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Abstract

In this work, we propose a novel method to improve the
generalization ability of CNN-based face forgery detectors.
Our method considers the feature anomalies of forged faces
caused by the prevalent blending operations in face forgery
algorithms. Specifically, we propose a weakly supervised
Second Order Local Anomaly (SOLA) learning module to
mine anomalies in local regions using deep feature maps.
SOLA first decomposes the neighborhood of local features
by different directions and distances and then calculates the
first and second order local anomaly maps which provide
more general forgery traces for the classifier. We also pro-
pose a Local Enhancement Module (LEM) to improve the
discrimination between local features of real and forged
regions, so as to ensure accuracy in calculating anoma-
lies. Besides, an improved Adaptive Spatial Rich Model
(ASRM) is introduced to help mine subtle noise features via
learnable high pass filters. With neither pixel level annota-
tions nor external synthetic data, our method using a sim-
ple ResNet18 backbone achieves competitive performances
compared with state-of-the-art works when evaluated on
unseen forgeries.

1. Introduction

Recent progress in face synthesis technologies allows
the low-entry production of sophisticated fake facial con-
tent which causes severe trust issues. Concerns are growing
over the nefarious use of such face forgery technologies.
To deal with this problem, many methods have been de-
veloped to detect face forgeries using different traces, such
as obvious visual artifacts [24, 29, 39], frequency domain
cues [10, 12, 20, 33], temporal anomalies [3, 28, 37, 38, 47],
or multimodality conflicts [1,5,30]. But these traces are not
so generalizable that the detectors may fail when encoun-
tering unseen forgeries. Thus recent works are looking for
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Figure 1. Second Order Local Anomaly (SOLA) learning module
decomposes the neighborhood and predicts the first and second
order anomaly maps.

more universal forgery traces, so as to boost the generaliz-
ability.

All the face forgery algorithms, whether face swapping
or reenactment, need to blend the forged regions into the
original background. The two parts inevitably hold differ-
ent features, especially in high frequency regions, resulting
in anomaly in forged images. On such observation, some
methods are proposed to capture the feature inconsistency
[4, 22, 52]. [52] propose a patch wise consistency learning
method to mine anomalies in forged face images and suc-
ceed in generalizing to unseen forgeries. However, these
works treat regions with various distances equally, which
violates the fact that natural images hold different depen-
dencies of short and long distances. Moreover, they usually
require either pixel level annotations or external synthetic
data. Although pixel level annotations can be created in lab
environments, the need for them limits the usage of forged
faces transmitted in the real world.

In this work, we focus on capturing forgery traces from
the perspective of local anomaly. Specifically, given a face
image, we extract its deep features with a CNN backbone,
and divide the neighborhood of a local feature into 4 groups
by different orientations and distances, thereby modeling
more fine-grained local anomalies and generating 4 groups
of anomaly maps. These anomaly maps are then decom-
posed again to calculate the second order anomaly which
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have a wide range of response to the first order anomaly.
The overview is shown in Fig. 1, and more details are in
Sec. 3.3. Our method requires neither pixel level annota-
tions nor external data but achieves great cross-domain per-
formance with a small backbone.

Our contributions can be summarized into four-fold:
• We propose a second order local anomaly (SOLA)

learning module for isolating forgery faces. SOLA cal-
culates anomalies of a local region in fine-grained fash-
ion and magnifies the forgery traces via calculating the
second order anomalies. Classifiers using the anomaly
features are proved to have remarkable generalization
on unseen forgeries.

• We propose a local enhancement module (LEM) that
can be inserted after different stages of the backbone
to ensure the discrimination between real and forged
regions in deep local features.

• We design an adaptive spatial rich model (ASRM)
which inherits the high pass peculiarity of SRM filters
in forensics and is able to adaptively adjust the filters
according to data.

• Our method requires neither pixel level annotations
nor external synthetic data to improve the generaliza-
tion of face forgery detectors.

2. Related work
Face forgeries can be seen as a game of AI versus AI

since most detection technologies are deep learning based.
Although these methods perform well under in-domain
evaluations, they often suffer performance degeneration on
unseen forgeries.

