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Abstract

This work studies black-box adversarial attacks against
deep neural networks (DNNs), where the attacker can only
access the query feedback returned by the attacked DNN
model, while other information such as model parameters
or the training datasets are unknown. One promising ap-
proach to improve attack performance is utilizing the ad-
versarial transferability between some white-box surrogate
models and the target model (i.e., the attacked model). How-
ever, due to the possible differences on model architectures
and training datasets between surrogate and target models,
dubbed “surrogate biases”, the contribution of adversarial
transferability to improving the attack performance may be
weakened. To tackle this issue, we innovatively propose a
black-box attack method by developing a novel mechanism of
adversarial transferability, which is robust to the surrogate
biases. The general idea is transferring partial parameters
of the conditional adversarial distribution (CAD) of surro-
gate models, while learning the untransferred parameters
based on queries to the target model, to keep the flexibility
to adjust the CAD of the target model on any new benign
sample. Extensive experiments on benchmark datasets and
attacking against real-world API demonstrate the superior
attack performance of the proposed method. The code will
be available at https://github.com/Kira0096/CGATTACK.

1. Introduction
It has been well known [4, 14] that adversarial examples

are serious threats to deep neural networks (DNNs). Existing
adversarial attacks can be generally partitioned into two main
categories. The first category is white-box attack [14], where
the attacker can access parameters of the attacked DNN
model. The second one is black-box attack [12], where the
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attacker can only access the query feedback returned by the
attacked model, while model parameters are unknown to the
attacker. Since it is difficult to access model parameters in
real-world scenarios, black-box attack is more practical, and
it is also the main focus of this work.

If only utilizing the query feedback, it is difficult to
achieve high attack success rate under limited query budgets.
One promising approach to improve the attack performance,
including attack success rate and query efficiency, is utiliz-
ing the adversarial transferability [10, 11, 54] between some
white-box surrogate models and the target model (i.e., the at-
tacked model). Many adversarial transferabilities have been
proposed in existing works, such as the gradient [9, 17], or
the projection from a low-dimensional space to the original
sample space [25], etc. These transferabilities have shown
positive contributions to improving the attack performance
in some black-box attack scenarios, especially in the closed-
set scenario, where the training dataset of the target model is
known to the attacker. However, their effects may be signifi-
cantly influenced by the differences between surrogate and
target models. More precisely, architectures between surro-
gate and target models may be different, probably leading
to different feedback to the same query. Secondly, under the
practical scenario of open-set black-box attack where the
training dataset is unknown to the attacker, even using the
same architecture, different training sets (including samples
and class labels) will also lead to different parameters. We
generally summarize the differences, caused by architectures
and training datasets between surrogate and target models as
surrogate biases. If the biases are too large, the transferred
information may mislead the search of adversarial perturba-
tion for attacking the target model, causing the degradation
of the contribution of adversarial transferability to improving
the attack performance (as demonstrated later in Sec. 4.3).

To mitigate the above issue, the transferred term should be
not only informative but also robust to surrogate biases. To
this end, we focus on the conditional adversarial distribu-
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tion (CAD) (i.e., the distribution of adversarial perturbations
conditioned on benign examples). If the transferred CAD
accurately fits the target model, it will be helpful to search
successful adversarial perturbations for attacking the target
model. Besides, note that CAD is independent with class
labels, thus transferring CAD will be robust to the surro-
gate bias of training class labels. However, CAD can be
influenced by the biases of model architectures and train-
ing samples. Thus, we propose a novel transfer mechanism
that only partial parameters of CAD are transferred, while
the remaining parameters are learned according to the query
feedback returned by the target model on the attacked benign
sample. Consequently, the CAD of the target model condi-
tioned on any new benign sample could be flexibly adjusted,
such that the possible negative effect due to surrogate biases
of architectures and training samples could be mitigated.
One remaining important issue is how to accurately model
the CAD. Here we adopt the conditional generative flow
model, called c-Glow [39], whose general idea is invertibly
mapping a simple distribution (e.g., Gaussian distribution)
to a complex distribution through an invertible network, as
shown in Fig. 1(a). c-Glow has shown powerful ability of
capturing complex data distributions [39], and we believe
that it is capable enough to capture the CAD. To the best of
our knowledge, this is the first work to use c-Glow to approx-
imate the CAD. Besides, we develop an efficient training
algorithm of the c-Glow model based on randomly sam-
pled perturbations, rather than costly generated adversarial
perturbations, such that the CAD of surrogate models can
be efficiently and accurately approximated. Extensive ex-
periments are conducted to verify the effectiveness of the
proposed attack method, including black-box attack scenar-
ios of both closed-set and open-set on benchmark datasets,
as well as the attack against real-world API.

In summary, the main contributions of this work are three-
fold. 1) We propose an effective and efficient black-box at-
tack method by designing a novel adversarial transfer mecha-
nism that only partial parameters of the conditional adversar-
ial distribution are transferred, which is robust to surrogate
biases between surrogate and target models. 2) We are the
first to approximate the CAD by the c-Glow model, and de-
sign an efficient training algorithm based on randomly sam-
pled perturbations. 3) Extensive experiments demonstrate
the superiority of the proposed attack method to several state-
of-the-art (SOTA) black-box methods by improving attack
success rate and query efficiency simultaneously.

