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Abstract

Object rotation is among long-standing, yet still unex-
plored, hard issues encountered in the task of weakly super-
vised object detection (WSOD) from aerial images. Exist-
ing predominant WSOD approaches built on regular CNNs
which are not inherently designed to tackle object rota-
tions without corresponding constraints, thereby leading to
rotation-sensitive object detector. Meanwhile, current so-
lutions have been prone to fall into the issue with unsta-
ble detectors, as they ignore lower-scored instances and
may regard them as backgrounds. To address these is-
sues, in this paper, we construct a novel end-to-end weakly
supervised Rotation-Invariant aerial object detection Net-
work (RINet). It is implemented with a flexible multi-
branch online detector refinement, to be naturally more
rotation-perceptive against oriented objects. Specifically,
RINet first performs label propagating from the predicted
instances to their rotated ones in a progressive refinement
manner. Meanwhile, we propose to couple the predicted in-
stance labels among different rotation-perceptive branches
for generating rotation-consistent supervision and mean-
while pursuing all possible instances. With the rotation-
consistent supervisions, RINet enforces and encourages
consistent yet complementary feature learning for WSOD
without additional annotations and hyper-parameters. On
the challenging NWPU VHR-10.v2 and DIOR datasets,
extensive experiments clearly demonstrate that we signif-
icantly boost existing WSOD methods to a new state-
of-the-art performance. The code will be available at:
https://github.com/XiaoxFeng/RINet.

1. Introduction

Object detection is an indispensable task in both com-
puter vision and earth vision with many applications. Re-
cent impressive progress in object detection has been
boosted by the boom of powerful deep Convolutional Neu-
ral Network (CNN) and the availability of abundant datasets
with subtle annotations. However, collecting such subtle
annotations is time-consuming and even infeasible, which
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Figure 1. Typical issues and our solutions for WSOD in aerial
images. (a) The image and its rotated image produce inconsistent
detection results. (b) Existing WSOD methods incline to detect
salient objects or object parts, leading to instances missing.

has seriously impeded the applications of object detection
in the real-world. To alleviate the heavy label cost, WSOD,
which requires only incomplete image-level annotations to
learn the precise object detection model, has been exten-
sively explored and achieved impressive results.

As far as we know, almost all predominated WSOD
methods [5,7,8,10,14,17,19,24,27,30,31,33-35,39,45,47]
are built on the Weakly Supervised Deep Detection Net-
work (WSDDN) [14] and formulate WSOD as multiple
instance learning problems. Based on it, a constructive
work, named Online Instance Classifier Refinement (OICR)
[31], is proposed to iteratively refine instance classifier in
a unified network. More recently, some advanced works
[9,17,19,24,25,27,30,33,34,43] are proposed to boost the
development of WSOD via adopting novel training strate-
gies [19,27,33,34,44,46], contextual information [17] or
extra segmentation networks [9,24,38].

The typical WSOD approaches [7,36,37,42] in aerial
images are mainly inspired by the object detection algo-
rithms developed for natural scenes and endeavor to address
the sub-optimal problem. Despite their successes, such ill-
posed solution ignores the property of aerial images, that
is, many object instances with the same category in aerial
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images usually appear with arbitrary orientations. It in-
troduces dramatic class-agnostic feature changes, causing
sparse feature distribution. Existing predominant WSOD
approaches based on regular CNNs which cannot actively
encourage such sparse features to be pulled closer without
corresponding constraints, causing two typical issues.

(1) Rotation-sensitive. As shown in Figure 1 (a), existing
methods incline to detect rotation-insensitive object parts
and the detection results are inconsistent after rotation even
for the same instance. A natural approach to address it is to
use instance-level labels where object rotations come from
themselves or rotated transformation, whereas WSOD does
not have such annotations. Thus, it is regarded as amongst
the hardest challenge of WSOD with no effective solutions.