Generalization to Unseen Forgeries. Many efforts are
made to improve the generalizability of detectors such as
combining auxiliary localization tasks to guide the network
focus more on forged regions [8, 22], improving cross en-
tropy loss with metric learning for better class discrimi-
nation [20, 28], and introducing domain adaptation to al-
leviate overfitting on a single domain [35, 41]. Recently,
methods using frequency cues [26, 33] or combining fea-
tures from different domains also perform well [27, 28] in
cross-domain evaluations. In [20], one branch process the
RGB input, while another uses the DCT transformation to
extract high frequency features from different bands. Out-
puts of the two branches are fused to form more generalized
forgery features. Many works similarly fuse features from
RGB and frequency domains for more general representa-
tion [4, 15, 17, 27]. However, their methods of extracting
high frequency features can not fit the data adaptively to
capture the most discriminative features.

Anomaly-based Face Forgery Detection. Some works
introduce the idea of anomaly detection into image foren-
sics [6, 11] as well as face forgery detection [16, 18], and
achieve good generalization. For example, Wu et al. [48]

calculate the differences between local feature and domi-
nant feature of an image, turning the forgery localization
into local anomaly detection. Hu et al. [16] propose a dy-
namic inconsistency aware network to capture both global
inconsistency of adjacent frames and local inconsistency of
key regions within frames.

Recent methods similarly utilize the patch level anoma-
lies for face forgery detection. They are mainly based on
the observation that face forgery algorithms always blend
forged regions with original face context, resulting in pixel
statistical property anomalies within one image [52]. An
example of the pixel statistical property is camera noise [7]
which is a high frequency feature left during the imaging
process and has been used for detecting image integrity
[44]. [52] and [4] propose to divide deep feature maps into
patches, and calculate the similarities between patches to
form a more generalized pattern that indicates the image
integrity. They achieve both great performances under in-
domain and cross-domain evaluations. Unlike these meth-
ods that explore global level consistency, our method ex-
plores more fine-grained local anomaly instead.

3. Method
The overview of our method is illustrated in Fig. 2.

Given an input face image, it is fed to the RGB branch, as
well as a parallel noise branch whose first layer is our Adap-
tive Spatial Rich Model (ASRM). These intermediate fea-
tures extracted from these two branches are fused through
Dual Channel Attention Module (DCAM) after each block.
Then the Local Enhancement Module (LEM) divide the
fused feature maps into patches and enhance the category
attributes of each local feature inside. Finally, the Second
Order Local Anomaly (SOLA) learning module calculates
fine-grained local anomalies of the first and second order,
and predicts whether the input is forged.

3.1. Adaptive SRM in Noise Branch

Motivation. Learning from the RGB data is insufficient
to capture high frequency features that are crucial for im-
age forensics. To solve this problem, SRM (Spatial Rich
Model) [13] has been widely applied for preprocessing [15]
and layer initialization [34] to extract high frequency noise.
But if used for preprocessing, the handcrafted filters in SRM
can not adaptively update to fit the data. Besides, if used for
initialization, the backpropagation will adjust the filters and
break their high pass peculiarity. In this work, we address
this dilemma by introducing a constraint to let SRM adap-
tively update while maintaining their high frequency learn-
ing ability.

Design of ASRM. We start with original SRM following
[13]. SRM models the noise residuals Ri,j using high pass
filters by:

Ri,j = P (Ni,j)− Ii,j , (1)
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Figure 2. Overview of the proposed method (with ResNet18 backbone).

where Ni,j is the neighborhood of center pixel Ii,j , P (·)
is a predictor of Ii,j based on Ni,j . The residual is then
quantitated by q, following with rounding and truncation:

Ri,j ← trun(round(
Ri,j

q
)). (2)

We can see that the P (·) can be realized by a standard
convolution. Following [2], let I ∗ w denotes a standard
convolution on input image I with kernel w, and o notes an
impulse filter with central value being 1 and others being 0,
we then have:

h = I ∗ w = I ∗ ŵ− I = I ∗ (ŵ− o), (3)
where the central value of ŵ is 0. Then the central value of
w is -1 and I ∗ w is equal to Eq. 1.