2. Related Work
Adversarial attack has been well studied in recent years.

Please refer to [1] for a detailed survey. In this section, we
mainly discuss the related works of black-box adversarial
attack methods, including decision-based and score-based
adversarial attacks.
Decision-based Adversarial Attacks. For decision-based

attacks, an attacker can only acquire the output label of the
target model. Boundary Attack [5] first studies the problem
by randomly sampling perturbations from the normal distri-
bution. An evolution based search method [12] utilized the
history queries to approximate a Gaussian distribution as the
search distribution. [8] formulated the decision-based attack
problem as a continuous optimization by alternatively opti-
mizing the perturbation magnitude and perturbation direc-
tion. HopSkipJumpAttack [6] developed an iterative search
algorithm by utilizing binary information at the decision
boundary to estimate the gradient. It is further improved
in [33] by learning a more representative subspace for per-
turbation sampling. Based on the observation of the low
curvature of the decision boundary around adversarial exam-
ples, a gradient approximation method was proposed in [38].
GeoDA [45] locally approximated the decision boundary
with a hyper-plane, and searched the closest point on the
hyper-plane as the perturbation. NLBA [32] overcomes the
gradient inaccessibility of blackbox attacks by utilizing vec-
tor projection for gradient estimation. SFA [7] considers
attack in L∞ setting and improves attack ability via ran-
domly flipping the signs of a small fraction of perturbations.

Score-based Adversarial Attacks. There are generally
three sub-categories of score-based black-box attacks, in-
cluding transfer-based, query-based and query-and-transfer-
based attacks. 1) Transfer-based methods attempt to gen-
erate adversarial perturbations utilizing the information of
surrogate white-box models. For example, it was proposed
in [44] to firstly train a surrogate white-box model with a
dataset labeled by querying the target model, then utilize the
gradient of the trained surrogate model to generate adver-
sarial perturbations to attack the target model. Adversarial
perturbations was found in [37] to achieve better attack per-
formance when generated on an ensemble of source models.
Recently, [29] proposed to perturb across the intermediate
feature space, rather than focus solely on the output layer
of the source models, so as to improve the transferability
of the generated adversarial examples. Although transfer-
based attack methods are very efficient, the attack success
rate is often lower than query-based attack methods. 2)
Query-based methods solve the black-box optimization
by iteratively querying the target model. SimBA [16] ran-
domly sampled a perturbation from a predefined orthonor-
mal basis, and then either added or subtracted this pertur-
bation to the attacked image. Natural evolution strategy
(NES) [52,53] was adopted in [27] to minimize a continuous
expectation of the black-box objective function based on a
search distribution. Bandit [28] improved the NES method
by incorporating data and temporal priors into the gradient
estimation. SignHunter [2] adopted the gradient sign rather
than the gradient as the search direction. PPBA [34] further
improves attack efficiency by shrinking the solution space
of possible adversarial inputs to those which contain low-
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frequency perturbations. PRFA [36] considers attack against
detection models and proposes to parallelly attack multiple
rectangles for better efficiency. Query-based methods of-
ten achieve better attack performance than transfer-based
methods, but require more queries. 3) Query-and-transfer-
based methods try to take advantage of both transfer-based
and query-based methods, to achieve high attack success
rate and high query efficiency simultaneously. The gen-
eral idea is firstly learning some types of priors from surro-
gate models, then incorporating these priors into the query-
based method to guide the attack procedure for the target
model. For example, the prior used in NATTACK [35] is
the mean parameter of the Gaussian search distribution in
NES, which is learned using a regression neural network
trained based on surrogate models. AdvFlow [42] assumes
that the marginal distributions of benign examples and ad-
versarial examples are similar, to generate inconspicuous
adversaries. The prior used in Square attack [3] is that it is
more likely to find an adversarial perturbation at the bound-
ary of the feasible set of allowed perturbations. Methods
in [9] and [17] utilized the gradient of surrogate models as
the gradient prior. TREMBA [25] treated the projection
from a low-dimensional space to the original space as the
prior, such that the perturbation could be search in the low-
dimensional space. The hybrid method [49] proposed to
initialize the attack with adversarial perturbations from the
surrogate models and update surrogate models using the feed-
back of the target model. LeBA [56] also proposed to update
the surrogate models to approximate the target models, by
building high order computation graph. MSA [57] propose
to meta-learn search distributions that help to improve attack
efficiency. QA [41] considers black-box attack for NLP and
jointly leverages attention mechanism and locality sensitive
hashing to rank the input words so as to improve query effi-
ciency. Recently a few algorithms were specially developed
to handle the open-set black-box attack scenario (also called
data-free black-box attack in [23, 59]). However, DaST [59]
required massive queries to train a surrogate model, which
doesn’t satisfy the goal of improving attack performance
under limited query budgets. DFP [23] assumed that the
target model is fine-tuned based on a white-box pre-trained
model, and the attack success rate is very low.

3. Method
3.1. Problem Formulation of Black-Box Attack

We denote a classification model F : X → Y , with
X being the input space, n = |X | indicating the dimen-
sion of the input space, and Y being the output space.
Given a benign example x ∈ X and its ground-truth la-
bel y ∈ Y , F(x, y) ∈ [0, 1] indicates the classification
score w.r.t. the y-th label. In this work, we adopt the
logit as the classification score. The goal of adversarial
attack is finding a small perturbation η within a ℓp-ball, i.e.,

Bϵ = {η|η ∈ Rn, ∥η∥p ≤ ϵ} (ϵ > 0 being an attacker
defined scalar, which will be specified in Sec. 4.1), such
that the prediction of x+ η is different from the prediction
of x. Specifically, the attack problem can be formulated as
minimizing Ladv

Ladv(η,x, y) = I
(
η ∈ Bϵ

)
+max

(
0,△

)
, (1)

where △ = F(x+ η, y)−max
j ̸=y

F(x+ η, j) for the untar-

geted attack, while △ = max
j ̸=t

F(x + η, j) − F(x + η, t)

for the targeted attack with t ∈ Y being the target label.
I(a) = 0 if a is true, otherwise I(a) = +∞, which enforces
that the perturbation η is within the range Bϵ. Note that
Ladv is non-negative, and if 0 is achieved, the corresponding
η is a successful adversarial perturbation.

