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Abstract

Recently, deep network-based image compressed sens-
ing methods achieved high reconstruction quality and re-
duced computational overhead compared with traditional
methods. However, existing methods obtain measurements
only from partial features in the network and use it only
once for image reconstruction. They ignore there are low,
mid, and high-level features in the network [38] and all of
them are essential for high-quality reconstruction. More-
over, using measurements only once may not be enough for
extracting richer information from measurements. To ad-
dress these issues, we propose a novel Measurements Reuse
Convolutional Compressed Sensing Network (MR-CCSNet)
which employs Global Sensing Module (GSM) to collect all
level features for achieving an efficient sensing and Mea-
surements Reuse Block (MRB) to reuse measurements mul-
tiple times on multi-scale. Finally, we conduct a series of
experiments on three benchmark datasets to show that our
model can significantly outperform state-of-the-art meth-
ods. Code is available at: https://github.com/
fze0012/MR-CCSNet.

1. Introduction

Compressed Sensing [11](CS), a signal processing tech-

nique for efficiently acquiring and reconstructing a signal,

has developed rapidly and attracted the attention of many

researchers. Given a high-dimensional signal x ∈ R
N , the

measurements of x, denoted by y ∈ R
M , is formulated as

y = Φx, where Φ ∈ R
M×N is sensing matrix and M

N is

sampling ratio. Because M � N , recovering x is generally

impossible for the ill-posed problem. CS shows that the

signal x can be reconstructed from y with high probability

when the signal x is sparse in some domain [6, 12].

In the study of image CS, the two core problems are (1)

the design of sensing matrix and (2) recovering the origi-

nal signal x from its linear measurements y. For the former

one, many matrices [1,10,15,16,25] are proposed, but they
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are hand-designed and ignore there are statistical correlation

between different elements of signal. For the latter one, the

papers of [7, 23, 30, 41, 42] propose methods for exploring

image priors and combining optimization criteria and iter-

ative thresholding algorithms [17]. These methods require

high computational overhead and perform poorly when the

sampling ratio is extremely low.

In recent years, deep learning has been widely used in

computer vision and shows superior performance [21, 24].

Researchers were inspired to solve these two challenges of

CS with deep learning, called Deep Compressed Sensing

(DCS). A few DCS methods [27, 28, 32, 34, 40] have been

proposed and achieve promising results since the powerful

learning and representation capabilities of neural networks.

Despite their success, existing DCS methods only use a

convolutional layer to learn the sensing matrix, which ig-

nores the spatial features in the image. In addition, be-

cause the residual architecture is widely used in reconstruc-

tion network, the reconstruction quality relies on it. To ad-

dress these issues, Zheng et al. proposed RK-CCSNet [43].

For the former one, RK-CCSNet use the Sequential Con-

volutional Module (SCM) to gradually compact the image

size through a sequence of filters. For the latter one, RK-

CCSNet proposed the second-order residual architecture ac-

cording to the relationship between ResNet [18] and Ordi-

nary Differential Equation.

Although RK-CCSNet proposed an effective strategy for

image CS, it always suffers from these problems: (1) There

are hierarchical nature of the features in the convolutional

neural networks (CNNs): the low, mid, and high layer learn

features such as edges, complex textures, and objects, re-

spectively. But RK-CCSNet only samples from the high-

est layer, which ignores a large amount of rich features

contained in those neglected layers; (2) Existing methods

[27, 32, 40, 43] recover the original image from measure-

ments using deep learning, which takes measurements as

input and use it only once. It extracts features from mea-

surements in a rather shallow manner.

To address these issues, we propose Global Sensing

Module (GSM) and Measurements Reuse Block (MRB). In

GSM, as shown in Fig. 1, we first use a convolutional layer
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Figure 1. This figure shows the sensing network of CSNet+ [32],

RK-CCSNet [43], and our proposed model. (a): There is only

a convolutional layer, so the spatial features in the image are ig-

nored. (b): Although there are multiple convolutional layers, it

only samples from the highest layer. Therefore, there are the high-

est level features in the measurements and low and mid-level fea-

tures are ignored. (c) Overview of GSM. To take advantage of

the hierarchical nature of the CNNs, which are neglected in RK-

CCSNet, we use a shortcut connection pass the features of dif-

ferent layer to the end. And then, 1 × 1 convolutions are used to

sample. Because we sample from all level features, there are richer

features in measurements than CSNet+ and RK-CCSNet.

to get a high dimensional feature. After that, we gradually

compact the feature maps by multiple convolutional layers.

