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Abstract

Metric learning aims to learn a highly discriminative
model encouraging the embeddings of similar classes to
be close in the chosen metrics and pushed apart for dis-
similar ones. The common recipe is to use an encoder
to extract embeddings and a distance-based loss function
to match the representations — usually, the Euclidean dis-
tance is utilized. An emerging interest in learning hyper-
bolic data embeddings suggests that hyperbolic geometry
can be beneficial for natural data. Following this line of
work, we propose a new hyperbolic-based model for metric
learning. At the core of our method is a vision transformer
with output embeddings mapped to hyperbolic space. These
embeddings are directly optimized using modified pairwise
cross-entropy loss. We evaluate the proposed model with six
different formulations on four datasets achieving the new
state-of-the-art performance. The source code is available
at https://github.com/htdt/hyp_metric.

1. Introduction

Metric learning task formulation is general and intu-
itive: the obtained distances between data embeddings
must represent semantic similarity. It is a typical cogni-
tive task to generalize similarity for new objects given some
examples of similar and dissimilar pairs. Metric learn-
ing algorithms are widely applied in various computer vi-

sion tasks: content-based image retrieval [32,46,47], near-
duplicate detection [65], face recognition [27, 44], person
re-identification [5, 63], as a part of zero-shot [47] or few-

shot learning [38,45,50].

Modern image retrieval methods can be decomposed into
roughly two components: the encoder mapping the image
to its compact representation and the loss function govern-
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ing the training process. Encoders with backbones based
on transformer architecture have been recently proposed
as a competitive alternative to previously used convolu-
tional neural networks (CNNs). Transformers lack some of
CNN’s inductive biases, e.g., translation equivariance, re-
quiring more training data to achieve a fair generalization.
On the other hand, it allows transformers to produce more
general features, which presumably can be more beneficial
for image retrieval [3, 8], as this task requires generalization
to unseen classes of images. To alleviate the issue above,
several training schemes have been proposed: using a large
dataset [7], heavily augmenting training dataset and using
distillation [53], using self-supervised learning scenario [3].

The choice of the embedding space directly influences
the metrics used for comparing representations. Typically,
embeddings are arranged on a hypersphere, i.e. the output
of the encoder is Lo normalized, resulting in using cosine
similarity as a distance. In this work, we propose to con-
sider the hyperbolic spaces. Their distinctive property is the
exponential volume growth with respect to the radius, un-
like Euclidean spaces with polynomial growth. This feature
makes hyperbolic space especially suitable for embedding
tree-like data due to increased representation power. The
paper [42] shows that a tree can be embedded to Poincaré
disk with an arbitrarily low distortion. Most of the natu-
ral data is intrinsically hierarchical, and hyperbolic spaces
suit well for its representation. Another desirable property
of hyperbolic spaces is the ability to use low-dimensional
manifolds for embeddings without sacrificing the model ac-
curacy and its representation power [34].

The goal of the loss function is straightforward: we want
to group the representations of similar objects in the embed-
ding space while pulling away representations of dissimilar
objects. Most loss functions can be divided into two cat-
egories: proxy-based and pair-based [23]. Additionally to
the network parameters, the first type of losses trains prox-
ies, which represent subsets of the dataset [32]. This proce-
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Figure 1. Overview of the proposed method. Two images representing one class (positives) are encoded with the vision transformer,
projected into a space of a lower dimension with a fully connected (FC) layer, and then mapped to a hyperbolic space. Blue stars depict
the resulting embeddings. Poincaré disk is shown with uniform triangle tiling on the background to illustrate the manifold curvature. Gray
circles represent other samples from the batch (negatives). Finally, arrows in the disk represent distances used in the pairwise cross-entropy
loss. Positives are pushed closer to each other, negative are pulled far apart.

dure can be seen from a perspective of a simple classifica-
tion task: we train matching embeddings, which would clas-
sify each subset [33]. At the same time, pair-based losses
operate directly on the embeddings. The advantage of pair-
based losses is that they can account for the fine-grained in-
teractions of individual samples. Such losses do not require
data labels: it is sufficient to have pair-based relationships.
This property is crucial for a widely used pairwise cross-
entropy loss in self-supervised learning scenario [4, 17,55].
Instead of labels, the supervision comes from a pretext task,
which defines positive and negative pairs. Inspired by these
works, we adopt pairwise cross-entropy loss for our experi-
ments.
The main contributions of our paper are the following:

* We propose to project embeddings to the Poincaré ball
and to use the pairwise cross-entropy loss with hy-
perbolic distances. Through extensive experiments,
we demonstrate that the hyperbolic counterpart outper-
forms the Euclidean setting.