Here we consider a practical and challenging scenario
that parameters of F are unknown to the attacker, while only
the classification score F(x, y) is returned by querying F ,
dubbed score-based black-box attacks. Furthermore, if the
training dataset of F is known to the attacker, then it is called
closed-set attack scenario, otherwise called open-set attack
scenario. The goal of black-box attacker is to find a suc-
cessful adversarial perturbation η (i.e., Ladv(η,x, y) = 0)
under limited query budgets. In other words, a good attack
algorithm should achieve high attack success rate (ASR) and
high attack efficiency (i.e., fewer queries) simultaneously. To
this end, one promising approach is utilizing both the query
feedback returned by the target model and adversarial trans-
ferability from some white-box surrogate models, dubbed
query-and-transfer-based attack method. The effect of trans-
ferability is related to the differences between surrogate and
target models, including model architectures, training sam-
ples, as well as training class labels, as these information
of the target model is unknown to the attacker in practical
scenarios, especially in the open-set scenario. These dif-
ferences are generally called surrogate biases, which may
cause negative transfer to harm the attack performance.

To mitigate the possible negative effect from adversarial
transferbility, here we propose a novel transfer mechanism
that is robust to surrogate biases. The general idea is partially
transferring the CAD of surrogate models, while keeping
the flexibility to adjust the CAD according to queries to the
target model. In the following, we will firstly introduce the
modeling of CAD using the c-Glow model in Sec. 3.2; then,
we will present the attack method utilizing the proposed
transfer mechanism, called CG-ATTACK, in Sec. 3.3.

3.2. Modeling Conditional Adversarial Distribution
3.2.1 Conditional Glow Model

The c-Glow model was recently proposed in [39] to learn the
complex posterior probability in structured output learning.
It can generate an invertible mapping between one random
variable η and another random variable z that follows a
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Figure 1. Overall pipeline of our method. (a) The general structure
of the c-Glow model, which maps the simple normal distribution to
the CAD. (b) The efficient training method of c-Glow on surrogate
white-box DNN models. (c) The proposed black-box attack method
CG-ATTACK, which transfers the mapping parameter ϕ of the c-
Glow model trained on surrogate DNN models.

simple distribution (e.g., Gaussian distribution), given the
condition x. c-Glow can be formulated as an inverse func-
tion gx,ϕ : z → η, and there exists g−1

x,ϕ : η → z, with
ϕ indicating the mapping parameter. In the scenario of ad-
versarial attack, the condition variable x ∈ X is the benign
example, and η ∈ R|X | represents the perturbation variable.
gϕ,x can be further decomposed to the composition of M
inverse functions [39], as follows:

η = gx,ϕ(z) = gx,ϕ1(gx,ϕ2(...(gx,ϕM
(z))...)), (2)

where ϕ is specified as (ϕ1, . . . ,ϕM ), and ϕi indicates the
parameter of gx,ϕi(·). The c-Glow model can be represented
by a neural network with M layers (M is set to 3). Each
layer consists of a conditional actnorm module, followed by
a conditional 1× 1 convolutional module and a conditional
coupling module. A general structure of c-Glow is shown
in Fig. 1(a). The detailed description of the c-Glow model
will be presented in Sec. 1 of the Supplementary Material.

3.2.2 Approximating CAD by c-Glow
Instead of modeling the marginal distribution Pθ(η), here
we propose to utilize the powerful capability of c-Glow to
approximate the CAD (i.e., Pθ(η|x)) in the task of adver-
sarial attack. Based on the mapping from the latent variable
z to the perturbation variable η (i.e., Eq. (2)), we derive
a mathematical formulation of Pθ(η|x). Specifically, we
first set z = µ + σ ⊙ z0 with z0 ∼ N (0, I), where ⊙ is
the entry-wise product and I indicates the identity matrix.
Then, utilizing the change of variables [51] of Eq. (2), the
conditional likelihood of η given x can be formulated as

logPθ(η|x) = logP0,1(z0)+

M+1∑
i=1

log

∣∣∣∣ det(∂g−1
x,ϕi

(ri−1)

∂ri−1

)∣∣∣∣,
(3)

where θ = (ϕ,µ,σ), ri = g−1
ϕi,x

(ri−1), r0 = η, rM = z
and rM+1 = z0, with i indicating the index of the i-th
inverse function in c-Glow. det(·) indicates the determinant

of a matrix, and P0,1(·) indicates the probability density
function of the multi-variant normal distribution N (0, I).
For simplicity, in Eq. (3) we treat the transformation z =
µ + σ ⊙ z0 as the M + 1 layer of the c-Glow model, i.e.,
gx,ϕM+1

(z0) = µ + σ ⊙ z0 with ϕM+1 = (µ,σ), which
is also invertible, but is independent on x. Thus, we have
η = gx,θ(z0) = gx,ϕ(z).

3.2.3 Learning of the c-Glow Model

In [39], the parameter θ of c-Glow is learned via maximum
likelihood estimation (i.e., maxθ logPθ(η|x)). However, it
may not be a suitable choice for approximating the CAD, be-
cause it generally requires massive adversarial perturbations,
when there are multiple layers in the adopted c-Glow model.
Meanwhile, the generation of these adversarial perturbations
is very time consuming. Recall that our work is to transfer
the mapping parameters learned by the c-Glow in white-box
attack scenario to the black-box attack scenario. To tackle
the above challenge, we first present a novel learning method
based on surrogate white-box models.
Energy-based Model. By utilizing the adversarial loss
Ladv(η,x), we define an energy-based model [22] to cap-
ture the distribution of η around x, as follows

PE(η|x) =
exp

(
− λ · Ladv(η,x)

)∫
η∈Bϵ

exp
(
− λ · Ladv(η,x)

)
dη

. (4)

Note that given the classification model F , the normal-
ization term (i.e., the denominator) is an intractable constant.
Thus, we simply omit it hereafter, and set

logPE(η|x) ≈ −λ · Ladv(η,x), (5)

where λ is a positive hyper-parameter, which will be spec-
ified in Sec. 6 of the Supplementary Material. Note that
the distributions of both untargeted and targeted adversarial
perturbations can be formulated by Eq. (5), by specifying △
to the corresponding format in Ladv(η,x) (see Eq. (1)).