And then we collect all level features in the network. Fi-

nally, we obtain measurements by 1 × 1 convolutions. In

order to match dimensions, we add pooling layer into the

shortcut connection. In MRB, we first compact the phased

reconstructed result and get multiple feature maps. After

that, we extract matching information from measurements.

Finally, we fuse them on multi-scale. It is a promising man-

ner to move from shallow measurements utilizing to deep.

We conduct experiments on three benchmark data sets:

BSDS500 [2], Set5 [4], and Set14 [39] and chose PSNR and

SSIM [19] as the evaluation metrics. Evaluation results in-

dicate that MR-CCSNet can significantly outperform state-

of-the-art methods. In particular, we show that our model

can achieve high reconstruction quality at low sampling ra-

tio. In addition, we show that GSM and MRB are effective

by ablation studies.

To conclude, our contributions are three-fold: (1) pro-

posal of the GSM which can achieve efficient sampling; (2)

proposal of the MRB for making full use of measurements;

(3) building an end-to-end network MR-CCSNet for image

CS based on GSM and MRB, and demonstrating its effec-

tiveness on three benchmark data sets.

2. Related work
The goal of compressed sensing is to recover the original

signal x from its linear measurements y. We briefly review

the relevant work by grouping the existing methods into the

following two categories.

Traditional Compressed Sensing Traditional CS meth-

ods recover a signal x from the measurements y by solving

a sparsity-regularized optimization problem of the form

min
x

1

2
‖Φx− y‖22 + λ‖Ψx‖1, (1)

where Ψx are the transform coefficients of x with respect

to domain Ψ and the sparsity of Ψx is characterized by �1
norm.

Representative methods include the convex optimization

methods [8], the greedy algorithms [26, 35], and the

gradient descent methods [9,13,36]. For image compressed

sensing, many researchers introduce other prior as a

regularization item. In [23], Li et al. used the total variation

(TV) regularized constraint to replace the sparsity-based

one for enhancing the local smoothness. In [41], Zhang et
al. proposed group sparse representation (GSR) to enhance

both image sparseness and non-local self-similarity. Fur-

thermore, some image CS methods incorporated additional

criteria into the projected Landweber (PL) algorithm [3].

In [15], Gan proposed block-based CS by incorporating

Wiener filtering into PL iteration. In recent years, re-

searchers have also proposed many improved PL-based

methods [7,14,31]. Besides image reconstruction methods,

some attention is also paid to the sensing matrix. In most

works, the sensing matrix is a random matrix such as a

Gaussian or Bernoulli matrix, which satisfies the Restricted

Isometry Property (RIP) [5] with a large probability. Al-

though so many methods have been proposed in traditional

CS, they all demand high computational overhead and

perform poorly at low sampling ratios.

Deep Compressed Sensing The main idea of DCS is to

learn the inverse mapping from the measurements to the

original signal using a neural network, so the speed and ac-

curacy of reconstruction are improved. Generally, the net-

work is trained by minimizing the loss function

min
θ

1

2

k∑

i=1

‖xi − F (yi, θ)‖22, (2)

where the xi is the original image, yi is the measurements of

xi, and F is the neural network parameterized by θ. Many
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Figure 2. Overview of the proposed model. For the original image x, we obtain measurements y from the sensing network GSM. And then

the initial reconstructed image I(y) is generated by the initial reconstruction network. Finally, we refine the I(y) by the deep reconstruction

network.

DCS methods have been proposed [22, 27, 29, 32, 33, 43].

