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Abstract

In LiDAR-based 3D object detection for autonomous
driving, the ratio of the object size to input scene size is sig-
nificantly smaller compared to 2D detection cases. Over-
looking this difference, many 3D detectors directly follow
the common practice of 2D detectors, which downsample
the feature maps even after quantizing the point clouds.
In this paper, we start by rethinking how such multi-stride
stereotype affects the LiDAR-based 3D object detectors.
Our experiments point out that the downsampling opera-
tions bring few advantages, and lead to inevitable infor-
mation loss. To remedy this issue, we propose Single-
stride Sparse Transformer (SST) to maintain the original
resolution from the beginning to the end of the network.
Armed with transformers, our method addresses the prob-
lem of insufficient receptive field in single-stride architec-
tures. It also cooperates well with the sparsity of point
clouds and naturally avoids expensive computation. Even-
tually, our SST achieves state-of-the-art results on the large-
scale Waymo Open Dataset. It is worth mentioning that our
method can achieve exciting performance (83.8 LEVEL 1
AP on validation split) on small object (pedestrian) detec-
tion due to the characteristic of single stride. Our codes will
be public soon.

1. Introduction

LiDAR-based 3D object detection for autonomous driv-
ing has been benefiting from the progress of image-based
object detection. The mainstream 3D detectors quantize
the 3D space into a stack of pseudo-images from Bird
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Figure 1. Compared with previous multi-stride 3D detectors, our
model is single-stride and operates sparsely on the non-empty vox-
els. We paint the vehicle bounding boxes on the input point cloud
to show the tiny object size compared to the input scene size.

Eye’s View (BEV), which makes it convenient to bor-
row advanced techniques from the 2D counterparts. Many
works [13, 19, 57, 60] are proposed under this paradigm
and achieve competitive performance. However, 3D and
2D spaces have intrinsic distinction in their relative object
scales, where the objects in 3D spaces have much smaller
relative sizes (See Fig. 2). For example, in Waymo Open
Dataset [48], the perception range is usually 150m×150m,
while a vehicle is only about 4m long, even a pedestrian
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occupies as little as 1m in length. Such a tiny pedestrian
equivalently translates to an object of size 8× 8 pixels in a
1200×1200 image, suggesting that object detection on such
a tiny scale is one of the challenges in 3D object detection.

Different from the above challenge of small scales in the
3D space, 2D detectors have to consider the handling of
the objects with varied scales. It is observed in Fig. 2 that
the scales of objects in 2D images exhibit a long-tail distri-
bution, while in 3D space they are quite concentrated due
to the non-projective transformation used in voxelization.
To handle the varied scales, 2D detectors [23, 25, 46, 47]
usually build multi-scale features with a series of down-
sampling and upsampling operations. Such multi-scale ar-
chitecture is also widely inherited in 3D detectors (See
Fig. 1) [13, 19, 57, 60, 65]. Since the object size in 3D ob-
ject detectors is usually tiny while no large objects exist, a
question naturally arises: do we really need downsampling
in 3D object detectors ?

With this question in mind, we make an exploratory at-
tempt on the single-stride architecture with no downsam-
pling operators. The single-stride network maintains the
original resolution throughout the network. However, it is
challenging to make such a design feasible. The discard of
downsampling operators leads to two issues: 1) the increase
of computation cost; 2) the decrease of receptive field. The
former constrains the applicability to the real-time system
and the latter hinders the capability of object recognition.
For the issue of computation, sparse convolution seems to
be a solution, but the sparse connectivity between voxels2

makes the decrease of receptive field even more severe (See
Table 7). For the issue of receptive field, we experimentally
show that some commonly adopted techniques do not meet
our needs (See Table 1): the dilated convolution [5, 61] is
not friendly to small objects, and the larger kernel leads to
unaffordable computational overhead in the single stride ar-
chitecture. Therefore, we are getting into a dilemma, where
it is difficult to design a convolutional network simultane-
ously satisfying the three aspects: single stride architecture,
sufficient receptive field, and acceptable computation cost.