In practice, we randomly sample a large number of per-
turbations within the neighborhood Bϵ around each benign
example x, then feed the perturbed example x+ η into the
attacked model to obtain the values of logPE(η|x). Note
that we only need to sample perturbations within Bϵ, as the
values of logPE(η|x) for outer perturbations are negative
infinity (see Eq. (1)), which are useless for learning.
Minimization of KL divergence. Given PE(η|x) defined
in Eq. (5), we propose to learn the parameter θ of the c-
Glow model by minimizing the KL divergence [31] between
PE(η|x) and Pθ(η|x). The rationale behind is that if the
adversarial probabilities for any perturbation evaluated by
both PE(η|x) and Pθ(η|x) are similar, then the learned
Pθ(η|x) can be considered as an good approximation to the
real adversarial distribution. Without loss of generality, we
consider one benign example x, then the learning of θ is
formulated as the minimization of the following objective,
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L = EPE(η|x)

[
log

PE(η|x)
Pθ(η|x)

]
. (6)

We adopt the gradient-based method to optimize this prob-
lem, and the gradient of L w.r.t. θ is presented in Theorem
1. Due to the space limit, the proof of Theorem 1 will be
presented in the Sec. 3 of the Supplementary Material.
Note that each term within the expectation in Eq. (7) is
tractable, thus ∇θL can be easily computed. In practice, K
instantiations of z0 are sampled from N (0, I), then ∇θL
is empirically estimated as the average value over these K
instantiations. The general structure of the proposed learning
method is presented in Fig. 1(b).
Theorem 1. Utilizing η = gx,θ(z0) and z0 ∼ N (0, I)
defined in Sec. 3.2, as well as Eq. (5), and defining the term
D(η,x) = log PE(η|x)

Pθ(η|x) , then the gradient of L w.r.t. θ can
be computed as follows

∇θL = −Ez0∼N (0,I)

[exp−λ·Ladv(η,x)

Pθ(η|x)
· ∇θgx,θ(z0)

· ∇ηD(η,x)⊤
∣∣
η=gx,θ(z0)

]
, (7)

where ∇ηD(η,x) = ∇η[−λLadv(η,x)− logPθ(η|x)].

3.3. CG-ATTACK

Evolution-Strategy-based Attack Method. Here we firstly
give a brief introduction of evolution strategy (ES) [20, 46],
which has been widely used in black-box attacks, such as
NES [27], TREMBA [25], NATTACK [35], etc. The gen-
eral idea of ES is introducing a search distribution to sample
multiple perturbations η, then these perturbations are fed
into the target model to evaluate the corresponding objec-
tive values Ladv(η,x, y), which are then used to update the
parameters of the search distribution based on some strate-
gies (e.g., Natural ES [52, 53], CMA-ES [19]). This process
is repeated, until one successful adversarial perturbation is

Algorithm 1 The proposed CG-ATTACK method with CMA-
ES being the basic algorithm.
Input: The black-box attack objective Ladv(·,x) with the benign input

x, the ground-truth label y or the target label t, population size k,
surrogate white-box models, training set D of the surrogate models, the
maximal number of queries T , the downsampling ratio r.

1: Pretrain the c-Glow model in the r-DCT subspace of D based on
surrogate models, and obtain the parameters ϕ,µs,σs;

2: Initialize µ = µs,σ = I, and initialize other parameters in the
standard CMA-ES algorithm;

3: for t = 1 to T do
4: Sample k perturbations η1, ...,ηk ∼ P(ϕ,µ,σ)(η|x);
5: Upsample the perturbations η1, ...,ηk with IDCT into the same

size of x, obtaining η̄1, ..., η̄k;
6: Evaluate Ladv(η̄1,x), ...,Ladv(η̄k,x);
7: if ∃η̄i,Ladv(η̄i,x) = 0 then
8: return x+ η̄i;
9: end if

10: Update µ,σ and other parameters as did in the standard CMA-ES;
11: end for

found (i.e., Ladv(η,x, y) = 0). Instead of adopting the sim-
ple Gaussian distribution as the search distribution as did
in TREMBA and NATTACK, here we specify the search
distribution as the CAD modeled by the c-Glow model. As
verified in experiments presented in Sec. 2.4 of the Supple-
mentary Material, the c-Glow model can capture the CAD
more accurately than the Gaussian model.
A Novel Transfer Mechanism of CAD. One main challenge
of the above ES-based black-box attack method is that there
are significantly more parameters of the c-Glow model than
Gaussian model, and it may require more queries to learn
good parameters. Therefore, we resort to adversarial transfer-
ability, i.e., firstly learning the c-Glow model based on some
white-box surrogate models using the learning algorithm in
Sec. 3.2.3, then transferring this learned c-Glow model to
approximate the CAD of the target model. However, as men-
tioned in Sec. 3.1, the CADs of surrogate and target models
should be different, due to surrogate biases. The transfer of
the whole c-Glow model may cause negative transfer to harm
the attack performance. Thus, we propose a novel transfer
mechanism that only transferring mapping parameters ϕ of
the c-Glow model, while the remaining Gaussian parameters
µ and σ are learned based on queries to the target model, as
shown in Fig. 1(c). The rationale behind this partial transfer
is Assumption 1, which will be verified in Sec. 2.1 of the
Supplementary Material.
Assumption 1. Given two c-Glow models learned for two
DNN models, i.e., gx,θ1

with θ1 = (ϕ1,µ1,σ1) and gx,θ2

with θ2 = (ϕ2,µ2,σ2), we assume that their mapping pa-
rameters are similar, i.e., ϕ1 ≈ ϕ2.