In [29], Mousavi et al. proposed a stacked denoising autoen-

coder (SDA) to capture statistical correlation between dif-

ferent elements of signals. However, SDA has the computa-

tional complexity because it is full connection between any

two successive layers. In [22], Kulkarni et al. introduced

a CNN-based method called ReconNet, which can reduce

computational complexity by weight sharing. Mousavi and

Baraniuk [27] argued that real world signals are not ex-

actly sparse on a fixed basis and the recovery algorithms

take a lot of time to converge. And they proposed Deep-

Inverse which learns both a effective representation for the

signals and an inverse map. Shi et al. [32] argued that these

methods ignore the characteristics of signal and proposed a

end-to-end model CSNet+ which uses convolutional neu-

ral network in sampling and reconstruction stage. How-

ever, these methods train different models for different sam-

pling ratios, which is difficult to deploy for practical appli-

cations. Hence, Shi et al. [33] attempted to solve this prob-

lem with greedy method and proposed SCSNet. Mousavi

et al. [28] proposed DeepSSRR which employs a paral-

lelization scheme in the signal sensing and recovery pro-

cess to accelerate the convergence speed. In [43], Zheng

argued that existing end-to-end methods do not preserve

the spatial features in the image and proposed RK-CCSNet,

which applies Sequential Convolutional Module (SCM) to

gradually compact measurements through a series of con-

volution filters. In addition, RK-CCSNet also proposed a

novel Learned Runge-Kutta Block (LRKB) based on the fa-

mous Runge-Kutta methods for improving the reconstruc-

tion quality.

Our work is also inspired by the idea of multi-scale in

image processing. In [37], Xu et al. proposed a Laplacian

pyramid reconstructive adversarial network (LAPRAN)

which reconstructs the original image through multiple

stages with different resolution simultaneously. Our model

also employs MRB to fuse features learned from measure-

ments on multi-scale.

3. Methodology

In this section, we will introduce our model in the case

of sampling ratio is 6.25%. Fig. 2 shows the architecture

of MR-CCSNet. Following CSNet+ [32] and RK-CCSNet

[43], MR-CCSNet has a sensing network GSM, an initial

reconstruction network, and a deep reconstruction network.

Firstly, we obtain the measurements from the sensing net-

work. And then the initial reconstruction network generates

initial reconstructed image by a linear mapping. Because

the quality of initial reconstructed image is not enough, we

refine the initial reconstructed image by a non-linear deep

reconstruction network. To move from shallow measure-

ments utilizing to deep, we stack multiple MRBs in the deep

reconstruction network.

In the sensing network S(·), we directly use convolu-

tional layers for the whole images instead of dividing the

images into non-overlapping block [32,33,43]. For satisfy-

ing the linear property, there is no bias and activation func-

tion in the network. This process can be written as:

y = S(x), (3)

where x ∈ R
1×H×W and y ∈ R

4×H
8 ×W

8 .

In the initial reconstruction network I(·), the depth-wise

convolution layer expands the measurements in channel di-

mension and the shape becomes 64× H
8 × W

8 . Then we get

8956



a 1×H ×W tensor by a pixel shuffle layer. This is the first

time to utilize the measurements.

In the deep reconstruction network D(·), we first convert

the initial reconstructed I(y) image to a high dimensional

feature by a convolutional layer. Then repeated MRBs,

which share the same internal structure, are used to fuse

them with matching features extracted from measurements

y multiple times on multi-scale. This is the second time to

utilize the measurements.

Finally, we use a convolutional layer to reconstruct the

image from high dimensional features. In addition, we add

a shortcut connection to the deep reconstruction network.

The final reconstructed image x̂ can be written as:

x̂ = D(I(y)) + I(y) (4)

Our model uses two novel modules, GSM and MRB.

They are explained below.

3.1. Global Sensing Module

By analyzing existing methods, we argue that a good fea-

ture extraction network can help sample. In addition, we

learn that convolutional neural networks extract features in

a hierarchical manner which means layers close to the in-

put to learn low-level features, like lines and simple tex-

tures, and layers deeper in the model to learn high-order

features, like shapes or specific objects from [38]. Based on

these two principles, our proposed method GSM, as shown

in Fig. 3a, has two stages. In the first stage, we use 3 × 3
convolution layers to extract features. In the second stage,

we collect all level features in the network and use a 1 × 1
convolution layer to sample, rather than only from the low

features (i.e. CSNet+) or high features (i.e. RK-CCSNet).

In GSM, to collect all level features for sampling, we use

a shortcut connection to pass the features of different layers

to the end, and the pooling layer is added for matching the

dimensions.