(2) Instance missing. Most of the existing WSOD works
only explore the most discriminative object. Unfortunately,
it is common for an aerial image to contain many instances
with the same category. This kind of solution leads to seem-
ingly representative yet unstable object detector learning, as
it will inevitably introduce class collision problem. Exam-
ple testifying this issue is illustrated in Figure 1 (b). The
ignored lower-scored instances may be regarded as back-
ground. A straightforward way to pursue all possible in-
stances is to mine top-ranking instances. However, it is im-
practical to eliminate uncertainties and trivial solutions for
each category under the weakly supervised paradigm.

To tackle the aforementioned issues, in this paper, we
propose a novel weakly supervised rotation-invariant aerial
object detection network (RINet), and aim at learning
rotation-invariant object detectors and pursuing all possi-
ble instances. RINet is inspired by human knowledge i.e.,
the category of object in aerial images remains consistent
after arbitrary rotation. It can be treated as an implicit con-
straint for rotation-invariance learning. Encouraging the
detection model to make consistent prediction for the pre-
dicted instances before and after the rotation can facilitate
rotation-invariant learning online. To this end, RINet is
implemented with a flexible multi-branch online detector
refinement where the predicted instance labels supervise
their arbitrary rotated ones in the latter stream. Finally,
the instance-level labels before and after rotation are cou-
pled to generate rotation-consistent annotations for rotation-
invariant learning online.

Furthermore, RINet also naturally projects object in-
stances from sparse space to different rotation-aware sub-
spaces, which encourages the same category object in-
stances with similar orientations to be pulled closer on the
embedding space. Motivated by this, coupling instances
from different rotation-perceptive branches in a comple-
mentary manner is conducive to discover all possible in-
stances with the same category. RINet greedily projects
predicted labels from different rotation-perceptive branches
to an interaction space. Within this interaction space, la-

bel propagating is performed over the unlabeled instances
under implicit constraint to activate instances in a comple-
mentary manner. Integrating all possible instances into the
iterative training process can capture abundant intra-class
complementary visual patterns to facilitate a more powerful
rotation-invariant object detector.

By leveraging category-invariance in rotation, a flexible
weakly supervised rotation-invariant object detection net-
work is proposed. It not only bridges the gap existing in the
object rotation but also provides the reliable and implicit
constraint for instance mining. With an end-to-end learning
procedure, as shown in Figure 1, RINet effectively allevi-
ates the aforementioned challenges and generates consistent
detection results. The main contributions of this paper are
as follows:

e To the best of our knowledge, we are the first at-
tempt to construct a rotation-invariant aerial object de-
tection network under a weakly supervised paradigm,
and jointly optimize instance refinement and rotation-
invariant object detector in a systematic end-to-end
manner.

e We design a rotation-invariant multiple instance
mining strategy, coupling instances from different
rotation-perceptive branches in a complementary man-
ner, to mine all possible object instances of the
same category without introducing additional hyper-
parameters.

e Experiments on NWPU VHR-10.v2 [22] and DIOR
[23] datasets demonstrate that the proposed RINet sig-
nificantly updates the performance of state-of-the-art
results by a large margin.

2. Related Work
2.1. Weakly Supervised Object Detection

Weakly supervised object detection from both natural
scene images and aerial images has been extensively ex-
plored and become a well-studied research field in recent
years. Most of advanced researches [3,7,8, 10, 14,17, 19,

,27,30,31,33,34,40,45] attempt to exploit multiple in-
stance learning (MIL) to address the WSOD task. Follow-
ing the MIL constraints, the high-scoring positive bags are
assigned with the pseudo instance-level label to learn the
corresponding object detector. WSDDN [14] is of the first
to implement WSOD with MIL in an end-to-end manner
and inspires follow-up researches. For example, Tang et
al. [31] propose a novel OICR framework by creatively in-
tegrating multi-stage classifiers into [!4]. In OICR, each
stream provides the pseudo instance-level annotation for
the next stream learning to perform better detector learn-
ing. Based on it, a host of OICR-based WSOD meth-
ods [10,17,19,20,24,25,27,30,33,34,43] are developed
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Figure 2. Illustration of the proposed RINet. To address the issues of object rotation and instance missing, RINet first encourages the
object detector to make the same prediction for the predicted instances before and after the rotation. Meanwhile, RINet provides implicit
constraint for pursuing all possible instances by coupling predicted instance labels among different rotation-perceptive branches.

to further boost the performance of WSOD via introduc-
ing more flexible and credible instances mining strategies.
However, these methods merely mine the most confident
instance while fail to extract other instances of the same
class existing in an image. Thus, the above WSOD meth-
ods cannot be directly employed to perform object detection
from aerial images under weakly supervised settings. This
is principal because the aerial images may always contain
more than one same class instance. There is no doubt that
weakly supervised object detection from aerial images is a
more challenging task.