* We show that the joint usage of vision transformers,
hyperbolic embeddings, and pairwise cross-entropy
loss provides the best performance for the image re-
trieval task.

2. Method

We propose a new metric learning loss that combines
representative expressiveness of the hyperbolic space and
the simplicity and generality of the cross-entropy loss. The
suggested loss operates in the hyperbolic space encourag-
ing the representatives of one class (positives) to be closer
while pushing the samples from other categories (negatives)
away.

The schematic overview of the proposed method is de-
picted at Figure 1. The remainder of the section is organized
as follows. We start with providing the necessary prelimi-
naries on hyperbolic spaces in Section 2.1, then we discuss
the loss function in Section 2.2 and, finally, we briefly de-
scribe the architecture and discuss pretraining schemes in
Section 2.5.

2.1. Hyperbolic Embeddings

Formally, the n-dimensional hyperbolic space H" is a
Riemannian manifold of constant negative curvature. There
exist several isometric models of hyperbolic space, in our
work we stick to the Poincaré ball model (D7, g”) with
the curvature parameter c (the actual curvature value is then
—c?). This model is realized as a pair of an n-dimensinal
ball D" = {z € R": ¢||z|? < 1,¢ > 0} equipped Wlth
the Riemannian metric ¢° = )\Cg where A\, = W
is the conformal factor and g = I, is Euclidean metric
tensor. This means, that local distances are scaled by the
factor A, approaching infinity near the boundary of the ball.
This gives rise to the ‘space expansion‘ property of hyper-
bolic spaces. While, in the Euclidean spaces, the volume
of an object of a diameter r scales polynomially in r, in
the hyperbolic space, such volumes scale exponentially with
r. Intuitively, this is a continuous analogue of trees: for a
tree with a branching factor k, we obtain O(k?) nodes on
the level d, which in this case serves as a discrete analogue
of the radius. This property allows us to efficiently embed
hierarchical data even in low dimensions, which is made
precise by embedding theorems for trees and complex net-
works [42].

Hyperbolic spaces are not vector spaces; to be able to
perform operations such as addition, we need to introduce a
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so-called gyrovector formalism [54]. For a pair x,y € D7,
their addition is defined as

(1+2¢c(x,y) +cllyl*)x + (1 — cllx[I*)y

Ly = (1
<oy T 2 ) + 2Py M

The hyperbolic distance between x,y € D7 is defined in
the following manner:

Dpyp(x,y) = larctanh(\/EH -x®:¥l). @
Ve
Note that with ¢ — 0 the distance function (2) reduces
to Euclidean: lim._,o Dp,p(x,y) = 2|x — y||
We also need to define a bijection from Euclidean space
to the Poincaré model of hyperbolic geometry. This map-
ping is termed exponential while its inverse mapping from
hyperbolic space to Euclidean is called logarithmic.
For some fixed base point x € D7, the exponential map-
ping is a function expg : R™ — D7 defined as:

AC
exps(v) = x D, <tanh (ﬁ X|2|V|> \/EHVH) 3)

The base point x is usually set to 0 which makes formulas
less cumbersome and empirically has little impact on the
obtained results.

To train our model, we take a sample x;, pass it through
the encoder and project the output to hyperbolic space; the
resulted representation in hyperbolic space is denoted as z;.
Since our pairwise cross-entropy loss is based on hyperbolic
distances, we do not project z; back to Euclidean space and
use only the exponential mapping.

2.2. Pairwise Cross-Entropy Loss

At each iteration, we sample N different categories of
images and two samples per category. In this case, the total
number of samples (batch size) is K = 2N consisting of NV
positive pairs.

Additionally to hyperbolic distance, we define the dis-
tance with the cosine similarity, implemented with a
squared Euclidean distance between normalized vectors:

2
Z; Z;

lZilly 251l

_ (2i,2;)

- 1Zill5 - Il
“)

The loss function for a positive pair (7, j) is defined as

Dcos(zivzj) = ‘

exp (—=D(z;,2;)/7)
K )
Zk:l,k;ﬁi exp (—D(zi,21)/7)
where D is a distance (Dp,yp, or D) and 7 is a temperature

hyperparameter. The total loss is computed for all positive
pairs, both (4, j) and (j, 7), in a batch.

li’j = — 10g (5)

CUB-200 Cars-196 SOP  In-Shop

ViT-S 0.280 0.339 0.271  0.313
DeiT-S 0.294 0.343 0.270  0.323
DINO 0.315 0.327 0.301  0.318

Table 1. d-hyperbolicity values calculated for the embeddings ob-
tained from different encoders. We can see that the § values are
fairly consistent with respect to different feature extractors. Lower
0 values indicate a higher degree of data hyperbolicity.