We select 3 out of 30 filters in SRM as they have been
experimentally proved to be effective enough [53]. The fil-
ters are repeated 3 times for RGB images as shown in Fig.3.
To let their center values be -1, we quantitate them by 2, 4,
and 12 respectively. We can see that after quantitation, the
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Figure 3. The Adaptive Spatial Rich Model (ASRM) convolution.

sum of the remaining elements is 1 which perfectly fit the
requirements of Eq. 3. To allow the filters learnable during
network training while keep their peculiarity in high pass
filtering, we reset their central element to -1 and normalize
the remaining elements to force their sum to be 1:{

w0,0 = −1,∑
i ̸=0,j ̸=0 wi,j = 1,

(4)

where i, j denotes the index of elements in kernels and
(0, 0) is the central one. We execute this constraint after
each backpropagation.

ASRM is the first layer used for the preprocessing of
the noise branch. Different from using fixed SRM kernels,
ASRM enables the kernels to adaptively update during the
backpropagation and extract discriminative noise features
that can not be directly learned from RGB data.

The noise features extracted by ASRM provide subtle
high frequency cues, but different channels of the feature
maps have different contributions to generalization. Be-
sides, different channels in the fused features are of different
importance in forgery representations. Thus, we propose
the Dual Channel Attention Module (DCAM) to fuse the
intermediate features of RGB and noise branches. DCAM
uses channel attention [46] twice to emphasize channels of
more importance before and after the fusion.

3.2. Local Enhancement Module

SOLA calculates local anomalies on such an assumption:
each pixel in the feature maps is a local feature vector asso-
ciated with a corresponding local region whose size is the
ratio of input size to feature size. However, a feature vector
is associated with a larger region due to the expansion of
receptive field after several layers. The feature vectors are
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Figure 4. The Local Enhancement Module (LEM).

thereby affected by information of outer regions and lose
their discrimination in representing local regions. We notice
that some works have been proposed to capture long range
dependencies in images [45,50] with self attention. Follow-
ing this idea, we propose the Local Enhancement Module
(LEM) to improve the discrimination of local feature vec-
tors by assigning them with different weights.

Specifically, LEM takes as input the intermediate feature
maps Fl ∈ Rhl×wl×cl where l denotes the hierarchy. We
spatially divide Fl into 16 × 16 non-overlapping patches
pl
k, k = 1, 2, ..., 256 since size of the final feature maps is

16 × 16. pl
k is transformed using embedding functions θ

and f to calculate a weight matrix Wl
k by:

Wl
k = softmax(θ(pl

k)
T ⊗ f(pl

k)). (5)

The elements in Wl
k indicate the relevance between local

features in pl
k and separate local features by assigning dif-

ferent weights, given that local features of forged regions
are more relevant to that of forged regions and vice versa.
pl
k is also transformed by g and then enhanced by:

p̂l
k = Wl

k ⊗ g(pl
k). (6)

As illustrated in Fig.4, LEM concats p̂l
k to form the en-

hanced feature maps F̂
l

which is then multiplied by a learn-
able scale parameter λ and added with the input feature.

3.3. Second Order Local Anomaly Learning

In this work, we propose the Second Order Local
Anomaly (SOLA) learning module to detect face forgeries
by fine-grained local anomalies. Let Fi,j ∈ RC denotes the
(ith, jth) feature vector that corresponds to a local region in
the input image. To obtain more fine-grained representation
of local anomalies, SOLA first decomposes the neighbor-
hood of Fi,j into horizontal/vertical and nearest/next nearest
neighbors by direction and distance respectively. In prac-
tice, we only predict the anomalies of upper and left neigh-
bors due to the symmetry. Then the first order anomaly

maps of each Fi,j are predicted by Eq. 7:
Mv1,(i,j) = δv1(Fi,j ,Fi,j−1),

Mv2,(i,j) = δv2(Fi,j ,Fi,j−2),

Mh1,(i,j) = δh1(Fi,j ,Fi−1,j),

Mh2,(i,j) = δh2(Fi,j ,Fi−2,j),

(7)

where δ(·) is the anomaly predictor realized by 1×2 or 2×1
convolutions (dilation = 2 for next nearest neighbors, other-
wise 1), v and h denote vertical and horizontal neighbors,
1 and 2 denote the nearest and next nearest neighbors. One
kernel in δ(·) can predict only one anomaly map, thus we
set each δ(·) to contain 64 kernels so that it can generate 64
anomaly maps to capture multiple anomalies.