These difficulties naturally lead us to think out of the
paradigm of CNN, and the attention mechanism emerges
as a better option because of the following two reasons: 1)
The attention-based model is better at capturing large con-
text and build sufficient receptive field. 2) Due to the capa-
bility of modeling dynamic data, the attention-based model
fits well into the sparse voxelized representation of point
clouds, where only a small portion of voxels are occupied.
This property guarantees the efficiency of our single stride
network. Although the attention mechanism is efficient on
sparse data, computing attentions on a global scale is still
unaffordable and undesirable. So we partition the voxelized
3D space into many local regions and apply self-attention

2We provide a clear illustration for this in our supplementary materials.
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Figure 2. Distribution of the relative object size Srel in COCO
dataset [27] and Waymo Open Dataset (WOD). Srel is defined
as

√
Ao/As, where Ao denotes the area of 2D objects (COCO)

and the BEV area of 3D objects (WOD). As is the image area in
COCO, and 150m× 150m in WOD. In COCO 73.03% objects in
COCO have a Srel larger than 0.04, while only 0.54% objects in
WOD have a Srel larger than 0.04.

inside each of them. Eventually, this local attention mecha-
nism, named as Sparse Regional Attention (SRA), enjoys
the best of two worlds. By stacking SRA layers, we make
the single-stride network feasible and obtain a transformer-
style network, called Single-stride Sparse Transformer
(SST). Extensive experiments are conducted on the large-
scale Waymo Open Dataset [48]. We summarize our con-
tributions as follows:

• We rethink the architecture of current mainstream
LiDAR-based 3D detectors. With pilot experiments,
we point out that the network stride is an overlooked
design factor for LiDAR-based 3D detectors.

• We propose the Single-stride Sparse Transformer
(SST). With its local attention mechanism and capa-
bility of handling sparse data, we overcome receptive
field shrinkage in the single-stride setting and avoid
heavy computational overhead.

• Our method achieves state-of-the-art performance on
the large-scale Waymo Open Dataset. Thanks to the
characteristic of single stride, our method obtains ex-
citing results on tiny objects like pedestrians (83.8
LEVEL 1 AP on the validation split).

2. Related Work

3D LiDAR-based Detection There are three major rep-
resentations for point cloud learning in autonomous driv-
ing, Point-based, Voxel-based, and Range View. Point
based representation backed by PointNet families [37, 38]
are widely adopted for feature learning of small region of
irregular points [7, 24, 36, 43]. Voxel-based representation
[19, 57, 60, 65] combined with convolutions are the most
popular treatment. As explored in several recent works
[1, 3, 13, 21, 33], range view enjoys computational advan-
tages over voxels, especially for long-range LiDAR sensors.
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Some hybrid approaches investigate how to combine differ-
ent types of representations [6, 24, 41, 42, 49, 54].

Transformers in Visual Recognition The success of
transformer architectures in NLP [11,52] and speech recog-
nition [8] has inspired lots of work to investigate the power
of attention in visual recognition [12,29,40,51,62]. The pi-
oneering work ViT [12] splits an image into patches, and
then feeds sequences of patches to multiple transformer
blocks for image classification. DeiT [51] explores training
strategies for data-efficient learning of vision transformers.
Swin-Transformer [29] exploits the power of local attention
to build high-performance transformer-based image back-
bones. Several works have investigated the use of trans-
formers for point cloud perceptions. Some of them focus on
the indoor scene such as [17, 34, 63]. For autonomous driv-
ing scenarios, Pointformer [35] proposes a point-based lo-
cal and global attention module directly operating on point
clouds. In addition, VoTr [31] uses the local self-attention
module to replace the sparse convolution [16] for voxel pro-
cessing, where each voxel serves as a query and attends with
its neighbor voxels.

Small Object Detection Small object detection [27, 56,
66] is a challenging track in 2D object detection. The
mainstream of current methods [14, 25, 45, 53, 58] focuses
on increasing the resolution of the input and output fea-
tures, while none of them gives up the multi-stride archi-
tectures. Some other methods adopt the scale-aware train-
ing [23, 25, 47] and strong data augmentations [18, 67]. To
the best of our knowledge, there is no method specialized
for small object detection in 3D space.

3. Discussion of Network Stride
The stride of a network is a simple but critical aspect in

the architecture design. Some previous works [13, 15, 60]
in 3D detection have found that the performance can ben-
efit from the recovery of output resolution by upsampling.
However, they do not delve into this phenomenon. There-
fore, we conduct a simple pilot study to reveal the influence
of network stride on 3D detectors and motivate the design
of our network.

For generality, we adopt the widely used PointPil-
lars [19] in MMDetection3D [9] as our base model. The
experiments are conducted on Waymo Open Dataset [48].
We uniformly sample 20% training data (32K frames) 3 and
adopt 1× schedule (12 epochs).