If the total number of categories is small and a larger
batch size is more suitable from the optimization perspec-
tive, it is possible to sample more than two samples per cat-
egory. In this case, we sample d images per each category,
d > 2. We divide the batch K = dN into d subsets with
each subset consisting of N samples from different cate-
gories. Next, we obtain the loss value for each pair of sub-
sets, as defined Equation (5), summing them up for the final
value.

2.3. 5-hyperbolicity

While the curvature value of an underlying manifold for
embedding is often neglected, a more efficient way is to es-
timate it for each dataset specifically. Following the analysis
in [22], we estimate a ‘measure’ of the data hyperbolicity.
This evaluation is made through the computation of the so-
called Gromov §. Its calculation requires first computing
Gromov product for points x,y,z € X:

(4:9)e = 3 (dla.y) +d(@,2) (3 2), 6

where (X,d) is an arbitrary metric space. For a set of
points, we compute the matrix M of pairwise Gromov prod-
ucts (6). The § value is then defined as the largest entry in
the matrix (M ®M)— M. Here, ® denotes the min-max ma-
trix product defined as (A ® B);; = maxy min{A;, By, }
[10].

Being rescaled between 0 and 1, the relative §-
hyperbolicity reflects how close to the hyperbolic the hid-
den structure is: values tending to O show the higher degree
of intrinsic data hyperbolicity. The ¢ value is related to the
optimal radius of the Poincaré ball for embeddings through
the following expression ¢(X) = (2444)2. We adopt the
procedure described in [22] and evaluate ¢ for image em-
beddings extracted using three encoders: ViT-S, DeiT-S and
DINO (described in Section 2.5). Tab. 1 highlights the ob-
tained relative ¢ values for CUB-200, Cars-196, SOP and
In-Shop datasets.

2.4. Feature Clipping

The paper [15] empirically shows that a hyperbolic neu-
ral network tends to have vanishing gradients since it pushes
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the embeddings close to the boundary of Poincaré ball,
making the gradients of Euclidean parameters vanish. To
avoid numerical errors when dealing with hyperbolic neural
networks, the common approach is to perform clipping by
norm on the points in the Poincare ball; the standard norm
value is ﬁ(l —1075). Instead, the paper [15] proposes to
augment this procedure with an additional technique called
feature clipping:

. r
xg:mln{l,m}-xE, @)

where x¥ lies in the Euclidean space, xZ is its clipped
counterpart and r is a new effective radius of the Poincaré
ball. Intuitively, this allows us to push embeddings further
away from the boundary and avoid the vanishing gradients
problem; in the experiments of [15] it led to a consistent
improvement over baselines.

2.5. Vision Transformers

In our experiments, we use ViT architecture introduced
by [7]. The input image is sliced into patches of size 16 x 16
pixels. Each patch is flattened and then linearly projected
into an embedding. The resulting vectors are concatenated
with position embeddings. Also, this set of vectors includes
an additional “classification” token. Note that in our case,
this token is used to obtain the image embedding, but we do
not train a standard classifier as in [7]. For consistency with
previous literature, we name this token [class]. The set
of resulting vectors is fed into a standard transformer en-
coder [56]. It consists of several layers with multiheaded
self-attention (MSA) and MLP blocks, with a LayerNorm
before and a residual connection after each block. The out-
put for the transformer encoder for the [class] token is
used as the final image representation. For more details, we
refer to [7].

ViT-S [48] is a smaller version of ViT with 6 heads in
MSA (base version uses 12 heads). This architecture is
similar to ResNet-50 [18] in terms of number of parame-
ters (22M for ViT-S and 23M for ResNet-50) and computa-
tional requirements (8.4 FLOPS for ViT-S and 8.3 FLOPS
for ResNet-50). This similarity makes it possible to fairly
compare with previous works based on ResNet-50 encoder,
for this reason, we employ this configuration for our exper-
iments. A more thorough description is available in [48].

Vision transformers, compared to CNNSs, require more
training signal. One solution, as proposed in [7], is to
use a large dataset. ImageNet-21k [0] contains approxi-
mately 14M images classified into 21K categories. ViT-
S, pretrained on ImageNet-21k, is publicly available [48];
we include it in our experiments. Another solution, DeiT-
S [53], is based on the same (ViT-S) architecture and is
trained on a smaller ImageNet-1k dataset [41] (a subset
of ImageNet-21k consisting of about 1.3M training im-

ages and 1K categories). An additional training signal is
provided by teacher-student distillation, with a CNN-based
teacher [53].

