit differentiation, see
Appendix C.2 for a proof:

Lemma 2. The KKT conditions in Eq. (8) implicitly define
a continuously differentiable function (¢, a,b) — (p, o, 3)
with the Jacobian J € RU=1DXU=1) peing

) [P%OGB] [)\ diag(p)~* EN} -t
J=—"=— 2 . 9
9 [e; —a; —b ET 0 ©)

=K

For brevity we use the short hand notation [v;u] =
(", u']" for stacking vectors v,w vertically. Note that
the last entry of b := b_,, and 3 := (3_,, is removed. This
is due to a surplus degree of freedom in the equality condi-

tions from Eq. (3), see part (b) of the proof. Likewise, for

E — []]-'n, ® Im In ® ]]-'m] c ]:RHLHX(WL-‘:-TL)7 (10)
the last column is removed E := E. _(min)

In principle, we can use Lemma 2 directly to solve
Eq. (7). However, the computational cost of inverting the
matrix K in Eq. (9) is prohibitive. In fact, even storing the
Jacobian J in the working memory of a typical machine is
problematic, since it is a dense matrix with O(mn) rows
and columns, where m,n > 1000 in practice. Instead, we
observe that computing Eq. (7) merely requires us to com-
pute vector-Jacobian products (VJP) of the form v ' J. The
main results from this section can therefore be summarized
as follows, see Appendix C.3 for a proof:

Theorem 3 (Backward pass). For P = P*, the backward
pass in Eq. (7) can be computed in closed form by solving
the following linear system:

Adiag(p)~' E Vel 1 [-Vpt (11
BT o) [ Vgt | O]

4.3. Algorithm

In the previous section, we derived a closed-form expres-
sion of the Sinkhorn backward pass in Theorem 3. This
requires solving the sparse linear system in Eq. (11), which
has O(mn) rows and columns, and thus amounts to a worst-
case complexity of O(m?®n?) [17]. We can further reduce
the computation cost by exploiting the specific block struc-
ture of K, which leads to the following algorithm:

Algorithm 1: Sinkhorn operator backward
Input : Vpl, P, a,b
Olltpllt: ch, VQE, Vb€
1 T+ PoOVpL.
2T+ T _,, P+ P _,c R
3t@ «T1,. 80 « TT1,,.

, [Val] _ [diagl@) P ] [t@
Vil PT  diag(b) t®) |
5 Vpl [VBE; 0].

6 U Vall] +1,,Vp!'.
7 Vel 7)\71(T —-P0o U)

See Appendix A for a PyTorch implementation of this
algorithm. Most methods listed in Tab. 1 consider a special
case of the functional specified in Eq. (4). The resulting gra-
dients of Algorithm 1 are thereby, for the most part, consis-
tent with such specialized approaches. We now show that
the resulting gradients Vo f, Vo l, Vil from Algorithm 1
are indeed solutions of the linear system in Theorem 3.

Theorem 4. Let a,b be two input marginals and P = P*
the transportation plan resulting from the forward pass in
Eq. (6), then Algorithm 1 solves the backward pass Eq. (7).

Sketch of the proof. The main idea of this proof is showing
that Algorithm [ yields a solution V[c;a; B]E of the linear sys-
tem from Eq. (11). To that end, we leverage the Schur com-
plement trick which yields the following two expressions:

Viesl = (ET dizaug(p)EN)flEmr diag(p)Vpl. (12a)

Vel = A" (diag(p)Vypl — diag(p) EV . 5¢). (12b)

In Appendix C.4 we further show that these two identities
in their vectorized form are equivalent to Algorithm 1. [

4.4. Practical considerations

Error bounds. Theorem 4 proves that Algorithm 1 com-
putes the exact gradients V/l, Vo l, Vyl, given that P =
P* is the exact solution of Eq. (4). In practice, the opera-
tor S in Eq. (6) is replaced by the Sinkhorn approximation
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S{) from Eq. (5) for a fixed, finite 7 € N. This small dis-
crepancy in the approximation P = ng) ~ P* propagates
to the backward pass as follows:

Theorem 5 (Error bounds). Let P* := S)(C,a,b) be
the exact solution of Eq. (4) and let P(7) .= S/(\T)
be the Sinkhorn estimate from Eq. (5). Further, let
04,0-,C1,Co,€ >0, s.t. HP* P(T)H < € and that for
all P for which |P—P*||rp < ¢ we havemin; ; P, ; > o_,
max; ; P; ; < oy and the loss { has bounded derlvatlves
HV EHQ < Cj and HVZKHF < Cy. Fork = HET 2, Where

E' indicates the Moore-Penrose inverse of E, the difference
between the gradients N cl*,V o*,Vpl* of the exact P*
and the gradients V 07 N o0(7) NV l\7) of the approxi-
mate P(T), obtained via Algorithm 1, satisfy

[Viae) " = Viaw) (7| <

13
m”*(@+cﬁwy—ﬂﬂb (13
o_ g_

[Vt —Vet™ |- <

(13b)
. @< Q+@NP“PWM

We provide a proof in Appendix C.5, as well as an em-
pirical evaluation in Appendix B.1.

Computation cost. In comparison to automatic differen-
tiation (AD), the computation cost of Algorithm 1 is inde-
pendent of the number of Sinkhorn iterations 7. For square
matrices, m = n, the runtime and memory complexities of
AD are O(7n?). On the other hand, our approach has a run-
time and memory complexity of O(n?®) and O(n?) respec-
tively. We show empirical comparisons between the two ap-
proaches in Sec. 5.1. Another compelling feature of our ap-
proach is that none of the operations in Algorithm 1 explic-
itly convert the matrices P,Vpl,Vcl,--- € R™*" into
their vectorized form p, V0, V/l, - - € R™™. This makes
it computationally more efficient since GPU processing fa-
vors small, dense matrix operations over the large, sparse
linear system in Eq. (11).

Marginal probability invariance. As discussed in
Lemma 2, the last element of b needs to be removed to
make K invertible. However, setting the last entry of the
gradient V;, ¢ = 0 to zero still yields exact gradients: By
definition, the full marginal b is constrained to the probabil-
ity simplex A,,, see Eq. (1). In practice, we apply an a priori
softmax to b (and analogously a). For some applications,
b can be assumed to be immutable, if we only want to learn
the cost matrix C' and not the marginals @ and b. Overall,
this means that the gradient of b is effectively indifferent to
constant offsets of all entries, and setting V¢ = 0 does
not contradict the statement of Theorem 3.

5. Experiments

In Sec. 5.1, we empirically compare the computation
cost of Algorithm | to automatic differentiation (AD). In
Sec. 5.2 and Sec. 5.3, we show results on two common
classes of applications where we want to learn the marginals
a and the cost matrix C' respectively. We assume a fixed
GPU memory (VRAM) budget of 24GB — any setting that
exceeds this limit is deemed out of memory (OOM).

5.1. Computation cost

We empirically compare the computation cost of our
algorithm with the standard automatic differentiation ap-
proach, see Fig. 3. All results were computed on a single
NVIDIA Quadro RTX 8000 graphics card. In practice, the
computation cost of both approaches primarily depends on
the parameters m,n, 7. It is for the most part indifferent to
other hyperparameters and the actual values of C, a, b. We
therefore use random (log normal distributed) cost matrices
InC;; ~ N(0,1) and uniform marginals a = b = %ln
with m = n € {10, 100, 1000}. For each setting, we report
the cost of the forward and backward pass averaged over 1k
iterations. Depending on m, n, our approach is faster for
7 2 40,50, 90 iterations. Note that our backward pass is
independent of the number of forward iterations 7. Finally,
the memory requirements are dramatically higher for AD,
since it needs to maintain the computation graph of all 7
forward iterations. In practice, this often limits the admissi-
ble batch size or input resolution, see Sec. 5.2 and Sec. 5.3.