We believe that this partial transfer mechanism has two
main advantages. 1) It keeps the flexibility to automatically
adjust the CAD of the target model on the currently attacked
sample x, to mitigate the possible negative effect due to the
surrogate biases from model architectures and training sam-
ples. 2) Since this transfer is only related to the conditional
probability Pθ(η|x), while independent with the marginal
probability P(y), it is supposed to be robust to the surrogate
bias of training class labels. Above advantages make the
attack method utilizing this partial transfer mechanism more
practical in real-world scenarios, especially in the open-set
scenario. The attack method combining ES-based attack and
this partial transfer mechanism based on the Conditional
Glow model is called CG-ATTACK, of which the general
procedure is presented in Fig. 1.
Dimensionality Reduction. It has been shown in many
black-box attack methods [12, 15, 25, 28] that searching or
optimizing the adversarial perturbation in a suitable low-
dimensional subspace can significantly improve query ef-
ficiency. To further improve the query efficiency, here we
also combine the dimensionality reduction technique with
CG-ATTACK. Specifically, we adopt the technique based
on discrete cosine transform (DCT). The general procedure
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of CG-ATTACK with DCT is summarized in Algorithm 1,
where we adopt a popular variant of ES-based method, i.e.,
the co-variance matrix adaptation evolution strategy (CMA-
ES) [19] as the basic algorithm. The details of DCT and the
standard CMA-ES algorithm will be presented in Sec. 4 and
5 of the Supplementary Material, respectively.

4. Experiments
4.1. Experimental Settings
Datasets and Evaluation Metrics. Following the setting
in [13], we choose 1,000 images randomly from the testing
set of CIFAR-10 [30] and the validation set of 10 randomly
selected classes from ImageNet [47] for evaluation, respec-
tively. For both datasets, we normalize the input to [0, 1].
The maximum distortion of adversarial images for CIFAR-
10 is set as ϵ = 0.03125 and for ImageNet is set as ϵ = 0.05.
The maximum number of queries is set to 10,000 for all
the experiments. As in prior works [17, 43], we adopt the
ASR, the mean and median number of queries of successful
attacks to evaluate the attack performance.
Target and Surrogate Models. For CIFAR-10, we consider
four target models: VGG-15 [48], ResNet-Preact-110 [21],
DenseNet-BC-110 [24] and PyramidNet-110 [18]. The mod-
els are implemented based on the GitHub repository1. Un-
less otherwise specified, we conduct the standard training
on the training set of each dataset. The top-1 error rates
of these four target models on the standard testing set of
CIFAR-10 are (7.24%, 10.04%, 4.68%, 7.24%), respectively.
For ImageNet, we also evaluate our method on four target
models: VGG-16 [48], ResNet-18 [21], SqueezeNet [26]
and GoogleNet [50]. The models are based on the official
implementation of Pytorch and the pre-trained parameters
are downloaded from torchvision. The top-1 error rates of
these target models on the validation set of ImageNet are
(28.41%, 30.24%, 41.90%, 30.22%), respectively. To further
mitigate the possible negative effect due to the surrogate bias
of model architectures, on each dataset, when attacking one
target model, we treat the other three as surrogates.

Besides, we also consider the attack against adversarially
defended models. Following [25], the defended models for
CIFAR-10 were trained based on PGD adversarial training
[40] and the SOTA models from [55] are directly adopted for
ImageNet. More specifically, ResNet50 and WResNet [58]
are adopted as the surrogate and target models for CIFAR-10
and ResNet152 Denoise and RexneXt101 Denoise from [55]
are adopted as surrogate and target models for ImageNet.
Compared Methods. Several SOTA score-based black-box
attack methods are compared, including NES [27], Bandits
[28], NATTACK [35], SimBA [16], Subspace [17], P-RGF
[9], TREMBA [25], MetaAttack [13], Signhunter [2] and
AdvFlow [42]. All of them are implemented using the source

1https://github.com/hysts/pytorch image classification

Figure 2. Attack success rate (ASR %) w.r.t. query numbers for
untargeted attacks on CIFAR-10.

codes provided by their authors.