The third solution used in our experiments, DINO [3],
is based on self-supervised training. In this case, the model
ViT-S is trained on the ImageNet-1k dataset [41] without
labels. The encoder must produce consistent output for dif-
ferent parts of an image, obtained using augmentations (ran-
dom crop, color jitter, and others). This training scheme is
in line with the image retrieval task; in both cases, the en-
coder is explicitly trained to produce similar output for se-
mantically similar input. However, the goal of these tasks is
different: self-supervised learning provides pretrained fea-
tures, which are then used for other downstream tasks, while
for image retrieval resulting features are directly used for
the evaluation.

3. Experiments

We follow a widely adopted training and evaluation pro-
tocol [23] and compare several versions of our method
with current state-of-the-art on four benchmark datasets for
category-level retrieval. We include technical details of
datasets, our implementation and training details, and fi-
nally, present empirical results. There are two types of ex-
periments, first, we compare with the state-of-the-art, and
then we investigate the impact of hyperparameters (encoder
patch size, manifold curvature, embedding size and batch
size).

3.1. Datasets

CUB-200-2011 (CUB) [61] includes 11,788 images with
200 categories of bird breeds. The training set corresponds
to the first 100 classes with 5,864 images, and the remain-
ing 100 classes with 5,924 images are used for testing. The
images are very similar; some breeds can only be distin-
guished by minor details, making this dataset challenging
and, at the same time, informative for the image retrieval
task. Cars-196 (Cars) [25] consists of 16,185 images repre-
senting 196 car models. First 98 classes (8,054 images) are
used for training and the other 98 classes (8,131 images) are
held out for testing. Stanford Online Product (SOP) [47]
consists of 120,053 images of 22,634 products downloaded
from eBay.com. We use the standard split: 11,318 classes
(59,551 images) for training and remaining 11,316 classes
(60,502 images) for testing. In-shop Clothes Retrieval (In-
Shop) [28] consists of 7,986 categories of clothing items.
First 3,997 categories (25,882 images) are for training, the
remaining 3,985 categories are used for testing partitioned
into a query set (14,218 images) and a gallery set (12,612
images).
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3.2. Implementation Details

We use ViT-S [48] as an encoder with three types of pre-
training (ViT-S, DeiT-S and DINO), details are presented
in Section 2.5. The linear projection for patch embeddings
as a first basic operation presumably corresponds to low-
level feature extraction, so we freeze it during fine-tuning.
The encoder outputs a representation of dimensionality 384,
which is further plugged into a head linearly projecting the
features to the space of dimension 128. We initialize the bi-
ases of the head with constant 0 and weights with a (semi)
orthogonal matrix [43]. We include two versions of the
head: with a projection to a hyperbolic space (“Hyp-") and
with projection to a unit hypersphere (“Sph-"). In the first
case, we use curvature parameter ¢ = 0.1 (in Section 3.4
we investigate how it affects the method’s performance),
temperature 7 = 0.2 and clipping radius (defined in Sec-
tion 2.4) » = 2.3. For spherical embeddings, we use tem-
perature 7 = 0.1.

To evaluate the model performance, for the encoder, we
compute the Recall@K metric for the output with distance
D.,s (Eq. (4)); for the head, we use D, ,s for “Sph-" ver-
sion and hyperbolic distance Dy, (Eq. (2)) for “Hyp-" ver-
sion. We resize the test images to 224 (256 for CUB) on
the smaller side and take one 224 x 224 center crop. Note
that some methods use images of higher resolution for train-
ing and evaluations, e.g., ProxyNCA++ [52] use 256 x 256
crops indicating that smaller 227 x 227 crops degrade the
performance by 4.3% on CUB. However, 224 x 224 is the
default size for encoders considered in our work; moreover,
some recent methods, such as IRTg [8], use this size for
experiments.

We use the AdamW optimizer [29] with a learning rate
value 1 x 10~° for DINO and 3 x 10~° for ViT-S and DeiT-
S. The weight decay value is 0.01, and the batch size equals
900. The number of optimizer steps depends on the dataset:
200 for CUB, 600 for Cars, 25000 for SOP, 2200 for In-
Shop. The gradient is clipped by norm 3 for a greater sta-
bility. We apply commonly used data augmentations: ran-
dom crop resizing the image to 224 x 224 using bicubic
interpolation combined with a random horizontal flip. We
train with Automatic Mixed Precision in 02 mode '. All
experiments are performed on one NVIDIA A100 GPU.