When the sampling ratio changes, the GSM is not flexi-

ble for meeting the new requirements. Inspired by ResNet

[18], we propose the GSM+, as shown in Fig. 3b. Different

from GSM, we add a shortcut connection between two suc-

cessive layers rather than add it from different layers to the

end directly. The building block of GSM+ is marked with

red dotted box and defined as:

yt+1 = Conv(yt) + P (yt), (5)

where Conv and P denote convolution layer and mean-

pooling layer, respectively. The sampling ratio is controlled

by the number of building block and the blue block, so it is

flexible and can be easily used at various sampling ratios by

repeating the building block.

In GSM+, we can observe that it collect all level features

for sampling, which is equivalent to GSM, by an iterative

Iamge

3×3 conv,32

3×3 conv, 32, /2

3×3 conv, 32, /2

1×1 conv

Measurements

3×3 conv, 32, /2

pool, /4

pool, /2

pool, /8

(a) GSM
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3×3 conv,32

3×3 conv, 32, /2
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3×3 conv, 32, /2

pool, /2

pool, /2

pool, /2

3×3 conv, 32, /2
pool, /222

(b) GSM+

Figure 3. Comparison of the GSM and the GSM+. The GSM+

is flexible and can be easily used at various sampling ratios by

repeating the building block, which is marked with red dotted box.

manner. Furthermore, there are richer features than GSM

at each layer, because the features from former layer are

passed to the current layer by shortcut connections. In a

way, it achieve a more efficient feature extraction. When

the sampling ratio is 50%, there is only one building block

in GSM+, so GSM+ degenerate into GSM. As the sampling

ratio decreases, GSM is a special form of GSM+.

In the CS theory, the measurements is obtained by a lin-

ear mapping. It is trivial that the convolution layer and the

mean-pooling layer are linear mappings. So the building

block is linear mapping. According to composition pre-

serves linearity, the GSM+ is a linear mapping.

3.2. Measurements Reuse Block

The measurements are used only once for image recon-

struction, which is difficult to extract richer information

from measurements. The goal of MRB is to explore a

novel approach for making full use of measurements multi-

ple times on multi-scale.

Fig. 4 illustrates the architecture of MRB. Phased re-

constructed result ft ∈ R
C×H×W and measurements y ∈

R
C×H

4 ×W
4 are fed into MRB. We firstly use two convo-

lutional layers, denoted as Conv1 and Conv2, to obtain a

compacted feature map f↓ and f�. This process can be

written as:

f↓ = Conv1(ft), (6)

f� = Conv2(f
↓), (7)

where f↓ ∈ R
C×H

2 ×W
2 , f� ∈ R

C×H
4 ×W

4 . To fuse
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Figure 5. Overview of Multi-Scale Reusing. It aims to extract

matching information for the backbone network of MRB.

them with measurements on multi-scale, we then extract

matching information from measurements and obtain three

feature maps y1 ∈ R
C×H

4 ×W
4 , y2 ∈ R

C×H
2 ×W

2 , and

y3 ∈ R
C×H×W by Multi-Scale Reusing, which is shown

in Fig. 5. Next, y1 is added into the backbone network of

MRB and obtain F1 by a concatenation operation and a con-

volutional layer. To preserve existing reconstruction results,

we copy the f� again and fuse them with F1 by a convolu-

tional layer. Finally, a pixel shuffle layer is used to expand

the fused feature map for next process. This process can be

written as:

F1 = Conv3(f
� ⊕ y1), (8)

f↑ = Pixel(Conv4(F1 ⊕ f�)), (9)

where ⊕ denotes a concatenation operation, y ∈ R
2×H

4 ×W
4 ,

y1 ∈ R
C×H

4 ×W
4 , F1 ∈ R

C×H
4 ×W

4 and f↑ ∈ R
C×H

2 ×W
2 .

By repeating this process, phased reconstructed result mea-

surements and measurements are fused at multi-scale. Then

the output ft+1 ∈ R
C×H×W is utilized as the input of next

operation.

The MRB is not only a promising way for improving

utilization of measurements, but also refines the phased re-

constructed result at multi-scale.