To tackle this challenge, Han et al. [16] design an in-
stance mining strategy from the negative data to refine the
WSOD model. More recently, Yao et al. [42] attempt to
mine high-quality instances by introducing a dynamic cur-
riculum learning strategy. Wang et al. [36] introduce a mul-
tiple instance graph strategy to find high-quality objects via
constructing spatial and appearance graph. Feng et al. [8]
introduce a triple context-aware network to tackle the issue
of grouped instances in aerial images. Despite promising
performance, the introduced extra hyper-parameters limited
their applications. In contrast, here we attempt to mine all
possible instances by taking advantage of the implicit rota-
tion invariance without extra hyper-parameters.

2.2. Rotation-invariant Learning

Object rotation is a major challenge for object detec-
tion in aerial images. To this end, existing advanced works

[2,4,6,13,15,18,22,41] aim to learn rotation-invariant fea-
tures by designing learnable rotation-sensitive CNNs. For
instance, Cheng et al. [4] construct a rotation-invariant
CNN model to learn the rotation-invariant feature repre-
sentations. Li et al. [22] design a multi-angle anchors
based RPN [26] to alleviate the problem of object rota-
tions. The work [6] also introduces a rotation-invariant lo-
cal binary descriptor so that the orientation for each pattern
can be adaptively learned. More recently, a novel oriented
detection module [15] is constructed to encode the orienta-
tion information and capture rotation-invariant features by
adopting active rotating filters. Deepak et al. [13] intro-
duce a rotation-equivariant Siamese network. However, the
above methods rely on the subtle manually-labeled annota-
tions. Labeling such subtle annotations is laborious, time-
consuming, or even impractical. To the best of our knowl-
edge, the proposed RINet is of the first to address the ro-
tation variation in an end-to-end manner under weakly su-
pervised settings. Moreover, we also flexibly utilize the im-
plicit constraint existing in the object rotation to mine all
possible instances.

3. Basic WSOD Framework

In this paper, we choose OICR [31] as our basic
framework for WSOD for its expansibility and effective-
ness. OICR [31] adopts a flexible instance refinement
branch to propagate the binary-level label from the most
discriminative region to its adjacent regions. By repeat-
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edly implementing the refinement procedure, the latent
detector can effectively diagnose the localization of ob-
jects. Formally, let Z denote an input image and Y; =
Y1y Yoy -y yc] € {—1,1} is the image-level label in-
dicating whether an object category appear in an image.
‘H € R, is the corresponding region proposals which are
generated by [32]. We first feed the input image Z and its
region proposals H into a CNN with ROI-pooling [11] to
extract corresponding feature vectors F;. Following WS-
DDN [14], two parallel branches are employed to gen-
erate classification logit W°*(c, F3;) and detection logit
et (¢, Fyy) for each region where ¢ denotes the number
of image category. Then, two matrices W°*(c, F5) and
Wdet(c, Fy,) are passed through the softmax operator along
the category dimension and proposal dimension to generate
corresponding scores xB=e¥" (T / Y oece eV (e Fn),

ct=g ¥ (¢ Fn) /2 e (e Fn), These two matri-
ces denote the probablhty for each proposal belonging
to category c and the contribution for each proposal be-
ing classified as category c, respectively. The proposal
scores are produced via performing an element-wise prod-
s(c|H) = x © xdet, Lastly, the image score is
generated by the sum over all proposal scores: ¢(c) =
> ner, S(c/H) and the multi-class cross entropy is applied
to supervise the model training:

Ly = — Z yelog ¢(c) + (1 —yc)log(1 — log ¢(c)).
ceC
(1

However, WSDDN [14] inclines to discover the most
discriminative object parts rather than the full object. To
tackle this issue, OICR [31] integrates multi-stage refine-
ment branches into WSDDN [14] where the most confident
region and its highly-overlapped adjacent regions in the for-
mer refinement branch are treated as pseudo instance-level
label Y, to supervise its latter refinement branch learning.
Note that, in each refinement branch, the feature vectors of
proposal are branched into a {C' + 1}-dimensional instance
classifier, leading to s(c|H,.), where the {C + 1}*" dimen-
sion is for background. The parameters of the refinement
branch are optimized via a weighted softmax loss function:

[H| C+1

T Z Z wY, logs(c|H,), ()

r=1 c=1

Loicr =

where w is an adaptive parameter to alleviate the interfer-
ence of noise.

4. Weakly Supervised Rotation-invariant Ob-
ject Detection Network
4.1. Overview

The overview of the proposed RINet is outlined in Fig-
ure 2. Building upon OICR [31], RINet addresses the is-

sues of rotation-sensitive and instance missing via encour-
aging consistent and complementary learning in two mod-
ules: rotation-invariant learning and multiple instance min-
ing. Specifically, we first simultaneously feed images be-
fore and after rotation transformation into a unified multi-
ple instance detection network which consists of a detection
branch, a rotated detection branch, and a rotation-invariant
detection branch. The rotation-invariant module generates
rotation-consistent labels to encourage the object detector
to make the same prediction for the labeled instances be-
fore and after the rotation, thereby facilitating the detector
to capture rotation-invariant features. Meanwhile, all possi-
ble instances are mined by coupling predicted instance la-
bels among different rotation-perceptive branches in a com-
plementary manner.

4.2. Rotation-invariant Learning

Rotation transformation is a common data augmentation
and has been widely used in fully supervised object detec-
tion in aerial images. Noting that the instance-level labels
also keep the same affine transformation. It introduces an
implicit constraint to facilitate rotation-invariant learning
under a fully supervised paradigm. Yet the unavailability
of instance-level labels causes the implicit constraint miss-
ing here. Thus, to realize the rotation-invariant learning,
the key lies in how to leverage this implicit constraint in a
weakly supervised manner.

It is common sense that for the same instance in aerial
images, e.g. “airplane” and “baseball field”, through arbi-
trary rotation, their categories are unchanged. Similarly, we
can draw the conclusion that is the pseudo instance-level la-
bels obtained by the WSOD model also keep the same affine
transformation in the image after rotation. Based on the
above analyses, we propose a flexible and effective RINet
to drive the detection network to make the same prediction
for the labeled instances before and after the rotation.

Given a pair of input images including the original im-
age Z and its rotated image Z"'*¢ = T,,101(Z), H
and H"°'%*¢ are corresponding region proposals, respec-
tively. We feed them into the same WSOD network to
generate the image feature maps and then employ ROI
pooling to obtain corresponding feature vectors JF; and
Fyrotate of proposal, respectively. As illustrated in Fig-
ure 2, the proposal feature vectors of original image Fy,
rotated image Fyrotate and its joint proposal feature vectors
Fyo = Cat(Fy, Fyrotate) are branched into the detec-
tion branch, rotated detection branch and rotation-invariant
branch to produce the corresponding classification probabil-
ity s(c|H) € RIMIX(CHD) [g(c|yrotate) ¢ RIFIX(CHD) and
s(c|H”) € RAHIX(CHD "respectively. For each class exist-
ing in the image (y. = 1), we obtain the pseudo instance
label )A/'C by the same way as [31] in the detection branch.
According to the implicit constraint, if the 7" object pro-
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posal H,- is selected as positive instance or background in
the detection branch, the r*" rotated proposal H"°***¢ in ro-
tation detection branch also should have the same category
with it. Thus, we can leverage the pseudo instance-level la-
bel obtained by the original detection branch to supervise
the rotated branch. Similarly, the rotated ones also can su-
pervise the original branch. In our experiment, we just need
to ensure that different detection branches are fed into the
same image with different affine transformations. The mul-
tiple instance detection network can be trained by:

1 Ml Cc+1
ﬁrotate = _w Z Z WYC logS(C|H:Otat€)~ (3)

r=1 c=1

Iteratively propagating image-level labels from the pre-
dicted instances to their rotated instances and highly-
overlapped adjacent regions encourages instance classifier
to pursue full object extent. Moreover, it also facilitates the
multiple instance detection network to discover the same
category instances with different orientations in an image.
Next, we generate credible and rotation-consistent supervi-
sion from the same category with different orientations like
full supervised settings via coupling both supervisions from
the detection branch and rotated detection branch:

{}A/CI = {Y/c }r U {Y/C }r+|’H\

4
Y, = argmax, J(s(c|H,), s(c|HIot)) @
where Y,/ € R2/"|, 1 denotes the index of pseudo instance-
level label, and 7 (-) is branch-wise average pooling. The
rotation-invariant learning can be realized by enforcing the
object detector to make the same prediction for the positive
instances before and after the rotation. The parameters of
rotation-invariant detection branch are optimized by:

AR %
Lprr = “o Z Z wY! logs(c/H]). 5)

r=1 c=1
4.3. Multiple Instance Mining

Although selecting the most confident region before and
after rotation realizes rotation-invariant learning, such a so-
lution also ignores the important fact that aerial images usu-
ally contain many instances with the same category. It has
been turned out to be a major reason causing the perfor-
mance of WSOD inferior to the full supervised object detec-
tion. To address this issue, we take advantage of the implicit
constrain in RINet to pursue all possible instances without
extra hyper-parameters.

To this end, similar to PCL [30], we first adopt K-
means to generate a set of clusters according to their pro-
posal scores and then select the proposals from the highest-
score cluster as top-ranking proposals in both detection

Baseline | RINet Cluster MIM mAP CorLoc
v 18.7 433
v 26.6 48.8
v v 27.1 51.4
v v 28.3 52.8

Table 1. Results (%) for different components of RINet on the
DIOR trainval and testing set.

branch and rotated detection branch. Next, we preliminar-
ily construct corresponding undirected unweighted graphs
G? = (V°,E?) and G%, = (V!,E") according to their
spatial similarity, where vertexes V. represent these top-
ranking proposals, and each edge in E. correspond to the
spatial similarity between vertexes. Vertexes with enough
spatial similarity are connected and labeled to the same
category. The spatial similarity is generated via comput-
ing IoU between vertexes. After that, we project G¢ =
(V2,E?) and G, = (V, ET) to an interaction space which
is more friendly for instance mining according to the im-
plicit constraint. Within this interaction space, we build
a graph GI = (VI EI) to connect the graph from origi-
nal space and rotated space and perform label propagating
over the graph, where V! ={G?,G"} and E! is the im-
plicit constraint existing in the rotation. After the propa-
gating, the updated graph is then projected back to origi-
nal space Y cr — YC‘) to supervise the rotation-invariant
branch learning. Thus, we update the pseudo instance-level
label YCI € R2™l via directly propagating the labels of all
vertexes in graph G to rotation-invariant branch:
YCI = {YG(I: }r U {YG'£ }T_Hle' (6)
In such a way, on one hand, we can employ more in-
stances with the same category to learn the more robust
detector. On the other hand, encouraging the more same-
category instances with different orientations for training
further drives the more robust rotation-invariant learning.

5. Experiments
5.1. Datasets and Evaluation Metric

RINet is validated on the commonly used NWPU VHR-
10.v2 [22] and DIOR [23] datasets. NWPU VHR-10.v2
[22] is a classical aerial image dataset with the size of
400 x 400, including 10 object categories. DIOR [23] is
a popular public dataset for fully supervised object detec-
tion in aerial images but rarely explored with WSOD owing
to its hard challenges. It consists of 23463 images including
192472 instances with the size of 800 x 800 and covers 20
different categories (i.e., Airplane (PL), Airport (AP), Base-
ball field (BF), Basketball court (BC), Bridge (BR), Chim-
ney (CM), Dam (DA), Expressway service area (ES), Ex-
pressway toll station (ET), Golf field (GF), Ground track
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Baseline

Figure 3. Ablation studies for both rotation-invariant learning and multiple instance mining. (a) Visualization of detection results for

rotated objects. (b) Instances discovered by RINet with different instance mining strategies in the training stage.