3.3. Results

Tab. 2 highlights the experimental results for the 128-
dimensional head embedding and the results for 384-
dimensional encoder embedding are shown in Tab. 3. We
include evaluation of the pretrained encoders without train-
ing on the target dataset in Tab. 3 for reference. On the
CUB dataset, we can observe the solid performance of
methods with ViT encoder; the gap between the second-

lhttps://qithub.com/NVIDIA/apex

best method IRTr and Hyp-ViT is 9%. However, the main
improvement comes from the dataset used for pretraining
(ImageNet-21k), since Hyp-DINO and Hyp-DeiT demon-
strate a smaller improvement, while baseline ViT-S with-
out finetuning shows strong performance. We hypothesize
that this is due to the presence of several bird classes in the
ImageNet-21k dataset encouraging the encoder to separate
them during the pretraining phase.

For the SOP and In-Shop datasets, the difference be-
tween Hyp-ViT and Hyp-DINO is minor, while, for Cars-
196, Hyp-DINO outperforms Hyp-ViT with a significant
margin. These results confirm that both pretraining schemes
are suitable for the considered task. The versions with DeiT
perform worse compared to ViT- and DINO-based encoders
while outperforming CNN-based models. This observation
confirms the significance of vision transformers in our ar-
chitecture. The experimental results suggest that hyperbolic
space embeddings consistently improve the performance
compared to spherical versions. Hyperbolic space seems
to be beneficial for the embeddings, and the distance in hy-
perbolic space suits well for the pairwise cross-entropy loss
function. At the same time, our sphere-based versions per-
form well compared to other methods with CNN encoders.

Figure 2 illustrates how learned embeddings are ar-
ranged on the Poincaré disk. We use UMAP [31] method
with the “hyperboloid” distance metric to reduce the dimen-
sionality to 2D for visualization. For the training part, we
can see that samples are clustered according to labels, and
each cluster is pushed closer to the border of the disk, indi-
cating that the encoder separates classes well. However, for
the testing part, the structure is more complex. We observe
that some of the samples tend to move towards the center
and intermix, while others stay in clusters, showing possi-
ble hierarchical relationships. We can see that car images
are grouped by several properties: pose, color, shape, etc.

3.4. Impact of Hyperparameters

In this section, we investigate the impact of the values of
the hyperparameters on the model performance.

Encoder patch size. ViT architecture does not process
each pixel independently; for computational feasibility, the
input image is sliced into patches projected into the initial
embeddings. The default size of the patch is 16 x 16, al-
though considering other values is also possible. The exper-
iments in [3] have demonstrated a significant performance
gain from smaller 8 x 8 patches for self-supervised learn-
ing. In this case, the number of parameters of the encoder
does not change; however, it requires processing 4 X more
embeddings, which allows the encoder to learn more com-
plex dependencies between patches. We add an experiment
with this setup in Tab. 4 demonstrating a substantial perfor-
mance improvement (+4.4%) compared to the default con-
figuration. In this case, we use the same training procedure,
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Method CUB-200-2011 (K) Cars-196 (K) SOP (K) In-Shop (K)

1 2 4 8 1 2 4 8 1 10 100 1000 | 1 10 20 30
Margin [62] 63.9 753 844 90.6|79.6 865 919 951|727 862 93.8 98.0 | - - - -
FastAP [2] - - - - - - - - | 73.8 88.0 949 983 - - - -
NSoftmax [64] | 56.5 69.6 79.9 87.6|81.6 887 934 963|752 887 952 - 86.6 96.8 97.8 983
MIC [40] 66.1 768 856 - |82.6 89.1 932 - |772 894 946 - 88.2 970 - 98.0
XBM [59] - - - - - - - - | 80.6 91.6 96.2 98.7 |91.3 97.8 984 98.7
IRTR [8] 72.6 819 887 928 - - - - | 834 93.0 97.0 99.0 |91.1 98.1 98.6 99.0
Sph-DeiT 733 824 88.7 93.0|773 854 91.1 944|825 93.1 973 992 8.3 97.0 979 984
Sph-DINO 76.0 847 90.3 94.1|81.9 887 92.8 958 |82.0 923 969 99.1 | 904 973 98.1 98.5
Sph-ViT 832 89.7 936 958|785 86.0 909 943|825 929 974 993 |90.8 97.8 985 98.8
Hyp-DeiT 747 845 90.1 94.1|82.1 89.1 934 963 |83.0 934 975 992 1909 979 98.6 98.9
Hyp-DINO 78.3 86.0 91.2 94.7|86.0 919 952 97.2|84.6 941 97.7 993 1926 984 99.0 99.2
Hyp-ViT § 84.0 90.2 94.2 96.4 | 82.7 89.7 939 962|855 949 98.1 994 |92.7 984 989 99.1

Table 2. Recall@K metric for four datasets for 128-dimensional embeddings. The 6 versions of our method are listed in the bottom
section, evaluated for head embeddings. “Sph-" are versions with hypersphere embeddings optimised using D..s (Eq. (4)), “Hyp-" are
versions with hyperbolic embeddings optimised using Dpyp (Eq. (2)). “DeiT”, “DINO” and “ViT” indicate type of pretraining for the
vision transformer encoder. Margin, FastAP, MIC, XBM, NSoftmax are based on ResNet-50 [1&] encoder, IRTr is based on DeiT [53].