Based on the standard PointPillars model D2, we extend
it to three more variants: D3, D1, and D0, and they only
differ in the network stride. From D3 to D0, the set of
strides of their four stages for each model are {1, 2, 4, 8},
{1, 2, 4, 4}, {1, 2, 2, 2} and {1, 1, 1, 1}, respectively. Since

3Training with 20% data is a setting for efficient validation adopted
in [9, 50].

the output feature maps of the four stages will be upsam-
pled to the original resolution by an FPN-like module, our
modification does not change the resolution of feature maps
in the detection head. Except for the resolution of feature
maps, all the four models have the same hyper-parameters.
To reduce memory overhead, we change the filter number
from 256 to 128 in convolution layers.

The main results are shown in Table 1. Performances
of all three classes improve from D3 to D1, and there is a
significant boost from D2 to D1. The performance boost
from D3 to D1 supports our motivation that Smaller strides
are better for 3D detection.

However, from D1 to D0, the vehicle performance has a
significant drop, while the performance drop in pedestrian
is slight and performance of cyclist keeps going up. We
conjecture that the limited receptive field of D0 hinders the
performance improvement from D1 to D0 since the pedes-
trian and cyclist have smaller sizes than vehicles.

To verify our conjecture, we add two more variants:
Ddilation

0 and D5×5
0 . Ddilation

0 adopts dilated convolutions
with dilation as 2 in the last two stages. D5×5

0 increases the
kernel size in last two stages to 5×5. Table 1 shows that, di-
lation increases the performance of vehicle class while de-
creases performances of pedestrian and cyclist, indicating
that it indeed enlarges the receptive field, however misses
fine-grained details. Meanwhile, larger kernel consistently
improves the performance of all three classes but unfortu-
nately has the highest latency. Above studies support our
major motivation of single-stride 3D detectors, and it also
reveals the another important aspect in our network design:
Sufficient receptive field is crucial.

Models Vehicle Pedestrian Cyclist Latency

D3 63.66 60.82 47.08 58ms
D2 64.01 ↑ 0.35 60.85 ↑ 0.03 47.52 ↑ 0.44 60ms
D1 66.03 ↑ 2.02 65.06 ↑ 4.21 52.97 ↑ 5.45 91ms
D0 64.69 ↓ 1.34 64.32 ↓ 0.74 53.02 ↑ 0.05 185ms

Ddilation
0 66.26 ↑ 1.57 63.51 ↓ 0.81 50.95 ↓ 2.07 192ms

D5×5
0 66.42 ↑ 1.77 65.71 ↑ 1.41 53.70 ↑ 0.68 340ms

Table 1. Results of pilot study on Waymo Open Dataset validation
split. Latency is evaluated in 2080Ti GPU with 2000 samples after
a cold start of 500 samples. For Dn, the arrows indicate the per-
formance changes based on Dn+1. For Ddilation

0 and D5×5
0 , the

arrows indicate performance changes based on D0.

In summary, above experiments verify two motivations
of 3D object detector designs:
• The single stride architecture has a great potential in

LiDAR-based 3D detection.
• The key to make single stride architecture feasible lies

in appropriately addressing the shrinkage of receptive
field and reducing computational overhead.
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4. Methodology
4.1. Overall Architecture

So far, we know the keys to make single stride archi-
tecture feasible are sufficient receptive field and acceptable
computational cost. However, as we discussed in Sec. 1,
it is difficult to simultaneously satisfy the two factors with
convolutional single stride architecture. So we turn to the
attention mechanism in Transformer [52], and present our
method as follows.

We build up our Single-stride Sparse Transformer (SST)
as in Fig. 4. SST voxelizes the point clouds and extracts
voxel features following prior work [19, 57, 65]. For each
voxel and its features, SST treats them as “tokens.” SST
first partitions the voxelized 3D space to fixed-size non-
overlapping regions (Sec. 4.2). Then SST applies Sparse
Regional Attention (SRA) to voxel tokens in each region
(Sec. 4.3). To handle the objects scattering multiple re-
gions and capture useful local context, we adopt Region
Shift (Sec. 4.4), which is inspired by the shifted window in
Swin-Transformer [29]. The backbone preserves the num-
ber of voxels as well as their spatial locations, thus satis-
fying the single-stride property, and can be integrated with
mainstream detection heads (Sec. 4.5).