4.2. Experiments on Closed-set Attack Scenario
4.2.1 Performance of Black-box Attack on CIFAR-10

Untargeted Attack. In this case, one attack is successful
if the predicted class of the adversarial example is different
from the ground-truth label. The results are reported in the
left half of Tab. 1. It shows that the proposed CG-ATTACK
achieves 100% ASR on ResNet, DenseNet, and PyramidNet,
and 99.9% ASR on VGG. CG-ATTACK is also very query-
efficient. The mean number of queries is the lowest under all
four target models in Tab. 1. More surprisingly, the median
number of queries of CG-ATTACK is just 1, which means
that we successfully fool the target model with just one query
for more than 50% attacked images. In contrast, the second-
best median queries are obtained by Subspace [17], which
are more than 10x of ours, and with much lower ASR. The
curves of the average ASR on all evaluation images w.r.t
the query number are shown in Fig. 2. It clearly highlights
the superiority of our CG-ATTACK method, especially in
the stage of low query numbers.
Targeted Attack. Following [25], we conduct targeted at-
tacks with three target classes, including 0 (airplane), 4
(deer), and 9 (truck). When attacking for one target class,
images with the same ground-truth class are skipped. We
report the attack results of the target class 0 in the right half
of Tab. 1, and leave the results of the other two target classes
in Sec. 7.1 of the Supplementary Material. As shown in
Tab. 1, our CG-ATTACK method achieves at least 98.8%
ASR on all target models. Besides, the mean and median
query numbers of CG-ATTACK are significantly lower than
that of all compared methods, demonstrating its query effi-
ciency. Signhunter [2] obtains a slightly higher ASR than
CG-ATTACK on VGG and PyramidNet, but with the cost of
more than 1.6x query numbers.
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Table 1. Attack success rate (ASR %), mean and median number of queries of untargeted attack and targeted attack (target class 0) on
CIFAR-10. The first 5 methods (from ‘NES’ to ‘Signhunter’) are pure query-based attacks, while the other methods are query-and-transfer-
based attacks. The best and second-best values among methods that achieve more than 90% ASR are highlighted in bold and underline.

Untargeted Attack Targeted Attack
Target Model → ResNet DenseNet VGG PyramidNet ResNet DenseNet VGG PyramidNet
Attack Method ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median

NES [27] 91.2 169.2 62.0 94.3 249.4 112.0 91.7 284.3 98.0 95.9 385.4 168.0 68.7 2973.5 1102.0 84.9 6932.4 4125.0 77.3 4192.4 2961.0 71.2 3977.8 2623.0
NATTACK [35] 99.6 767.2 628.0 99.6 824.4 672.0 99.7 902.4 736.0 100.0 675.8 548.0 99.1 1817.3 1548.0 100.0 1718.5 1493.0 100.0 3232.8 2874.0 100.0 1569.3 1288.0

Bandits [28] 90.8 193.4 88.0 96.0 206.3 96.0 93.0 361.5 158.0 92.0 194.9 92.0 72.6 3660.1 2812.0 80.0 4154.8 3842.0 83.4 3967.6 3860.0 77.8 4484.6 3876.0
SimBA [16] 93.2 432.1 235.0 74.0 480.5 223.0 68.3 632.3 237.0 84.0 455.5 270.0 100.0 940.0 885.0 100.0 838.8 777.0 99.5 1343.2 1210.0 100.0 865.8 779.0

Signhunter [2] 100.0 135.1 47.0 99.8 213.8 119.0 93.3 244.3 102.0 97.5 161.9 69.0 100.0 894.1 657.0 100.0 826.9 679.0 99.7 1431.7 1121.0 100.0 1111.6 878.0
Subspace [17] 93.0 301.8 12.0 96.0 115.8 12.0 90.0 272.0 12.0 91.0 255.4 10.0 78.0 2409.3 1630.0 94.0 1528.4 1012.0 67.0 2129.1 1366.0 80.0 2241.3 1586.0

P-RGF [9] 92.2 121.8 62.0 99.6 111.7 62.0 96.8 176.4 62.0 98.2 135.8 62.0 70.6 1020.8 390.0 77.1 1037.1 438.0 61.3 1083.9 360.0 50.3 1108.8 436.0
TREMBA [25] 90.9 120.7 64.0 97.8 126.4 66.0 97.7 125.5 63.0 97.9 82.3 39.0 91.2 1125.3 868.0 92.3 1123.4 879.0 96.5 1331.5 1142.0 98.1 1082.4 759.0

MetaAttack [13] 100.0 363.2 153.0 100.0 411.5 225.0 100.0 392.0 161.0 100.0 320.4 191.0 98.7 1953.3 1537.0 99.8 2013.7 1793.0 86.1 3045.6 2307.0 98.9 2054.6 1665.0
AdvFlow [42] 97.2 841.4 598.0 100.0 1025.3 736.0 98.2 1079.1 862.0 99.7 857.5 562.0 98.6 911.7 822.0 96.3 1021.5 868.0 97.4 1144.1 946.0 100.0 908.1 824.0
CG-ATTACK 100.0 81.6 1.0 100.0 43.3 1.0 99.9 56.4 1.0 100.0 30.1 1.0 99.9 696.4 421.0 100.0 787.1 621.0 98.8 861.1 581.0 98.9 651.2 461.0

Table 2. Attack success rate (ASR %), mean and median number
of queries of untargeted attack on ImageNet. The best and second-
best values among methods that achieve more than 90% ASR are
highlighted in bold and underline, respectively.

Target model → ResNet GoogleNet VGG SqueezeNet

Attack Method ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median
NES [27] 91.2 1642.1 664.0 86.3 1725.3 612.0 81.6 1394.7 586.0 87.5 1473.3 596.0

NATTACK [35] 95.3 1124.6 760.0 95.6 1266.4 864.0 90.9 874.6 692.0 94.8 1362.2 812.0
Bandits [28] 90.3 972.3 248.0 89.7 1247.1 462.0 84.3 991.3 773.0 88.2 1173.4 862.0
SimBA [16] 96.7 577.3 245.0 99.1 995.0 382.0 93.4 882.6 382.0 94.3 1052.3 766.0

Signhunter [2] 100.0 278.2 48.0 100.0 284.7 124.0 100.0 218.9 64.0 100.0 315.9 72.0
Subspace [17] 93.1 533.8 224.0 96.3 632.1 322.0 94.3 533.2 310.0 95.7 589.2 272.0

P-RGF [9] 96.1 528.1 284.0 97.3 466.2 271.0 97.3 336.1 184.0 94.7 463.7 172.0
TREMBA [25] 100.0 332.4 121.0 96.7 246.6 101.0 97.6 196.2 81.0 97.3 272.1 131.0