. . Storage  Baseball  Tennis  Basketball Ground . .
Methods Airplane  Ship tankg Diamond  court court track field Harbor  Bridge Vehicle mAP
COPD [1] 62.3 69.4 64.5 82.1 34.1 353 84.2 56.3 16.4 44.3 54.9
Transferred CNN [21] 66.0 57.1 85.0 80.9 35.1 45.5 79.4 62.6 432 41.3 59.6
RICNN [4] 88.7 78.3 86.3 89.1 423 56.9 87.7 67.5 62.3 72.0 73.1
RCNN [12] 85.4 88.9 62.8 19.7 90.7 58.2 68.0 79.9 542 49.9 65.8
Fast RCNN [11] 90.9 90.6 89.3 473 100.0 85.9 84.9 88.2 80.3 69.8 82.7
Faster RCNN [26] 90.9 86.3 90.5 98.2 89.7 69.6 100.0 80.1 61.5 78.1 84.5
RICO [22] 99.7 90.8 90.6 92.9 90.3 80.1 90.8 80.3 68.5 87.1 87.1
WSDDN [14] 30.1 41.7 35.0 88.9 12.9 239 99.4 13.9 1.9 3.6 35.1
OICR [31] 13.7 67.4 57.2 55.2 13.6 39.7 92.8 0.2 1.8 3.7 34.5
PCL [30] 26.0 63.8 2.5 89.8 64.5 76.1 77.9 0.0 1.3 15.7 394
DCL [42] 72.7 74.3 37.1 82.6 36.9 423 84.0 39.6 16.8 35.0 52.1
PCIR [7] 90.8 78.8 36.4 90.8 22.6 52.2 88.5 424 11.7 35.5 55.0
TCANet [8] 89.4 78.2 78.4 90.8 353 50.4 90.9 424 4.1 28.3 58.8
Ours 90.3 86.3 79.6 90.7 58.2 80.4 100.0 57.7 18.9 41.6 70.4

Table 2. Average precision (%) for different methods on the NWPU VHR-10.v2 testing set.

field(GTF), Harbor (HB), Overpass (OP), Ship (SH), Sta-
dium (SD), Storage tank (ST), Tennis court (TC), Train sta-
tion (TS), Vehicle (VH), Wind mill (WM)). Both datasets
are split into three subsets, i.e., training set, validation set,
and testing set. Noting that almost every image in both
datasets contains more than one instance with different ori-
entations. Following the standard routine in WSOD, RINet
is trained on the both training set and the validation set, re-
ferred to as the trainval set, and evaluated on the testing set.
Meanwhile, solely image-level labels are available during
the model training. Average Precision (AP) and correct lo-
calization accuracy (CorLoc) are employed to evaluate the
accuracy of object detection and localization, respectively.
All these two metrics are performed on the PASCAL crite-
ria, i.e., IoU threshold at 50%.

5.2. Implementation Details

For a fair comparison, VGG16 [29] pre-trained on the
ImageNet [28] is adopted as the backbone and all newly
added layers are initialized with a Gaussian distribution
with 0-mean and 0.01-standard. Meanwhile, we keep the
training settings including learning rate, mini-batch, weight
decay, and momentum identical to [30,31,34]. They are set
to 0.001, 2, 0.005, and 0.9, respectively. SGD is applied for

optimization. The Selective Search [32] is adopted to gen-
erate about 2000 proposals per image. We augment training
data with three rotation transformations {90°,180°,270°}.
During training, RINet performs 20K and 200K iterations
and its learning rate will shrink by a factor of 10 every
10K and 100K iterations for NWPU VHR-10.v2 and DIOR
datasets, respectively. 0.3 is set as a confidence threshold
for NMS to remove duplicated bounding boxes. All ex-
periments are implemented with Pytorch on ubuntul6.04,
NVIDIA Tesla V100, cuDNN v5, and CUDA 9.0. Inspired
by [17,34], we also set the adaptive weights in OICR loss
as w = 0.1 and generate new baseline (18.7% mAP and
43.3% CorLoc).