4.2. Regional Grouping

Given the input voxel tokens, Regional Grouping divides
the 3D space into non-overlapping regions, so that the self-
attentions only interact with tokens coming from the same
regions. The regional grouping not only maintains suffi-
cient receptive field, but also avoids expensive computation
overhead in global attentions. We illustrate it intuitively in
Fig. 3. Each regional grouping divides the input tokens into
groups according to their physical locations, where the to-
kens belonging to the same regions (green rectangles) are
assigned to the same group.

4.3. Sparse Regional Attention

Sparse Regional Attention (SRA) operates on the re-
gional sparse sets of voxel tokens coming from regional
grouping. For a group of tokens F and their corresponding
spatial (x, y, z) coordinates I, SRA follows conventional
transformers as follows

F
′
= MSA(LN(F),PE(I)) + F

F̃ = MLP(LN(F
′
)) + F

′ (1)

where PE(·) stands for the absolute positional encoding
function used in [2], MSA(·) denotes the Multi-head Self-
Attention, and LN(·) represents Layer Normalization. This
manner of SRA well exploits the sparsity of point clouds,
because it only computes the voxels with actual LiDAR
points.

Region Batching for Efficient Implementation Due to
the sparsity of point cloud, the number of valid tokens in
each region varies. To utilize the parallel computation of
modern devices, we batch regions with similar number of
tokens together. In practice, if a region contains the tokens
with number Ntoken, satisfying:

2i 6 Ntoken < 2i+1, i ∈ {0, 1, 2, 3, 4, 5, 6}, (2)

then we pad the number of tokens to 2i+1. With padded to-
kens, we can divide all the regions into several batches, and
then process all regions in the same batch in parallel. As the
padded tokens are masked in the computation as in [2, 52],
they have no effect on other valid tokens. In this way, it is
easy to implement an efficient SRA module in current pop-
ular deep learning frameworks without engineering efforts
as taken in the sparse convolution [16, 57].

4.4. Region Shift

Though SRA can cover a considerably large region, there
are some objects inevitably truncated by the grouping. To
tackle this issue and aggregate useful context, we further use
Region Shift in our design, which is similar to the shifting
mechanism in Swin Transformer for information communi-
cation. Supposing the size of regions in regional grouping
is (lx, ly, lz), the Region Shift moves the original regions by
(lx/2, ly/2, lz/2) and groups the tokens according to this
new set of regions, as illustrated in “Shifted regional group-
ing” of Fig. 3.

4.5. Integration with Detection

To work with the existing detector heads, SST places the
sparse voxel tokens back to dense feature maps according to
their spatial locations. Unoccupied locations are filled with
zeros. As LiDAR only captures points on object surfaces,
3D object centers are likely to reside on the empty loca-
tions with zero features, which is unfriendly to the current
designs of detection heads. [19, 60]. So we add two 3 × 3
convolutions to fill most of the holes on the object centers.

As for the detection head and loss function, we adopt the
same settings as PointPillars [19] for simplicity. Specifi-
cally, we use the SSD [28] head, the smooth L1 bounding
box localization loss Lloc, the classification loss Lcls in the
form of focal loss [26], and the direction loss Ldir penal-
izing wrong orientations. The final loss function is Eq 3,
where Np is the number of positive samples. We leave the
detailed setting in supplementary materials.

L =
1

Np
(βlocLloc + βclsLcls + βdirLdir) (3)

4.6. Two Stage SST

Although our main contribution lies in the design of the
single stride architecture in the first stage, there is a con-
siderable gap between the single stage detector and the two
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Figure 4. Architecture overview for Single-stride Sparse Trans-
former (SST). It begins from voxelizing an input point cloud, then
processes the voxels with T blocks, and eventually recover a dense
feature map. Inside each block, we consecutively append regional
grouping on the voxel tokens and Sparse Regional Attention (SRA)
to process them. Details in Sec. 4.1.

stage detector. To match the performance with current two
stage detectors, we apply LiDAR-RCNN [24] as our second
stage. LiDAR-RCNN is a lightweight second stage network
consists of a simple PointNet [37] for feature extraction,
only taking the raw point cloud inside proposal as input.

4.7. Discussion

Because of the distinctions between point clouds and
RGB images, there are several differences in the design
choices and motivations between our design and Swin-
Transformer [29] as highlighted here.