3.3. Loss function

In the training phase, we use the mean square error to

measure the reconstruction quality. Specifically, for the ini-

tial reconstruction network, the loss function can be written

as :

lint =

n∑

k=1

‖I(S(yk; θ);φint)− xk‖2F . (10)

For the deep reconstruction network, the loss function can

be written as :

ldeep =

n∑

k=1

‖D(I(S(yk; θ);φint);φdeep)− xk‖2F , (11)

where the θ, φint, and φdeep denote the parameters of

the sensing network S(·), the initial reconstructed network

I(·), and the deep reconstructed network D(·), respectively.

Therefore, the loss function of MR-CCSNet is defined as:

l = ldeep + lint. (12)

4. Experiments
4.1. Datasets and implementation details

Following RK-CCSNet [43], we use 400 images from

BSDS500 [2] dataset to train our model. For testing, we re-

port the performance on three standard benchmark datasets:

Set5 [4], Set14 [39], and BSDS100 [2]. We convert these

images into YCbCr color space and only the Y channel is

used as the input for training and testing. During training, in

order to increase the number of samples, we randomly crop

the image with patch size 96×96, and randomly flip hori-

zontally. During testing, because the size of these images

is inconsistent, we resize the image from Set5 and Set14

into 256×256 and the image from BSDS100 into 480×320.

To optimize our model, we use Adam optimizer [20] with

β1 = 0.9, β2 = 0.999. The batch size is set to 4 and our

model is trained for 200 epochs. The initial learning rate is

set to 10−3 and reduced to quarter at 60, 90, 120, 150 and
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TVAL3 GSR CSNet+ RK-CCSNet MR-CCSNet MR-CCSNet+

Data Ratio PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5

1.5625% 19.00 0.4844 21.39 0.5815 24.45 0.6360 25.31 0.7033 25.72 0.7193 25.79 0.7189
3.125% 19.89 0.5415 23.70 0.6822 27.19 0.7666 27.79 0.8061 28.19 0.8174 28.27 0.8208
6.25% 22.03 0.6175 27.59 0.8163 28.68 0.8002 30.63 0.8799 31.10 0.8901 31.25 0.8918
12.5% 23.75 0.7365 31.61 0.9016 33.55 0.9243 34.27 0.9393 35.03 0.9464 35.16 0.9471
25% 27.39 0.8522 36.32 0.9510 37.69 0.9650 38.04 0.9712 39.24 0.9761 39.37 0.9766
50% 33.11 0.9430 42.18 0.9908 42.54 0.9852 43.90 0.9901 45.07 0.9919 45.11 0.9920

Set14

1.5625% 16.79 0.3993 18.93 0.4399 22.78 0.5369 23.36 0.5917 23.61 0.5993 23.69 0.6034
3.125% 18.40 0.4514 20.26 0.5184 24.96 0.6602 25.26 0.6914 25.56 0.6997 25.63 0.7029
6.25% 19.65 0.5287 23.59 0.6526 26.33 0.7178 27.24 0.7836 27.91 0.7986 28.00 0.7996
12.5% 21.03 0.6379 28.08 0.7915 30.12 0.8610 30.42 0.8798 30.97 0.8889 31.06 0.8898
25% 22.69 0.7731 31.82 0.8939 33.81 0.9339 34.16 0.9443 35.04 0.9510 35.11 0.9512
50% 26.61 0.9004 37.47 0.9619 38.59 0.9752 40.15 0.9837 41.21 0.9864 41.25 0.9864

Average 22.53 0.6555 28.58 0.7651 30.89 0.8135 31.71 0.8470 32.39 0.8554 32.47 0.8567

Table 1. Quantitative results on Set5 and Set14.

CSNet+ RK-CCSNet MR-CCSNet MR-CCSNet+

Data Ratio PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BSDS100

1.5625% 24.51 0.6344 25.02 0.6691 24.35 0.6775 25.44 0.6791
3.125% 26.18 0.7102 26.51 0.7266 26.75 0.7334 26.84 0.7361
6.25% 27.82 0.7728 28.08 0.7879 28.34 0.7949 28.40 0.7952
12.5% 29.77 0.8424 29.98 0.8559 30.39 0.8632 30.43 0.8639
25% 32.41 0.9073 32.68 0.9186 33.27 0.9251 33.29 0.9253
50% 36.21 0.9582 37.29 0.9695 38.03 0.9731 38.07 0.9732

Average 29.48 0.8042 29.93 0.8213 30.19 0.8279 30.41 0.8288

Table 2. Quantitative results on BSDS100.