5.3. Ablation Studies

Effect of rotation-invariant learning. Our RINet is
built upon the OICR [31]. Compared with it, we simultane-
ously feed images before and after rotation and their corre-
sponding region proposals into the WSOD Network. Mean-
while, we modify its refinement branch as rotated detection
branch and rotation-invariant detection branch but remain
its instance refinement strategy. The input of the rotation
branch and rotation-invariant branch are proposal features
after rotation and the joint proposal features before and af-
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Methods PL AP BF BC BR CM DA ET GF GIF HB OP SH SD ST TC TS VH WM mAP
Fast RCNN [11] | 442 668 67.0 605 156 723 520 659 448 721 629 462 380 321 710 350 583 379 192 381 50.0
Faster RCNN [20] | 503 62.6 66.0 809 288 68.2 473 585 48.1 604 670 439 469 585 524 424 795 480 348 654 555

WSDDN [14] 91 397 378 202 03 122 06 07 119 49 424 47 1.1 07 630 40 6.1 05 46 1.1 13.3
OICR [31] 87 283 441 182 13 202 01 07 299 138 574 107 111 91 593 71 07 01 91 04 165

PCL [30] 21.5 352 598 235 3.0 437 0.1 0.9 1.5 29 564 168 11.1 9.1 576 9.1 25 0.1 46 46 182

DCL [42] 209 227 542 115 6.0 61.0 0.1 1.1 310 309 565 5.1 27 91 637 91 104 00 73 0.8 202

PCIR [7] 304 36.1 542 266 9.1 586 02 97 362 326 585 86 216 121 643 91 136 03 9.1 7.5 249

TCANet [8] 251 308 629 400 41 678 81 238 299 223 539 248 1I1.1 9.1 464 137 310 15 9.1 1.0 258
Ours 262 574 627 251 99 692 14 133 362 514 539 286 48 9.1 527 158 206 129 91 47 283
Table 3. Average precision (%) for different methods on the DIOR testing set.

‘ Methods ‘ PL AP BF BC BR CM DA ES ET GF GTF HB OP SH SD ST TC TS VH WM CorLoc ‘
WSDDN [14] | 57 599 942 559 49 234 10 68 445 128 899 55 100 230 985 79.6 151 35 116 32 324
OICR [31] 160 515 948 558 36 239 00 48 567 224 914 182 187 31.8 983 813 75 1.2 158 20 34.8
PCL [30] 61.1 469 954 636 73 951 02 57 51 508 894 421 198 379 979 807 138 02 105 6.9 415
PCIR [7] 81.6 513 962 735 50 947 159 328 460 486 853 389 202 306 846 915 563 38 105 13 48.4
TCANet [8] | 91.2 694 955 675 189 978 02 705 543 514 883 480 23 336 141 834 656 199 164 29 49.4
Ours 92.7 809 927 695 86 901 02 713 62.0 655 851 514 157 44.6 98.6 803 148 227 69 26 52.8

Table 4. Correct localization (%) for different methods on the DIOR trainval set.

ter rotation, respectively. For a fair comparison, we adopt a
consistent instance mining strategy as [31], i.e., only select-
ing the top-scoring proposal and its high spatial overlapped
regions as positive instances, to train our RINet. As shown
in Table 1, our RINet achieves 26.6% mAP and 48.8% Cor-
Loc, which significantly boost the baseline by a large mar-
gin (+7.9% mAP, and +5.5% CorLoc). Figure 3 (a) further
exhibits qualitative comparisons of rotation-invariant learn-
ing between baseline and ours. It can be clearly seen that
RINet can effectively generate nearly rotation-consistent re-
sults for the same category objects with different orienta-
tions, compared with baseline method. Comprehensive ex-
periments show that the proposed RINet can effectively al-
leviate the issue of object rotation.