• Our SST network follows the single-stride guide-
line, while Swin-Transformer follows the hierarchical
structure with multi-stride, which uses “token merge”
to increase the receptive field.

• The tokens for our region-based attention scatter
sparsely because of the sparsity of point clouds, while
the tokens in vision transformers have dense layouts.
This is one of the reasons for the efficiency of SST
even in the single stride architecture.

5. Experiments

5.1. Dataset

We conduct our experiments on Waymo Open Dataset
(WOD) [48]. The dataset contains 1150 sequences in total
(more than 200K frames), 798 for training, 202 for valida-
tion and 150 for test. Each frame covers a scene with a
size of 150m × 150m. It is a very challenging dataset and
adopted as the benchmark in many recent state-of-the-art
methods.

5.2. Implementation Details

We implement our model based on the popular 3D object
detection codebase – MMDetection3D [9], which provides
standard and solid baselines. Please refer to supplementary
materials for more details.

Model Setup For generality, we build our Single-stride
Sparse Transformer (SST) on the basis of popular Point-
Pillars [19]. We replace its backbone with 6 consecutive
Sparse Regional Attentions (SRA) blocks, and each block
contains 2 attention modules as Fig. 4 shows. All the at-
tention modules are equipped with 8 heads, 128 input chan-
nels, and 256 hidden channels. In Regional Grouping, each
region covers a volume with size 3.84m×3.84m×6m. As
for other parts, SST follows the implementation of Point-
Pillars in MMDetection3D. We use the BEV pillar size of
0.32m× 0.32m× 6m, which can be easily extended to the
3D voxels with smaller heights.

Model Variants We develop several variants of SST in
our experiments. SST 1f: basic single-stage model using
1-frame point cloud. SST 3f: consecutive 3 frame point
clouds are used as model input, and the point cloud in differ-
ent frames are concatenated together after aligning the ego-
pose. SST TS 1f and SST TS 3f: two stage model based
on above models, using a standard LiDAR-RCNN [24] for
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refinement.

Training Scheme We train our model for 24 epochs (2×)
on WOD with AdamW optimizer and cosine learning rate
scheduler. The maximum learning rate is 0.001, and the
weight decay is 0.05.

5.3. Comparison with State-of-the-art Detectors

We compare our SST with state-of-the-art methods in
Table 2 (vehicle) and Table 3 (pedestrian). We divide cur-
rent methods into the branches of one-stage and two-stage
detectors for fair comparison.

Table 2 shows the results on vehicles, where our models
achieve competitive performances. With a lightweight sec-
ond stage for refinement, our two-stage detectors are com-
parable with state-of-the-art methods.

Table 3 shows the results on pedestrians. Due to the tiny
size and non-rigid property, pedestrian detection is more
challenging than vehicle detection. Networks are prone to
confuse pedestrians with other slim objects, like poles and
trees, leading to a high false positive rate. Under such cases,
our best model outperforms all other methods in the chal-
lenging pedestrian class. SST TS 3f is 4.4 AP ahead of
the second best RSN with the same temporal information (3
frames). We owe such leading performance to the single-
stride characteristic of SST.

5.4. Deep Investigation of Single Stride
Single-stride models better use dense observations.
First, SST has more advantages in short-range metrics (0m
- 30m) than in long-range metrics (50m - inf): In Table 4,
SST 1f outperforms the PointPillars counterpart in short-
range metric by 12.8 AP for pedestrian class, but the mar-
gin is not that significant over PointPillars in the long-range
metric. Second, SST benefits more from multi-frame data.
In Table 4, RSN [49] got improved by 6.4 AP in long-range
metric from RSN 1f to RSN 3f, while the performance of
SST in long-range metric gets more significantly improved
by 10.4 AP from SST 1f to SST 3f.
Does the single stride model fail on large vehicles? As
smaller strides reduce the receptive fields, it would be a ma-
jor concern whether our model has sufficient receptive fields
for extreme cases, e.g., extremely large vehicles. We there-
fore divide all the vehicles into three groups according to the
lengths of their ground-truth boxes, and evaluate the recalls
of SST on them. Please refer to supplementary materials for
the evaluation details. In Table 5, our SST outperforms the
PointPillars baseline for all vehicles, even those longer than
8m. This supports that our attention mechanism provides
proper receptive fields in the single stride architecture.
Localization quality test with stricter IoU thresholds.
By preserving the original resolution, our SST is supposed
to localize objects more precisely as in [20]. To verify this,
we evaluate SST with higher 3D IoU thresholds (0.8 for