Inspired by the idea of the Laplace operator that com-
putes the second derivative, we propose the second order
local anomaly learning to obtain magnified responses to the
first order anomalies. To this end, SOLA applies the local
decomposition again on the first order anomaly maps and
calculates the second order local anomaly maps by Eq. 8.
A pixel in the second order anomaly maps is responded to
a region in the first order anomaly maps so as to capture a
wider range of fine-grained anomalies.

M′
v1,(i,j) = ϕv1(Mv1,(i,j),Mv1,(i,j−1)),

M′
v2,(i,j) = ϕv2(Mv2,(i,j),Mv2,(i,j−2)),

M′
h1,(i,j) = ϕh1(Mh1,(i,j),Mh1,(i−1,j)),

M′
h2,(i,j) = ϕh2(Mh2,(i,j),Mh2,(i−2,j)),

(8)

ϕ(·) denotes the second order anomaly predictor that is sim-
ilar to δ(·) but contains only one single kernel. Finally, we
stack 4 outputs of ϕ(·) to form a 4 channel anomaly map and
pass it to the classifier. The classifier only contains a convo-
lution layer followed by a global average pooling layer and
a fully-connected layer.

3.4. Loss Function

We first give the overall loss function for supervised
training where the forgery masks are available, and then
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describe the weakly supervised training strategy using our
single side loss.

Supervised Training. let M ∈ {0, 1}H×W denotes the
forgery mask, we divide it into patches mi,j (16 × 16 pix-
els in our case), we use its averaged value AV G(mi,j) to
represent the forgery score of (ith, jth) patch in the face im-
age. We use a hard thresholding fashion to calculate the first
and second order anomaly scores of two adjacent patches as
shown in (9a) and (9b) respectively. Without loss of gener-
ality, we use (i′, j′) to denote a neighbor of (i, j).

ai,j =

{
1 if |AV G(mi,j)−AV G(mi′,j′)| > 0,

0 else.
(9a)

a′
i,j =

{
1 if |ai,j − ai′,j′ | > 0,

0 else.
(9b)

By iterating (9a) and (9b) for each mi,j , we obtain the
ground truth of the first order anomaly maps M̃ ∈
{0, 1}h×w×64 (repeated 64 times), and the second order
anomaly maps M̃′ ∈ {0, 1}h′×w′

. The local anomaly
maps can be optimized using pixel wise binary cross en-
tropy (BCE):

LA = β
∑
∗

BCE(M∗,M̃∗) + γ
∑
h

BCE(M′
∗,M̃′

∗), (10)

where ∗ ∈ {v1, v2, h1, h2}, β and γ are the weights for the
first and second order anomaly maps. The overall loss for
training our model is:

Ltotal = αLcls + LA, (11)
Lcls is the BCE loss for the classifier and α is the weight.

Weakly Supervised Training. Although SOLA learn-
ing module predicts patch level anomalies, we can train it
in a weakly supervised manner where only image level la-
bels are available. To this end, we have two hypotheses: (1)
The pixels of anomaly maps of real faces should be all zero
or close to zero. In the meantime, there should be a por-
tion of nonzero pixels in the anomaly maps of forged faces.
(2) Anomaly maps vary according to different forgery al-
gorithms, but they should be always nonzero. On these hy-
potheses, we introduce a single side loss in Eq. 12 that only
penalizes the anomaly maps of real faces. This loss ensures
multiple patterns of anomalies in forged faces, thereby im-
proving the generalization:

LA =
∑

I∈real

∑
∗

β||M∗ − M̃∗||1︸ ︷︷ ︸
First Order

+ γ||M′
∗ − M̃′

∗||1︸ ︷︷ ︸
Second Order

, (12)

where M̃ and M̃′ are both all-zero.

4. Experiments
4.1. Experiments details

Datasets. We use a wide range of popular face forgery
datasets to evaluate the proposed method, including Face-
Forensics++ (FF++) [36], Celeb-DF v2 (CD2) [25], Deep-

fakeDetection Dataset (DFD) [31], and FaceShifter (Fshi)
[21]. In FF++, 1000 original videos are forged by four
forgery algorithms: DeepFakes, Face2Face [43], FaceSwap,
and NeuralTextures [42]. All face patches are cropped ac-
cording to their masks if available, otherwise, we use Reti-
naFace [9] to detect faces and crop the patches. To preserve
enough background, the cropped patches are set to be 2.6
times the size of masks or bounding box. All face patches
are resized to 256 × 256 and normalize to [0, 1] by dividing
255.