Effect of multiple instance mining. To disclose the
contribution of the proposed instance mining strategy, we
first integrate proposal cluster learning [30] into our RINet
to mine the same class instances. As presented in Table 1,
the performance of detection in terms of mAP and CorLoc
are boosted by 0.5% and 2.6%, respectively. Then, we fur-
ther integrate the proposed multiple instance mining (MIM)
strategy into our RINet. We can observe that the proposed
approach further brings 1.2% mAP and 1.4% CorLoc im-
provement, respectively. We also provide qualitative com-
parisons in Figure 3 (b) for instance mining in the train-
ing among our baseline, cluster learning, and proposed ap-
proach. It can be seen that RINet successfully discovers
all possible instances with different orientations and signif-
icantly outperforms the performance of other approaches.

5.4. Comparison with State-of-the-arts.

In this section, we evaluate the proposed RINet on the
NWPU VHR-10.v2 and DIOR datasets to provide compre-
hensive comparisons with the state-of-the-arts.

Table 2 shows quantitative comparisons for each class
with existing advanced methods on the NWPU VHR-10.v2
dataset. Among existing weakly supervised approaches in

remote sensing images, our RINet achieves the new state-
of-the-art mAP of 70.4% and outperforms all others in the
most categories. Compared with the baseline, our RINet
achieves consistent improvement for each class by a large
margin on the testing set. Moreover, Our RINet also out-
performs the WSDDN [14], OICR* [31], PCL [30], DCL
[42], PCIR [7], TCANet [&] by 35.3%, 35.9%, 31%,
18.3%, 15.4%, 11.6%, respectively which are notable mar-
gins in terms of mAP.

On the more challenging DIOR dataset, it can be seen
in Table 3 and Table 4 that RINet significantly surpasses
existing state-of-the-art with 28.3% mAP and 52.8% Cor-
Loc, respectively, demonstrating the robustness of proposed
RINet. This increase of performance mainly comes from
the collaboration of rotation-invariant learning and multiple
instance mining, which alleviates the issues of object rota-
tion and instances missing.

On both NWPU VHR-10.v2 and DIOR datasets, we also
present the results of RINet compared with advanced fully
supervised methods. As shown in Table 2 and Table 3, we
further narrow the gap between the WSOD and fully super-
vised methods. Noting that we obtain superior performance
to some fully supervised approaches, such as COPD [I],
Transferred CNN [21], RCNN [12].

Qualitative visualizations for both successful and failure
examples on both NWPU VHR-10.v2 and DIOR datasets
are shown in Figure 4 and Figure 5. It can be seen that
our RINet can correctly localize multiple discrete instances
with different orientations. However, our RINet also has
trouble in addressing small objects and scene-ambiguous
objects. For example, the detection model tends to discover
more salient rivers under image-level labels with the bridge
category, as bridges always co-exist with rivers. These re-
main challenging issues and we can consider introducing
causal intervention in the future.

*It is implemented with Caffe
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Figure 4. Visualization of detection results on the NWPU VHR-10.v2 testing split (70.4% mAP). The first two rows indicate corrected
predictions and different colors rectangle indicates different classes. The third row denotes the failure cases.

Figure 5. Qualitative results by RINet on the DIOR testing split (28.3% mAP). The first two rows indicate corrected predictions. The last

row corresponds to the failure cases.

6. Conclusion

In this paper, we are of the first to address the object
rotation issue via constructing a novel and flexible rotation-
invariant aerial object detection network (RINet) under a
weakly supervised paradigm. RINet is implemented with
an online detector refinement with different rotated percep-
tions. During training, it generates rotation-consistent su-
pervisions and meanwhile pursues all possible instances by
coupling predicted instance labels among different rotation-
perceptive branches in a complementary way. With all pos-
sible rotation-consistent supervisions, RINet jointly opti-
mizes instance refinement and rotation-invariant object de-
tector in an end-to-end manner, leading to rotation-invariant

yet diversifying feature learning for WSOD. Comprehen-
sive experiments demonstrate that the proposed RINet out-
performs all existing WSOD methods, and produces a new
state-of-the-art results.
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