Methods
LEVEL 1 LEVEL 2

3D AP/APH 3D AP/APH

One-Stage Methods

SECOND ‡ [57] 72.27/71.69 63.85/63.33
MVF [64] 62.93/- -/-
LaserNet ¶ [33] 56.10/- -/48.40
AFDet [15] 63.69/- -/-
Pillar-OD [54] 69.80/- -/-
PPC [3] 65.2/- -/56.7
VoTr-SSD [32] 68.99/68.39 60.22/59.69
RangeDet [13] 72.85/72.33 64.03/63.57
CenterPoint-Voxel [60] 74.78/74.22 66.70/66.19
PointPillars∗ [19] 72.08/71.53 63.55/63.06
SST 1f (Ours) 74.22/73.77 65.47/65.07
SST 3f (Ours) 77.04/76.56 68.50/68.08

Two-Stage Methods

Voxel RCNN [10] 75.59/- 66.59/-
RCD [1] 69.0/68.5 -/-
VoTr-TSD [32] 74.95/74.25 65.91/65.29
LiDAR-RCNN [24] 76.0/75.5 68.3/67.9
Pyramid RCNN [30] 76.30/75.68 67.23/66.68
Voxel-to-Point [22] 77.24/- 69.77/-
3D-MAN [59] 74.53/74.03 67.61/67.14
Part-A2-Net ‡ [44] 77.05/76.51 68.47/67.97
CenterPoint-Pillar [60] 76.10/75.50 68.00/67.50
CenterPoint-Voxel [60] 76.59/7605 68.85/68.35
PV-RCNN [41] 77.51/76.89 68.98/68.41
PV-RCNN++ [42] 78.79/78.21 70.26/69.71
RSN 1f † [49] 75.10/74.60 66.00/65.50
RSN 3f † [49] 78.40/78.10 69.50/69.10
SST TS 1f (Ours) 76.22/75.79 68.04/67.64
SST TS 3f (Ours) 78.66/78.21 69.98/69.57

Table 2. Performances of vehicle detection on the Waymo Open
Dataset validation split. We mark the best result in red, and the
second result in blue. †: RSN [49] is not a typical two stage de-
tector, we put it here because it uses a segmentation network to
remove background first. ∗: re-implemented by MMDetection3D.
¶: from [3]. ‡: from [42].

vehicle, 0.6 for pedestrian). In Table 6, we compare our
models with the PointPillars baseline and other models with
available results from [39], then a couple of interesting find-
ings emerge:

1. Comparing MVF++ [39] with our SST 1f on vehicles,
MVF++ is slightly better than SST 1f under the nor-
mal threshold, while SST 1f is better with the stricter
threshold. This suggests the single stride structure en-
ables more precise localization of vehicles.

2. The 3DAL [39] is an offboard method using all the past
and future frames in a sequence (around 200 frames)
and is equipped with tracking [55]. Nonetheless, our
best model SST TS 3f surprisingly surpasses 3DAL on
pedestrian on both IoU thresholds with as few as 3
frames of point clouds.

These findings suggest that the single-stride architecture
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(a) Complete Vehicle (b) Person near a Wall (c) Person beside a Vehicle (d) Multiple Pedestrians (e) Multiple Vehicles

High

Low

Figure 5. Visualization of the learned sparse regional attention. Each figure shows the attention weight distribution between the query
token (pink dot) and all other tokens in the local region. Best viewed in color.

Methods
LEVEL 1 LEVEL 2

3D AP/APH 3D AP/APH

One-Stage Methods

LaserNet¶ [33] 62.9/- -/45.4
SECOND ‡ [57] 68.70/58.18 60.72/51.31
MVF [64] 65.33/- -/-
Pillar-OD [54] 72.51/- -/-
PPC [3] 73.90/- -/59.60
RangeDet [13] 75.94/71.94 67.60/63.89
CenterPoint-Voxel [60] 75.82/69.65 68.34/62.62
PointPillars∗ [19] 70.59/56.70 62.84/50.25
SST 1f (Ours) 78.71/69.55 70.02/61.67
SST 3f (Ours) 82.42/77.96 75.14/70.88