Evaluation Metrics. We report frame level AUC (area
under the receiver operating characteristic curve) as most of
the previous works do. The experimental results of other
methods which we use for comparison are directly cited.

Implementation Details. All the experiments are im-
plemented with Pytorch [32] with 4×NVIDIA RTX 3090
24GB. The backbone is initialized with ImageNet pre-
trained weights and trained using Adam optimizer [19] with
learning rate 1e-3, betas 0.9 and 0.999, and epsilon 1e-8.
The batch size is 32 and number of epochs is 50 without
early stopping.

Methods Backbone DF F2F FS NT
Xception [36] Xception 99.38 99.53 99.36 99.50

PBD [39] Xception 97.00 95.00 98.00 98.00
Face X-ray [22] HRNet 99.17 99.06 99.20 98.93

S-MIL [23] Xception 99.84 99.34 99.61 98.85
SOLA -weakly sup ResNet18 100 99.67 100 99.82

SOLA -sup ResNet18 100 99.56 99.98 99.76

Table 1. In-domain performences on FF++.

4.2. In-Domain Evaluations

We first report the performance of our method under
in-domain evaluations. The results of FF++ are shown in
Table 1. -weakly sup and -sup denote SOLA trained with
different strategies. Previous methods have achieved great
performance, but our method still surpasses the best com-
petitors by about 1% in terms of average AUC . Note that
our method only uses a relatively small backbone ResNet18
while most of other methods use a large backbone like
Xception. On the whole, weakly supervised SOLA per-
forms slightly better, proving that the single side loss allows
SOLA to capture different anomalies precisely.

4.3. Cross-domain Evaluations

In this section, we focus on the more challenging cross-
domain evaluations to explore the performances of our
method on unseen forgeries. Table 2 shows the results
of cross-domain evaluations on FF++. Here, the mod-
els are trained on only one dataset and evaluated on all
four datasets. Although Xception achieves 99.42% aver-
age AUC of in-domain evaluations, it can not generalize to
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Model Backbone Train Set
Test Set

Avg
DF F2F FS NT

Xception [36] Xception

DF

99.38 75.05 49.13 80.39 75.99
Face X-ray [22] HRNet 99.17 94.14 75.34 93.85 90.63

SOLA -weakly sup ResNet18 100 97.29 63.59 98.45 89.83
SOLA -sup ResNet18 100 96.95 69.72 98.48 91.28

Xception [36] Xception

F2F

87.56 99.53 65.23 65.90 79.56
Face X-ray [22] HRNet 98.52 99.06 72.69 91.49 90.44

SOLA -weakly sup ResNet18 99.61 99.67 84.24 97.48 95.25
SOLA -sup ResNet18 99.73 99.56 93.50 96.02 97.20

Xception [36] Xception

FS

70.12 61.70 99.36 68.71 74.97
Face X-ray [22] HRNet 93.77 92.29 99.20 86.63 92.97

SOLA -weakly sup ResNet18 93.18 97.59 100 94.93 96.43
SOLA -sup ResNet18 99.11 98.13 99.98 92.07 97.32

Xception [36] Xception

NT

93.09 84.82 47.98 99.50 81.35
Face X-ray [22] HRNet 99.14 98.43 70.56 98.93 91.77

SOLA -weakly sup ResNet18 99.95 94.83 57.32 99.82 87.97
SOLA -sup ResNet18 99.64 97.69 90.20 99.76 96.82

Table 2. Cross-domain evaluations on FF++.

other forgeries well and its performances of cross-domain
evaluations drop sharply. Meanwhile, Face x-ray [22] is de-
signed to detect the blending boundaries instead of specifi-
cal artifacts caused by forgery algorithms and made signif-
icant progress in generalization. We can see that weakly
supervised SOLA performs closely to Face x-ray. Face x-
ray requires pixel level forgery masks to locate the bound-
aries and train their model, but our method also achieves a
great improvement of generalization ability with only im-
age level labels. With the help of pixel level annotations,
supervised SOLA surpasses all other methods in terms of
average AUC of cross-domain evaluations. The overall per-
formance of supervised SOLA on FF++ exceeds Xception
and Face x-ray by 17.69% and 4.21%.