MetaAttack [13] 94.8 335.2 167.0 96.3 288.6 121.0 93.6 311.2 96.0 96.3 288.3 132.0
AdvFlow [42] 96.7 746.1 482.0 99.3 694.8 364.0 95.5 1022.6 748.0 99.2 894.3 521.0
CG-ATTACK 97.3 210.4 21.0 100.0 138.8 21.0 99.4 77.3 1.0 99.3 132.9 21.0

4.2.2 Performance of Black-box Attack on ImageNet
We perform both targeted and untargeted attacks against
models on the ImageNet dataset. We report the results for
untargeted attacks and leave the results for targeted attacks
in Sec. 7.2 of the Supplementary Material. The results are
summarized in Tab. 2. It shows that CG-ATTACK performs
better than compared methods in most cases. Specifically,
when attacking the GoogleNet model, CG-ATTACK achieves
the highest ASR with the lowest mean and median number of
queries. On ResNet and SqueezeNet, CG-ATTACK achieves
the best values of both mean and median number of queries.
Moreover, we study the effect dimensionality reduction in
Sec. 7.4 of the Supplementary Material.

4.2.3 Black-box Attack on Defended Models
In this section, we perform an untargeted attack against de-
fended models based on adversarial training, and the results
are reported in Tab. 3. In addition to the results based on
defended surrogate models mentioned in Sec. 4.1 (listed as
CG-ATTACK-Robust), we also present the results for un-
defended surrogate models (listed as CG-ATTACK). Note
that for other baseline methods, only results for defended
surrogate models are presented. From Tab. 3, we can see that
even without the defended surrogate models, CG-ATTACK
still outperforms the baseline methods in all three metrics.
This shows that our method is capable of efficiently adapt-
ing the CAD despite the large surrogate biases in model
architectures. With a better surrogate model, i.e., the de-
fended model, CG-ATTACK-Robust consistently improves

Table 3. Attack success rate (ASR %), mean and median number
of queries of black-box untargeted attack on defended models.

Target model→ CIFAR10 WResnet ImageNet RexneXt101

Attack method↓ ASR Mean Median ASR Mean Median
NES [27] 13.2 5682.1 2261.3 10.3 7745.2 3943.0

NATTACK [35] 26.1 4753.9 2763.0 29.7 6352.4 3971.0
Bandits [28] 18.7 3127.5 1263.2 16.4 4962.3 3138.0
SimBA [16] 29.6 3826.9 2642.0 25.7 7152.6 3072.0

Signhunter [2] 58.1 986.1 583.0 60.1 1585.3 769.0
Subspace [17] 31.3 3965.7 2492.0 26.1 6973.2 4175.0

P-RGF [9] 22.9 4983.2 3617.0 21.2 7791.4 5823.0
TREMBA [25] 56.2 1242.4 726.0 51.3 3952.0 1944.0

MetaAttack [13] 47.1 1527.6 681.0 46.5 2823.7 1149.0
AdvFlow [42] 36.8 2386.2 1124.0 32.7 4952.8 3168.0
CG-ATTACK 58.5 789.7 371.0 63.3 1374.0 621.0

CG-ATTACK-Robust 64.3 606.1 341.0 72.1 1305.1 581.0

attack performance over CG-ATTACK in terms of ASR (5%
higher), mean (7% lower), and median queries (5% lower).

4.3. Experiments on Open-set Attack Scenario
4.3.1 Black-box Attack on Benchmark Datasets
In Sec. 4.2, we have considered the closed-set attack sce-
nario where surrogate and target models share the same
training set, which has been widely adopted in many previ-
ous black-box attack methods [9, 13, 17, 25]. However, in
real-world scenarios, the attacker may not know the dataset
set used for training the target model, dubbed open-set at-
tack scenario. Specifically, we consider the following two
cases. Case 1: the surrogate and target models are trained on
disjoint images from same classes. In this case, the attacker
has access to the class labels of the target training set, and
creates a proxy training set by collecting images of each
class from the internet. In our experiments, we evenly split
the training images of each class, and surrogate models are
trained on one half, while the target model on the other. Case
2: the surrogate and target models are trained on disjoint
images from disjoint classes. In this case, the complete class
labels are not released, and it is more challenging for the
attacker to construct a similar proxy dataset to train surrogate
models. Here we consider an extreme setting that the class
labels of training sets used for training surrogate and tergate
models are disjoint. Specially, we split the whole training
set by classes evenly, and train surrogate models on one half,
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Table 4. Attack success rate (ASR %), mean and median number of queries of open-set untargeted attack on CIFAR-10 (Case 1 and Case 2).
The first 5 methods (from ‘NES’ to ‘Signhunter’) are pure query-based attacks, while the other methods are query-and-transfer-based attacks.
The best values among methods are highlighted in bold.

Case 1 Case 2
Target Model → ResNet DenseNet VGG PyramidNet ResNet DenseNet VGG PyramidNet
Attack Method ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median

NES [27] 93.1 225.2 79.0 96.7 188.5 68.0 93.2 144.6 81.0 97.2 273.5 133.0 94.4 251.3 101.0 92.9 373.4 186.0 94.2 343.0 192.0 96.3 309.1 214.0
NATTACK [35] 99.7 688.3 264.0 99.3 645.2 262.0 99.1 725.7 318.0 98.6 643.0 205.0 98.2 607.2 335.0 99.1 706.7 349.0 98.8 876.0 705.0 99.3 731.9 581.0

Bandits [28] 91.7 167.1 67.0 94.5 178.2 83.0 94.6 287.5 112.0 96.9 212.1 78.0 92.5 226.3 98.0 93.6 154.1 62.0 95.5 249.3 174.0 93.2 163.3 64.0
SimBA [16] 91.2 386.7 168.0 84.5 297.6 173.0 73.2 319.4 163.0 85.1 413.9 258.0 93.6 332.0 101.0 91.2 287.3 121.0 88.4 427.9 226.0 90.2 378.3 215.0