Two-Stage Methods

LiDAR-RCNN [24] 71.2/58.7 63.1/51.7
3D-MAN [59] 71.71/67.74 62.58/59.04
Part-A2-Net ‡ [44] 75.24/66.87 66.18/58.62
PV-RCNN [41] 75.01/65.65 66.04/57.61
PV-RCNN++ [42] 76.67/67.15 68.51/59.72
CenterPoint-Pillar [60] 76.10/65.10 68.10/57.90
CenterPoint-Voxel [60] 79.02/73.44 70.98/65.75
RSN 1f † [49] 77.80/72.70 68.30/63.70
RSN 3f † [49] 79.40/76.20 69.90/67.00
SST TS 1f (Ours) 81.39/74.05 72.82/65.93
SST TS 3f (Ours) 83.81/80.14 75.94/72.37

Table 3. Performance of pedestrian detection on the Waymo Open
Dataset official validation split. Please refer to Table 2 for the
meanings of the notions in this table.

Method
LEVEL 1 Pedestrian AP

Overall 0-30m 30-50m 50m-inf

RSN 1f 77.8 83.9 74.1 62.1
RSN 3f 79.0 84.5 78.1 68.5
PointPillars 70.6 72.5 71.9 63.8
PointPillars 3f 73.7 72.9 75.9 70.6
SST 1f 78.7↑ 8.1 85.3↑ 12.8 77.0↑ 5.1 63.4↓ 0.4
SST 3f 82.4↑ 8.7 86.1↑ 13.2 81.2↑ 5.3 73.8↑ 3.2

Table 4. Distance-conditioned pedestrian detection performance.
Our SST has larger advantages in short-range metrics and the
multi-frame setting, where points are more dense. The increases
and decreases are calculated based on PointPillars baseline.

is capable of better localizing objects with full and fine-

Methods
Vehicle Recalls (IoU=0.7)

[0m, 4m] [4m, 8m] [8m,+∞]

PointPillars 40.60 73.11 10.59
SST 1f 41.31 ↑ 0.71 80.85 ↑ 7.74 13.41 ↑ 2.82

Table 5. Recalls for vehicles with different lengths. The vehicles
with lengths in [0m, 4m] and [8m,+∞] are rare (7.3% and 1.6%
in WOD) and hardly get sufficient training, so their performances
are relatively low.

grained information.

Method Frames Vehicle Pedestrian
Normal Strict Normal Strict

Single frame
PointPillars [19] 1 72.08 36.83 70.59 44.86
PV-RCNN∗ [41] 1 70.47 39.16 65.34 45.12
MVF++∗ [39] 1 74.64 43.30 78.01 56.02
SST 1f (Ours) 1 74.22 44.08 78.71 56.12

Multiple frames
MVF++ w. TTA∗ [39] 5 79.73 49.43 81.83 60.56
3DAL∗ [39] all† 84.50 57.82 82.88 63.69
SST TS 3f (Ours) 3 78.66 49.35 83.81 65.06

Table 6. Localization quality test with stricter IoU threshold. The
normal and strict thresholds for vehicles are 0.7 and 0.8, and are
0.5 and 0.6 for pedestrians. ∗: the results are from [39]. TTA: test-
time data augmentation. †: the offline setting using all the past and
future frames in a point cloud sequence.

Comparison with other alternatives. There are some
potential alternatives to our SST in order to preserve the
input resolution. Here we make a comprehensive compar-
ison. We first introduce these alternative models as fol-
lows. PointPillars-SS: The single stride version of Point-
Pillars introduced in Sec. 3. SparsePillars-SS: We re-
place all the standard 2D convolutions in backbone of
PointPillars-SS with Submanifold Sparse Convolutions [16,
57]. Due to the sparsity, SparsePillars-SS also faces the is-
sue of “empty hole” (details in Sec. 4.5) as in SST, so we
add two more 2D convolutions before its detection head.
HRNetV2p-W18 [53]: HRNet maintains the high resolu-
tion while building multi-scale features. We adopt the stan-
dard HRNetV2p-W18 from MMDetection [4] for the exper-
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iment. To keep the output resolution in HRNet the same as
PointPillars, we reduce the stride of the first two convolu-
tions in HRNet from 2 to 1. All the alternatives have the
same setting with SST 1f except their backbones. Table 7
shows the comparison between different models.