Model Backbone Train Set
Test Set

FShi
Xception [36] Xception FF++ 72.00

PBD [39] Xception FF++ 57.80
FWA [24] ResNet152 FF++ 65.50

Face X-ray [22] HRNet FF++ 92.80
LipForensics [14] ResNet18 FF++ 97.10
SOLA -weakly sup ResNet18 FF++ 97.27

SOLA -sup ResNet18 FF++ 98.72

Table 3. Cross-domain evaluation results on FaceShifter (trained
on FF++). Our method has better performance than state-of-the-
art works and is also competitive while using only one dataset.

Results of cross-domain evaluations on a more advanced
face forgery algorithm FaceShifter (Fshi) are shown in Ta-
ble 3. Following other works, we train our model on FF++

Model Train Set
Test Set

CD2
F 3 Net [33] FF++(c23) 65.17
FWA [24] Self-made 57.32

MADD [51] FF++(c23) 67.44
MTD-Net [49] FF++(c23) 70.12

Two Branch [28] FF++(c40) 73.41
F3Net [20] FF++(c23) 65.20

LRL [4] FF++(c23) 78.26
GFF [27] FF++(c23) 65.20

MADD [51] FF++(c23) 67.44
SPSL [26] FF++(c23) 76.88
LipFor [14] FF++(c23) 82.40

SOLA -weakly sup DF(c23) 72.47
SOLA -sup DF(c23) 76.02

Table 4. Cross-domain evaluations on CD2. Our methods trained
using only DF-c23 outperforms most methods.

and evaluate it by Fshi. Weakly supervised and supervised
SOLA both exceed state-of-the-art method, by 0.17% and
1.62% AUC respectively. In addition to the evaluations
with two supervision fashions, we also evaluate weakly su-
pervised SOLA trained with only one dataset. Although
the performances of weakly supervised SOLA are slightly
lower than the supervised SOLA when trained using only
one dataset, they are generally still better than most of
the recent methods. These results demonstrate the local
anomaly traces are universal in the forged faces and can be
generalized to unseen forgeries.
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The comparisons of cross-domain evaluation on CD2
are given in Table 4. Note that the compared methods are
trained with different datasets, so we present the results
for reference only. Most methods use all four datasets of
FF++ so as to obtain good generalization on CD2. How-
ever, weakly supervised SOLA gets 72.47% AUC when
trained using only the compressed DF dataset, exceeding
most state-of-the-art competitors. Supervised SOLA fur-
ther improve the result to 76.02% which is 3.55% higher
than the Two-Branch [28] that similarly fuses RGB and fre-
quency features.

Model Train Set
Test Set

DF F2F FS NT
Xception [36]

CD2
87.69 75.17 54.19 72.89

SOLA -weakly sup 85.77 85.72 86.78 85.64
Xception [36]

DFD
94.79 76.96 47.13 84.91

SOLA -weakly sup 95.51 85.51 60.81 84.01

Table 5. Cross-domain evaluations on DF, F2F, FS, and NT by
training on CD2 and DFD.

Table 5 shows the cross-domain results of our method
trained on CD2 and DFD and tested on FF++. Here,
SOLA can be only trained without supervision given that
the ground truth forgery masks of both the datasets are not
available. The overall AUCs are 85.98% and 81.46% when
trained on CD2 and DFD respectively, exceeding the Xcep-
tion by 13.49%, 5.57%, proving that our method general-
izes well on multiple datasets even with only image level
annotations.

Real DF F2F NT
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et
18

P
ro
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d

Figure 5. Grad-CAM [40] for the forgery class of different of
forged faces. We can see the proposed SOLA can respond to vari-
ous forgeries while the vanilla ResNet18 can not.

To explore which region our method pays attention when
encountering unseen forgeries, we use Grad-CAM [40] to
generate heat maps as illustrated in fig. 5. The warm color

marks the regions that respond strongly to the prediction of
forgery. Here, a ResNet18 and our method are both trained
on DF. Obviously, they can well concentrate on the forged
regions of faces created by DF and have almost no response
to real faces. However, our method not only captures forged
regions on DF more comprehensively, but also responds to
unseen forgeries while ResNet18 can not. We can see that
ResNet18 fails to capture the forged regions on F2F and
NT, thus it responses the same to F2F and NT as to the real
face. This agrees with the weak performance of deep learn-
ing models in cross-domain evaluations and reveals the gen-
eralization ability of our method on unseen forgeries.