5.2. Wasserstein barycenters

The main idea of Barycenter computation is to interpo-
late between a collection of objects {by, ..., by} C R"asa
convex combination with weights that lie on the probability
simplex w € Ay, see Eq. (1). Specifically, we optimize

a* :=argmin » w;d(a,b; with (14)
agEAn ; )

d(a7b) zzperﬁl(g’b)<PaD>F - )‘h(P)a (15)

where D € R™ " denotes the squared pairwise distance
matrix between the domains of a and b. We use the Adam
optimizer [21] for the outer optimization in Eq. (14). The
inner optimization Eq. (15) is a special case of Eq. (4).
Overall, Eq. (14) allows us to compute geometrically mean-
ingful interpolations in arbitrary metric spaces. We consider
the explicit tasks of interpolating between images in Fig. 4
and functions on manifolds in Fig. 5. Note that there are
a number of specialized algorithms that minimize Eq. (14)
in a highly efficient manner [10,27,41]. In Appendix B.2,
we further show how to apply the barycenter technique to
image clustering on the MNIST dataset.
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Figure 3. Computational complexity. We compare the runtime per iteration (top row) and GPU memory requirements (bottom row) of
our approach (blue) and automatic differentiation (orange). We consider a broad range of settings with quadratic cost matrices of size
m = n € {10,100,1000} and 7 € [10,2000] Sinkhorn iterations. For the runtime, we show both the total time (solid lines) and the time
of only the backward pass (dashed lines). Both ours and AD were implemented in the PyTorch [30] framework, where memory is allocated
in discrete units, which leads to a large overlap for the minimum allocation size of 2MB (bottom row, left plot).

7=10 T=20 7 =250 7 =100 7T =200 7 =500
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AD % 4 &% & 2% % % % O (00M)
’.‘50’.‘&0'.‘50'.‘50

Figure 4. Wasserstein barycenter. A comparison between our method (top row) and AD (bottom row) on the application of image
barycenter computation. In each cell, we show 5 centroids of 4 input images (corners) with bilinear interpolation weights. The predictions
based on the proposed implicit gradients are more stable (providing more crisp interpolations), even for very few Sinkhorn iterations 7.
Moreover, AD is out of memory for 7 > 200. Here, the input images have a resolution of n = 642 and we set A\ = 0.002.

5.3. Permutation learning and matching

Number sorting. The Sinkhorn operator is nowadays a
standard tool to parameterize approximate permutations
within a neural network. One work that clearly demon-
strates the effectiveness of this approach is the Gumbel-
Sinkhorn (GS) method [28]. The main idea is to learn the
natural ordering of sets of input elements {z1, ..., z,}, see

Appendix B.3 for more details. Here, we consider the con-
crete example of learning to sort real numbers from the unit
interval z; € [0,1] for n € {200,500,1000} numbers.
We compare the implicit Sinkhorn module to the vanilla
GS method in Fig. 6. Without further modifications, our
method significantly decreases the error at test time, defined
as the proportion of incorrectly sorted elements.
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Input pair

AD (OOM)

Ours
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Figure 5. Manifold barycenter. We compute barycenters of two circular input distributions on the surface of a sphere (first row). Specit-
ically, we compare the results of minimizing Eq. (14) with AD (second row) and implicit gradients (third row). The sphere is discretized
as a triangular mesh with 5000 vertices. On this resolution, AD is out of memory for 7 > 200 Sinkhorn iterations whereas ours is still
feasible for 7 = 1000. The obtained interpolations produce the slightly elongated shape of an ellipse since the surface of the sphere has a
constant positive Gaussian curvature.

n = 200 n = 500 n = 1000
100 10° 10°
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# Sinkhorn iterations

# Sinkhorn iterations # Sinkhorn iterations

Figure 6. Number sorting. We show that we can improve the Gumbel-Sinkhorn method [28] directly with Algorithm 1. Specifically,
we consider the task of permutation learning to sort random number sequences of length n € {200,500, 1000}, see [28, Sec 5.1] for
more details. We replace AD in the GS network with implicit differentiation (blue curves) and compare the obtained results to the vanilla
GS architecture (orange curves). Our approach yields more accurate permutations while using much less computational resources — GS
is out of memory for 7 > 200, 100, 50 forward iterations, respectively. For all settings, we show the mean proportion of correct test set
predictions (solid lines), as well as the 10 and 90 percentiles (filled areas). The curves are to some degree noisy, since individual results
depend on a finite number of (random) test samples. Also, notice that the log-scale of the y-axis exaggerates small fluctuations for 7 > 100.