180 epochs respectively. Six sampling ratios, i.e. 1.5625%,

3.1250%, 6.2500%, 12.5000%, 25.0000%, and 50.0000%

are investigated. PSNR (Peak Signal-to-Noise Ratio) and

SSIM (Structural SIMilarity) [19] are chosen as the evalua-

tion metrics. We implement the model using PyTorch, and

train it on Nvidia RTX 2080Ti GPU.

4.2. Comparison with the state-of-the-arts

To verify the effectiveness of MR-CCSNet and MR-

CCSNet+ where the sensing network is GSM and GSM+

respectively, we quantitatively and visually compare them

with 4 state-of-the-art methods with available codes, which

is TVAL3 [23], GSR [41], CSNet+ [32], and RK-CCSNet
[43]. The implementation codes of compared methods are

download from the author’s websites and all default values

are used in experiments.

Quantitative comparisons In Tab. 1, we report the quan-

titative comparisons on Set5 and Set14. The best results are

marked in bold font. The results show that MR-CCSNet and

MR-CCSNet+ are outperforms the four methods at all sam-

pling ratios. Note that all DCS methods show a significant

improvement comparing with the best traditional method,

i.e. GSR. Specifically, our model achieve the best perfor-

mance in low sampling ratios. In average, MR-CCSNet+

outperforms TVAL3, GSR, CSNet+, and RK-CCSNet by

9.94dB, 3.89dB, 1.58dB, and 0.76dB in terms of PSNR,

respectively, on Set5 and Set14. In addition, the average

SSIM of MR-CCSNet+ can be improved 0.2012, 0.0916,

0.0432, and 0.0097, respectively. We further compare

MR-CCSNet and MR-CCSNet+ with CSNet+ and RK-

CCSNet on BSDS100. Tab. 2 show the evaluation results.

It can be seen that both MR-CCSNet and MR-CCSNet+

achieve a better reconstruction quality at all sampling ra-

tios. Especially in the case of sampling ratio of 1.5625%,

MR-CCSNet+ outperforms CSNet+ and RK-CCSNet by

0.93dB and 0.48dB, respectively. Finally, we compare the

performance of MR-CCSNet and MR-CCSNet+. When

the sampling ratio is 50%, we observe that the PSNR and

SSIM of them are very close. The reason is that GSM+

degenerate into GSM in this case. As the sampling ratio de-

creases, MR-CCSNet+ outperforms MR-CCSNet. The rea-

son is that GSM+ not only collects all level features, which

is equivalent to GSM, but also extracts richer features for

sampling and reconstructing. This is corresponding to our

theoretical analysis in Sec. 3.1. All the experimental results

demonstrate our model has state-of-the-art performance.

Visual comparisons We also visually compare our

method with the state-of-the-art image CS methods. We
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Figure 6. Visual comparisons of reconstructed image on Woman from Set5 in the sampling ratio of 6.25%.
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30.38/0.9449

Figure 7. Visual comparisons of reconstructed image on Butterfly from Set5 in the sampling ratio of 12.5%.

magnify the results in order to compare the reconstruction

details. Fig. 6 and Fig. 7 show the visual comparisons in the

case of sampling ratio of 6.25% and 12.5%, respectively.

We can see that DCS methods can achieve higher recon-

struction quality than traditional methods in extremely low

sampling ratios. In addition, our model also recover finer

details than DCS methods CSNet+ and RK-CCSNet. For

example, in the figure of Butterfly and Woman, it is obvious

that our model is able to reconstruct texture details, which

is smoother and sharper than other methods. This is mainly

because the measurements in our model contain all level

features where the low and mid-level features relate to the

edges and complex textures in the image. In addition, ex-

tracting richer features by utilizing measurements multiple

times also plays an important role.

4.3. Running time comparison

The running time is important in many practical applica-

tions. Tab. 3 shows the average running time on GPU/CPU

for reconstructing a 256×256 image. The running times of

TVAL3 and GSR are taken from [22], and they are imple-

mented on the platform of an Intel Core i7-3770 CPU. The

running times of CSNet+, RK-CCSNet, MR-CCSNet, and

MR-CCSNet+ are implemented on the platform of an In-

tel Core i9-9900k CPU plus a Nvidia RTX 2080Ti GPU.