§ pretrained on the larger ImageNet-21k [6].

.| CUB-200-2011 (K) Cars-196 (K) SOP (K) In-Shop (K)
Method Dim| sy s |1 2 4 8|1 10 100 1000 1 10 20 30
A-BIER [36] 512 |57.5 68.7 78.3 86.2|82.0 89.0 932 96.1|74.2 869 940 97.8|83.1 951 96.9 97.5
ABE [24] 512 |60.6 71.5 79.8 87.4[852 90.5 94.0 96.1|76.3 88.4 94.8 982|873 96.7 97.9 982
SM [49] 512 |56.0 68.3 78.2 86.3[83.4 89.9 939 96.5(753 87.5 93.7 97.4|90.7 97.8 98.5 98.8
XBM [59] 512 |65.8 75.9 84.0 89.982.0 88.7 93.1 96.1|79.5 90.8 96.1 98.7 |89.9 97.6 98.4 98.6
HTL [13] 512 |57.1 68.8 78.7 86.5|81.4 88.0 92.7 95.7|74.8 88.3 94.8 98.4 |80.9 943 958 97.2
MS [5¢] 512 1657 77.0 86.3 91.2[84.1 904 94.0 96.5|78.2 90.5 96.0 98.7 |89.7 97.9 98.5 98.8
SoftTriple [37] 512 | 65.4 764 84.5 90.4(84.5 90.7 945 969|78.6 86.6 91.8 954 | - - - -
HORDE [20] 512 |66.8 77.4 85.1 91.0(86.2 91.9 95.1 97.2(80.1 91.3 962 98.7 |90.4 97.8 98.4 98.7
Proxy-Anchor [23]| 512 | 68.4 79.2 86.8 91.6|86.1 91.7 95.0 97.3|79.1 90.8 96.2 98.7 |91.5 98.1 98.8 99.1
NSoftmax [64] 512 |61.3 73.9 83.5 90.0|842 90.4 944 969|782 90.6 962 - |86.6 97.5 98.4 98.8
ProxyNCA++[52] | 512 [69.0 79.8 87.3 92.7|86.5 92.5 95.7 97.7|80.7 92.0 96.7 98.9|90.4 98.1 98.8 99.0
IRTg [¢] 384 |76.6 85.0 91.1 943| - - - - [842 937 973 99.1|91.9 98.1 98.7 98.9
ResNet-50 [18] T | 2048|412 53.8 66.3 77.5|41.4 53.6 66.1 76.6]50.6 66.7 80.7 93.0 258 49.1 56.4 60.5
DeiT-S [53] 1 384 |70.6 81.3 88.7 93.5|52.8 65.1 762 853|583 73.9 859 954 (379 647 72.1 75.9
DINO [3] 384 |70.8 81.1 88.8 93.5|42.9 53.9 642 744|634 78.1 883 96.0 [46.1 71.1 77.5 81.1
VIT-S [48] T § 384 |83.1 90.4 944 965|478 60.2 722 82.6|62.1 77.7 89.0 96.8 [432 702 76.7 80.5
Sph-DeiT 384 [76.2 845 902 94.3|81.7 88.6 93.4 962[82.5 92.9 972 99.1|89.6 97.2 98.0 98.4
Sph-DINO 384 |78.7 86.7 91.4 94.9/86.6 91.8 952 97.4[822 92.1 96.8 98.9|90.1 97.1 98.0 98.4
Sph-ViT 384 [85.1 90.7 94.3 96.4|81.7 89.0 93.0 95.8|82.1 92.5 97.1 99.1|90.4 97.4 982 98.6
Hyp-DeiT 384 |77.8 86.6 91.9 95.1|86.4 922 955 97.5(833 93.5 97.4 99.1|90.5 97.8 98.5 98.9
Hyp-DINO 384 [80.9 87.6 92.4 95.6/89.2 94.1 96.7 98.1[85.1 944 97.8 99.3|92.4 98.4 98.9 99.1
Hyp-ViT 384 |85.6 91.4 94.8 96.7/86.5 92.1 953 97.3(85.9 94.9 98.1 99.5|92.5 983 98.8 99.1