Point cloud registration. Several recent methods use the the vanilla RPM-Net [47], our module generalizes more ro-

Sinkhorn operator as a differentiable, bijective matching
layer for deep learning [13, 25, 39,46, 47]. Here, we con-
sider the concrete application of rigid point cloud registra-
tion [47] and show that we can improve the performance
with implicit differentiation, see Tab. 2. While our results
on the clean test data are comparable but slightly worse than

bustly to partial and noisy observations. This indicates that,
since computing gradients with our method is less noisy
than AD, it helps to learn a robust matching policy that is
overall more consistent, see Fig. 7 for qualitative compar-
isons. We provide further details on the RPM-Net baseline
and more qualitative results in Appendix B.3.
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artial nois
clean data | o0, p80% 70% o =0001 o= oy,01 o=0.1
RouMAE () RPM | 00299 | 411427 47.848 525045 183886  28.1436 431884
Ours | 0.1371 | 44955 11.0519 209274 | 1.0238 12548 22272
Trans. MAE () RPM | 00002 | 01743 02126 02490 | 0.0848 0.1187 _ 0.1770
Ours | 00015 | 00484 00995 0.1578 | 0.0096 00113 00171
Chamt. dise. () RPM | 00005 | 43413 46829 49581 | 22077 30492 4.6935
- dist. Ours | 00054 | 05498 14291 22080 | 0.0783 0.1237  0.4562

Table 2. Point cloud registration. We compare the quantitative performance of RPM-Net [47] and implicit differentiation on ModelNet40
[44]. The two architectures are identical except for the altered Sinkhorn module. For all results, we follow the training protocol described
in [47, Sec. 6]. Moreover, we assess the ability of the obtained networks to generalize to partial and noisy inputs at test time. For the
former, we follow [47, Sec. 6.6] and remove up to 70% of the input point clouds from a random half-space. For the noisy test set, we
add Gaussian white noise A/ (0, o) with different variances o € {0.001,0.01,0.1}. For all settings, we report the rotation and translation
errors, as well as the Chamfer distance to the reference surface. The latter is scaled by a factor of 1e2 for readability.

Clean

Input

Ours RPM-Net

Ours

Noisy o = 0.1 Partial 70%

B

RPM-Net

RPM-Net

Ours

Figure 7. Point cloud registration. Qualitative comparisons of RPM-Net [47] and the improved version based on implicit differentiation.
In each row, we show a different test pair with the input pose X (1st column, blue), as well as the overlap of the reference pose Y (orange)
and the predicted pose (blue) for the clean, noisy, and partial settings. Both approaches work well for the clean data, but ours generalizes

more robustly to noisy and partial pairs.

6. Conclusion

We presented a unifying framework that provides ana-
lytical gradients of the Sinkhorn operator in its most gen-
eral form. In contrast to more specialized approaches [7, 11,
17,22,26], our algorithm can be deployed in a broad range
of applications in a straightforward manner. Choosing the
number of Sinkhorn iterations 7 € N is generally subject to
a trade-off between the computation cost and accuracy. The
main advantage of implicit differentiation is that it proves
to be much more scalable than AD, since the backward
pass is independent of 7. Our experiments demonstrate that
combining the implicit Sinkhorn module with existing ap-
proaches often improves the performance. We further pro-
vide theoretical insights and error bounds that quantify the
accuracy of Algorithm 1 for noisy inputs.

Limitations & societal impact In our view, one of the
main limitations of Algorithm 1 is that AD results in a faster
training time for very few iterations 7 ~ 10. Whether this is
offset by the empirically more stable training (see Sec. 5.2
and Sec. 5.3) has to be judged on a case-by-case basis. In
terms of the societal impact, one of the major advantages
of our method is that it reduces computation time and GPU
memory demand of Sinkhorn layers within neural networks.
It thereby has the potential to make such techniques more
accessible to individuals and organizations with limited ac-
cess to computational resources.
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