It is obvious that traditional methods take about seconds

Algorithm
sampling ratio=0.01 sampling ratio=0.1

CPU GPU CPU GPU

TVAL3 2.3349 - 2.5871 -

GSR 235.6297 - 230.4755 -

CSNet+ - 0.0075 - 0.0078

RK-CCSNet - 0.0184 - 0.0181

MR-CCSNet - 0.0284 - 0.0272

MR-CCSNet+ - 0.0282 - 0.0271

Table 3. Average running time (in seconds) for reconstructing a

256 × 256 image.

to minutes to reconstruct the image. This is because they
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Baseline
30.45dB/0.9224

Baseline+GSM+

30.65dB/0.9252
MR-CCSNet+

31.15dB/0.9308
Monarch

PSNR/SSIM
Baseline+MRB
31.01dB/0.9298

Figure 8. Visual comparisons of reconstructed image on Monarch from Set14 in the sampling ratio of 6.25%.

1.56250% 3.12500% 6.25000% 12.50000% 25.00000% 50.00000%

GSM+ MRB PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

25.02 0.6691 26.51 0.7266 28.08 0.7879 29.98 0.8559 32.68 0.9186 37.29 0.9695

� 25.14 0.6737 26.58 0.7281 28.18 0.7915 30.15 0.8591 32.88 0.9211 37.71 0.9722

� 25.29 0.676 26.61 0.7307 28.26 0.7931 30.27 0.8614 33.01 0.9216 37.53 0.9706

� � 25.49 0.6811 26.88 0.7359 28.38 0.7955 30.36 0.8629 33.24 0.9248 37.98 0.9730

Table 4. The ablation studies of MR-CCSNet+ on BSDS100.

need multiple iterative operations during reconstruction. By

comparison, the running time of DCS methods are im-

proved by several orders of magnitude. The reason why

our model slower than CSNet+ and RK-CCSNet is MR-

CCSNet+ has more parameters. But it is more fast com-

pared with traditional methods and achieves better recon-

struction quality. We can see that the running time of MR-

CCSNet and MR-CCSNet+ are equal. This is because two

models have approximately the same number of parameters.

4.4. Ablation studies

In order to verify the efficacy of GSM+ and MRB, we

further conduct ablation studies on BSDS100. The models

compared incude: Baseline (RK-CCSNet), Baseline with

GSM+, Baseline with MRB, and MR-CCSNet+. From the

results, as shown in Tab. 4, we can observe that:

(1) Both GSM+ and MRB are effective for improving the

performance of reconstruction quality. This may be because

GSM+ can preserve more features in the image, and MRB

can extract richer features for image reconstruction.

(2) When the sampling ratio is low, MRB plays a more

important role than GSM+ for image reconstruction. Al-

ternatively, GSM+ plays a more important role than MRB

when the sampling ratio is 50%.

We also visually compare results of these four models, as

shown in Fig. 8. The results is corresponding to our theo-

retical analysis. When the reconstruction algorithm is fixed,

because GSM+ takes advantage of the hierarchical nature

of the network, the texture details of Baseline with GSM+

smoother and sharper than Baseline. When the sensing net-

work is fixed, because we utilize measurements in a deep

manner, Baseline with MRB outperform Baseline.

5. Conclusion and future work
In this paper, we propose Global Sensing Module and

Measurements Reuse Block for image CS. GSM can take

advantage of the hierarchical nature of the network for sam-

pling. MRB can make full use of the measurements for

improving the reconstructed image quality. In the exper-

iments, we show that our model significantly and consis-

tently outperforms state-of-the-art image CS methods. In

particular, our methods also have good performances in ex-

tremely low sampling ratios. In addition, we demonstrate

that GSM and MRB are effective by ablation studies.

In the future, we will explore the following directions:

(1) In the sensing network, pooling operation loses in-

formation about the low-level features. We will explore a

more effective way for collecting all level features.

(2) Attention mechanism can effectively help us in ex-

tracting matching features from measurements. We are in-

terested in adding attention mechanism into MRB to im-

prove its performance.

(3) In the real-world, because there are noise in the mea-

surements, using them multiple times will introduce noise

in the reconstruction process. We will explore how to

improve the robustness for using measurements multiple

times.
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