Models Vehicle
3D AP

Pedestrian
3D AP #param. Latency

(ms)
Memory
(GB)

PointPillars 64.01 60.85 6.4M 60 5.4
PointPillars-SS 64.69 64.32 6.4M 185 8.5
SparsePillars-SS 51.57 61.55 6.4M 67 5.8
SparsePillars-SS5×5† 55.40 61.28 17.1M 81 5.9
SparsePillars-SS7×7† 56.77 60.87 33.9M 97 5.9
HRNetV2p-W18 [53] 64.38 61.09 26.2M 130 7.6
SST 1f 67.86 70.94 1.6M 97 6.8

Table 7. Comparison with alternatives to SST. Using 20% data
for training. The latency is evaluated with standard benchmarking
script in MMDetection3D on 2080Ti GPUs. †: The size of all
kernels in sparse convolution increases to 5× 5 or 7× 7.

In Table 7, our method outperforms all other alternatives
with relatively low latency. Besides, two things need to
be noticed: (1) SparsePillars-SS is much worse than other
models in vehicle class. Due to the properties of subman-
ifold sparse convolution, this model suffers from more se-
vere receptive field shrinkage than PointPillars-SS. For ex-
ample, if a vehicle part is isolated with all the surrounding
voxels being in empty, it can not perceive information from
other parts in the whole forward process. On the contrary,
the attention mechanism in SST well addresses this issue
while maintaining sparsity. (2) HRNetV2p-W18 allocates
too much computation on the high-stride (low resolution)
branches which is not needed in 3D object detection. So the
capacity of its high-resolution branch is limited, leading to
its inferior performance.

5.5. Qualitative Analysis of Sparse Attention

We visualize the attention weights in Fig. 5 and list our
observations as follows.

Sufficient Coverage In Fig. 5 (a) Complete Vehicle, the
query token (pink dot) in the car has strong relation with
all other parts of the car. In other words, this single token
can effectively cover the whole car. This demonstrates that
the attention mechanism is indeed effective to enlarge the
receptive field.

Semantic Discrimination In Fig. 5 (b) Person near a
Wall, the query token on the person builds strong depen-
dency with other body parts, but has little relations with
background points, e.g., wall. In Fig. 5 (c) Person beside a
Vehicle, the pedestrian standing next to the vehicle attends
only with itself. These two cases reveal that the learned
sparse attention weight is discriminative between different
semantic classes. This property helps distinguish pedestri-
ans from other slim objects and reduces false positives.

Instance Discrimination In the crowded cases, such as
Fig. 5 (d) Multiple Pedestrians, the query token in a person
mainly focuses on the same person. Due to the high se-
mantic similarity, it also slightly attends to other people. In
Fig. 5 (e) Multiple Vehicles, the query token in the vehicle
almost has no dependency on the nearby vehicles. These
two cases suggest that the learned sparse attention weights
are discriminative for different instances.

5.6. Hyper-parameter Ablation
Region Size We show the performance under different re-
gion sizes for Regional Grouping in Table 8. SST is in gen-
eral robust to the region size and slightly better with larger
regions. Especially, SST has the best performance in pedes-
trian detection with the largest local region size. It suggests
that the local context is helpful to recognize pedestrians. For
example, pedestrians are more likely to appear on the side-
walks than on vehicle lanes.

Region Size
Max number
of voxels

LEVEL 1 AP/APH
Vehicle Pedestrian

3.20m 100 66.9/66.4 70.4/56.9
3.84m 144 67.9/67.3 70.9/57.3
4.48m 196 67.8/67.3 70.6/56.5
5.12m 256 66.9/66.3 71.1/57.1

Table 8. Ablation of the region size. Using 20% data for training.

6. Conclusion and Limitations
In this paper, we analyze the impact of the network stride

on 3D object detectors for autonomous driving, and em-
pirically show that 3D object detectors do not really need
downsampling. To build a single-stride network, we adopt
the sparse regional attention to address the problem of in-
sufficient receptive fields and avoid expensive computation.
By stacking the sparse attention modules, we propose the
Single-stride Sparse Transformer, achieving state-of-the-art
performance on the Waymo Open Dataset. Due to the sin-
gle stride structure, our models obtain remarkable perfor-
mance on the challenging pedestrian class. Without elab-
orated optimization, our model uses slightly more memory
than baseline models, and we will pursue a more memory-
friendly model in the future. We wish our work could break
the stereotype in the backbone design of point cloud data,
and inspire more thoughts on the specialized architectures.
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