Table 3. Recall@K metric for four datasets, “Dim” column shows the dimensionality of embeddings. The 6 versions of our method are
listed in the bottom section, evaluated for encoder embeddings, titles are described in Table 2. Encoders by method: A-BIER, ABE, SM:

GoogleNet [

]; XBM, HTL, MS, SoftTriple, HORDE, Proxy-Anchor: Inception with batch normalization [

]; NSoftmax, ProxyNCA++:

ResNet-50 [18]; IRTg: DeiT [53]. T pretrained encoders without training on the target dataset. ¥ pretrained on the larger ImageNet-21k [6].
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Test Train

Figure 2. Hyp-DINO embeddings for Cars-196 dataset (training
and evaluation sets) on the Poincaré disk. Each point inside the
disk corresponds to a sample, different colors indicate different
classes. Images of cars are plotted preserving neighborhood rela-
tions of samples.

. Recall@K
Method Dim 1 N 4 3
NSoftmax [64] 2048 | 89.3 94.1 96.4 98.0

ProxyNCA++ [52] | 2048 | 90.1 94.5 97.0 984

Hyp-DINO 16 x 16 | 128 | 86.0 91.9 952 972
Hyp-DINO8 x 8 | 128 | 904 947 97.0 982
Hyp-DINO 16 x 16 | 384 | 89.2 94.1 96.7 98.1
Hyp-DINOS x 8 | 384 | 92.8 962 97.8 98.8

Table 4. First two rows represent current best overall result
for Cars-196 dataset with ResNet-50 encoder. Our method
(Hyp-DINO) is presented with 8 x 8 and 16 x 16 patch sizes.

described in Section 3.2, with the batch size equal to 120.
Manifold curvature. Tab. 5 shows the model perfor-
mance depending on the curvature value c. We observe that
the method is robust in the range (0.01,0.3) while larger
values lead to degradation. Notably, the accuracy of the
head degrades faster since the hyperbolic distance is also
used in the evaluation and the imprecision in this parameter
immediately affects the output. The radius of the ball is in-
versely proportional to the c value. Intuitively, if the c value
tends to 0, the radius tends to infinity, making the ball as

Parameter ‘ Encoder(384) Head
Default ‘ 92.4 92.6
c=0.01 92.3 92.6
c=0.05 92.4 92.6
c=0.3 92.3 92.0
c=10.5 91.8 91.0
c=1.0 90.0 89.2
Head dim. 16 88.6 83.3
Head dim. 32 90.2 89.6
Head dim. 64 91.6 91.7
Batch size 200 92.0 91.9
Batch size 400 92.5 92.5
Batch size 1600 92.4 92.6

Table 5. Recall@1 metric for various hyperparameters for Hyp-
ViT configuration on In-Shop dataset. Default configuration is ¢ =
0.1, head dimensionality 128, batch size 900.

flat as the Euclidean space; in contrast, larger ¢ values cor-
respond to a steeper configuration. Note that according to §
values (Tab. 1), the estimated value of ¢ is close to 0.2, de-
pending on the dataset and encoder. However, smaller val-
ues tend to provide better stability; we believe this is due to
an optimisation process that can be improved for the hyper-
bolic space. For this reason, we adjusted the default value
towards a smaller 0.1 (Section 3.2).

Embedding size and batch size. As expected, lower
output dimensionality leads to lower recall values. How-
ever, taking into account a high data variability (3,985 cat-
egories in the test set), the experimental results suggest that
the method has a reasonable representation power even in
the case of lower dimensions.

The batch size directly influences the number of nega-
tive examples during the training phase; thus, intuitively,
larger values have to be more profitable for the model per-
formance. However, as the experiments show (Tab. 5), the
method is robust for batch size > 400, having a minor accu-
racy degradation for batch size equal to 200. Therefore, for
considered datasets, the method does not require distributed
training with a large number of GPUs [4] or specific solu-
tions with a momentum network [17].