4.4. Ablation Studies

The effect of ASRM. So far, we have been training
our method with the proposed ASRM. In this section, we
demonstrate its effectiveness by replacing it with several
variants. Table 6 shows the performances of different noise
extraction strategies in the noise branch: -w/o noise denotes
SOLA without noise branch, -srm and -lsrm denote SOLA
using fixed SRM filters and learnable SRM filters (use filters
as initialization of the first layer without any constraint). All
variants are trained on CD2 and DFD without pixel level an-
notations. The results show that the noise branch effectively
improves the performance of SOLA on DFD, by 16.5%,
16.68%, and 16.67% with different SRM variants.

Model CD2 DFD
SOLA -w/o noise 98.15 83.31

SOLA -srm 73.05 99.81
SOLA -lsrm 94.67 99.99
SOLA -asrm 98.70 99.98

Table 6. Comparsion results of different variants of SRM.

Fig. 6 shows outputs of all three channels of standard
SRM, LSRM, and ASRM across training epochs. The input
face is the same as that in Fig. 3. Although the standard
SRM extracts high frequency noise, it does not focus on
forged regions. Meanwhile, the LSRM loses its high pass
peculiarity and fails to extract noise features in the train-
ing process. But we can see that ASRM gradually extracts
the high frequency noise of face regions, especially the fa-
cial organs, providing discriminative cues that can not be
learned from CNNs directly.

The effect of LEM. To confirm the effect of LEM, we
train the weakly supervised SOLA with different combina-
tions of ASRM and LEM. As shown in Table 7, the models
are trained on DF and evaluated on DF, FShi, and DFD.
Generally, both ASRM and LEM can improve the overall
performances while ASRM contributes more to the gener-
alization and increases the AUC on Fshi and DFD by 8.78%
and 10.16%.
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Figure 6. The outputs of different SRM variants over training epochs.

The effect of Patch Size. In the previous experiments,
we use the 3 out of 4 blocks in ResNet18 and an additional
pooling layer to obtain feaures of size 16×16×256. To fur-
ther evaluate the effect of different patch sizes, we change
the pooling size to obtain features of size 8×8 and 32×32.
The results are shown in Table 7. Although SOLA with dif-
ferent patch sizes all get good results, SOLA with patch size
16 achieves the optimal performances across all datasets.
These results accord with the conclusions in [52] as well.

ASRM LEM Patch Size
Test Set

DF FShi DFD
16 99.90 72.24 78.33√
16 99.87 81.02 88.49√
16 99.98 73.64 80.25√ √
8 100 80.17 91.10√ √
16 100 86.53 92.61√ √
32 100 85.99 87.85

Table 7. Performances of weakly supervised SOLA with different
patch size and the effect of LEM.

Backbone FF++(c0) FF++(c23) CD2
ResNet18 99.84 98.10 68.33
ResNet50 99.90 99.14 74.98

ResNet101 99.90 99.25 75.05

Table 8. Comparsion results of different backbones.

The effect of Backbones. We further test the effect of
different backbone models on both in-domain and cross do-
main settings. As in Table 8, we choose 2 other models
in ResNet family and report the results on FF++ and CD2

(trained on FF++(c23)). While the overall performances
especially the cross-domain performance are much better
with ResNet50, the increase is very limited with a deeper
ResNet101.

4.5. Limitations

While the proposed method predicts fine-grained local
anomalies of different distances and directions, the diversity
of different predictors in SOLA is not explicitly ensured,
especially under the weakly-sup setting. This could lead to
the degeneration of local anomaly predictors and weaken
the representations of local anomalies.

5. Conclusion
In this work, we revisit face forgery detection from the

perspective of local anomaly detection and propose the
SOLA learning module to predict different types of local
anomalies in the first and second order. Besides, we de-
sign a weakly supervised strategy to train SOLA without
pixel level annotations. We also introduce a adaptive spa-
tial rich model to mine subtle high frequency traces us-
ing learnable high pass kernels. Experiments on multiple
datasets demonstrate that our method achieves competitive
performance with a small backbone and generalize to un-
seen forgery types well.
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