Signhunter [2] 100 141.3 41.0 99.8 156.3 68.0 100 168.1 84.0 98.9 182.3 77.0 100 137.8 41.0 99.1 149.8 47.0 100 166.4 69.0 98.7 143.5 53.0
Subspace [17] 92.2 263.0 116.0 92.7 164.3 71.0 96.6 239.7 102.0 94.3 285.2 162.0 91.4 317.2 231.0 90.8 229.8 105.0 93.9 319.8 174.0 92.7 241.9 102.0

P-RGF [9] 87.5 144.3 97.0 93.7 165.8 98.0 94.2 188.6 81.0 94.1 177.4 101.0 91.1 146.0 75.0 93.6 196.4 37.0 92.6 152.5 48.0 92.9 125.3 66.0
TREMBA [25] 90.4 247.2 142.0 93.1 148.9 96.0 95.1 196.1 73.0 93.2 143.5 81.0 91.3 189.4 91.0 93.2 174.5 71.0 94.5 226.2 161.0 92.1 168.3 101.0

MetaAttack [13] 95.2 414.3 161.0 96.5 379.7 241.0 98.3 427.2 201.0 96.4 364.8 151.0 94.7 386.4 201.0 93.2 425.9 361.0 93.8 362.4 161.0 95.1 374.3 191.0
AdvFlow [42] 94.3 682.9 411.0 99.3 1269.2 841.0 95.3 1165.3 841.0 93.2 963.1 587.0 93.1 788.1 473.0 94.9 885.3 624.0 92.8 1299.2 806.0 95.7 1092.8 784.0
CG-ATTACK 100 123.4 21.0 100 88.5 1.0 98.2 127.9 41.0 99.1 61.1 1.0 98.8 103.5 21.0 98.2 132.3 21.0 98.4 136.8 21.0 99.2 109.6 21.0

while target models on the other.
We report the results on CIFAR-10 in Tab. 4 for both

Case 1 and Case 2. The results on ImageNet will be pre-
sented in Sec. 7.3 of the Supplementary Material. As
shown in the left half of Tab. 4, CG-ATTACK achieves the
best values for ASR, mean and median number of queries
when attacking ResNet, DenseNet and PyramidNet. For
case 2, CG-ATTACK achieves the lowest mean and median
number of queries in all the categories with ASR of at least
98.2%. Due to surrogate biases, the query-and-transfer based
methods achieve lower ASR compared to the results in Tab.
1. CG-ATTACK, however, adapts well to the difference in
training-set and obtain the least drop of only 0.53% in ASR.
4.3.2 Black-box Attack against Real-World API
In this section, we further evaluate CG-ATTACK by attacking
the real-world system, the Imagga Tagging API2, where the
tagging model is trained with a unknown dataset of over
3000 types of daily life objects. This API will return an list
of relevant labels associated with confidence scores for each
query. We randomly selected 20 images from the ImageNet
validation set for evaluation and set the query limit to 500.
We define an untargeted attack aiming to remove original top-
3 labels from the returned list, by minimizing the maximal
score of these three labels. We pre-train the c-Glow model
with four surrogate models on ImageNet, as described in
Sec. 4.2.2. As shown in Tab. 5, our attack achieves a
significantly higher ASR and lower number of queries than
compared methods. Note that this attack also belongs to the
challenging Case 2 of open-set scenario. It further verifies
the effectiveness of CG-ATTACK in real-world scenarios.

4.4. Summary of the Supplementary Material
Due to the space limit, some important contents will be

presented in the Supplementary Material, including: detailed
description of c-Glow model (Sec. 1), empirical verifica-
tion of Assumption 1 and theoretical proof of Theorem 1
(Sec. 2 to 3), implementation details of CG-ATTACK (Sec.
4 to 6), additional results of targeted attacks, additional re-
sults of open-set attacks on ImageNet, ablation studies on
the c-Glow model, e.g., its initialization, the impact of the

2https://imagga.com/solutions/auto-tagging

Table 5. Attack success rate (ASR %), mean and median number
of queries of untargeted attack against Imagga tagging API.

NES [27] NATTACK [35] Bandit [28] SimBA [16] Signhunter [2] Subspace [17]

ASR 30.0 50.0 50.0 70.0 50.0 55.0
Mean 373.2 146.5 177.5 155.3 127.5 274.2
Median 361.0 61.0 127.0 96.0 71.0 215.0

P-RGF [9] TREMBA [25] MetaAttack [13] AdvFlow [42] CG-ATTACK

ASR 45.0 65.0 40.0 35.0 85
Mean 194.3 87.2 312.4 368.6 75.7
Median 128.0 51.0 182.0 143.0 21.0

depth of c-Glow, ratio of parameters transferred forq partial
transfer mechanism, as well as potential usage of the CAD
(Sec. 7). We also discuss the computational complexity, the
limitations, possible defenses and potential negative social
effects of CG-ATTACK in Sec. 8.

5. Conclusion
This work presented a novel score-based black-box attack

method, called CG-ATTACK. The main idea is developing
a novel mechanism of adversarial transferability that is ro-
bust to surrogate biases. More specifically, we proposed to
transfer only partial parameters of CAD of surrogate models,
while the remaining parameters are adjusted based on the
queries to the target model. We utilized the powerful c-Glow
model to accurately model the CAD, and developed a novel
efficient learning method based on randomly sampled pertur-
bations. Extensive experiments against four DNN models
on two benchmark datasets in both closed-set and open-set
scenarios, as well as attack against real-world API, have fully
verified the superior attack performance of CG-ATTACK.
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