4. Related Work

Hyperbolic embeddings. Learning embeddings in hy-
perbolic spaces have emerged since this approach was pro-
posed for NLP tasks [34, 35]. Shortly after that, hyper-
bolic neural networks were presented as a generalization
of standard Euclidean operations allowing to learn the data
representations directly in hyperbolic spaces [11]. The au-
thors generalized standard linear layers to hyperbolic coun-
terparts, defined multinomial logistic regression and recur-
rent neural networks. Several studies showed the benefits of

7415



hyperbolic embeddings of visual data when applied to few-
shot [9, 12,22] and zero-shot learning [9, 26]. In [22], the
authors proposed a hybrid architecture with the main bulk
of the layers operating in Euclidean space and only final
layers operating in hyperbolic space. In [9], the authors in-
stead focus on kernelization widely used in Euclidean space
and generalize them for hyperbolic representations. The pa-
per [26] proposes a method directly incorporating the hier-
archical relations for hyperbolic embeddings in application
to zero-shot learning.

Vision transformers in metric learning. The paper [8]
has recently demonstrated beneficial properties of vision
transformers for category-level and object retrieval tasks.
The proposed IRTg employs the architecture and pretrain-
ing scheme of DeiT [53]. The method is trained using the
contrastive loss with cross-batch memory [59] with momen-
tum encoder [17] in several experiments. Moreover, the
method requires a sophisticated entropy regularization to
spread the embeddings more uniformly on a hypersphere.
The study performed in [57] has shown that pairwise cross-
entropy loss, considered in our work, already possesses this
property. Asymptotically, this loss can be decoupled into
two components: one optimizes the alignment of positive
pairs, while the second preserves overall uniformity. Fur-
thermore, the exponential expansion of the volume in the
hyperbolic space can facilitate uniform feature alignment.

Self-supervised learning is similar in spirit to metric
learning: in both cases, the encoder is trained to pro-
duce similar representations for semantically similar im-
ages. Consequently, there are various relevant approaches
in these domains. DINO [3] is a recently proposed method,
where vision transformer is trained in the self-supervised
learning setting. This method shows a high k-NN classifi-
cation accuracy for obtained representations while also per-
forming well in the image retrieval task. These results sug-
gest that both vision transformers and self-supervised pre-
training are advantageous for metric learning and our exper-
iments confirm this.

Metric learning loss functions. A contrastive loss [16]
and its popular variation triplet margin loss [60] are classic
metric learning loss functions. In the first case, the distance
between positive pairs is optimized to be lower than some
predefined threshold and larger for the negative pairs. The
triplet margin loss penalizes the cases where negative exam-
ples are closer to each other than positives plus a margin m.
Another variation of the contrastive loss is the lifted struc-
ture loss [47] with LogSumExp applied to all negative pair
distances. Similarly, NCA loss [14] minimizes the distance
between positives with respect to a set of negatives using
exponential weighting. In essence, pairwise cross-entropy
loss (Equation (5)) equals NCA when all batch samples are
used as negatives.

A cross-entropy loss in the form of pairwise-distance

loss for the metric learning was introduced by [46] as N-pair
loss. In addition, the paper [1] established a connection be-
tween the standard cross-entropy loss for classification and
metric learning losses, proposing their own version of the
pairwise cross-entropy loss. Recently, this loss function has
seen overwhelming success in the self-supervised learning
field [4, 17,55]. Popular implementations are InfoNCE [55]
and NT-Xent [4]. However, most of these works only con-
sider Euclidean distances between embeddings (generally
Ly-normalized). Our method extends this widely used loss
function to the hyperbolic space.

5. Conclusion

In this paper, we have combined several improvements
for the metric learning task: pairwise cross-entropy loss
with the hyperbolic distance function, vision transformers
with several pretraining schemes. We empirically verified
that each proposed component is crucial for the best per-
formance. In deep learning tasks, it is often tricky to em-
pirically distinguish the source of improvement between
methodological contribution and a technical solution [33].
To address this obstacle, we have presented several ver-
sions, comparing elements of our method in the equal setup.
The Hyp-DINO version is of particular interest: it demon-
strates that self-supervised learning and metric learning
complement each other perfectly, resulting in a powerful
metric with minimal supervision.

Limitations. In this work, we have considered only a
vision domain with a category-level retrieval task. How-
ever, the proposed method is not limited to such applica-
tions. Hyperbolic embeddings [34] and transformers [56]
were initially proposed for the natural language processing.
The recently proposed method [39] shows that combining
visual and language domains gives rise to learning univer-
sal representation. At the same time, papers [21,30] demon-
strate that one transformer architecture is suitable for many
domains at once. Hence, combining multiple domains with
a common semantic metric can be an interesting develop-
ment of this work.

Broader Impact. Common applications in the field of
metric learning are face recognition [27,44] and person re-
identification [5, 63]. Such systems can improve people’s
safety and quality of life, but there are also notorious cases
based on gathering personal information. Another possible
risk is learned social biases. While this topic is commonly
studied in the NLP field, the situation with vision transform-
ers is more subtle and far less explored.
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