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Abstract

The performance of nighttime semantic segmentation is
restricted by the poor illumination and a lack of pixel-
wise annotation, which severely limit its application in au-
tonomous driving. Existing works, e.g., using the twilight
as the intermediate target domain to perform the adapta-
tion from daytime to nighttime, may fail to cope with the
inherent difference between datasets caused by the camera
equipment and the urban style. Faced with these two types
of domain shifts, i.e., the illumination and the inherent dif-
ference of the datasets, we propose a novel domain adap-
tation framework via cross-domain correlation distillation,
called CCDistill. The invariance of illumination or inher-
ent difference between two images is fully explored so as to
make up for the lack of labels for nighttime images. Specifi-
cally, we extract the content and style knowledge contained
in features, calculate the degree of inherent or illumination
difference between two images. The domain adaptation is
achieved using the invariance of the same kind of difference.
Extensive experiments on Dark Zurich and ACDC demon-
strate that CCDistill achieves the state-of-the-art perfor-
mance for nighttime semantic segmentation. Notably, our
method is a one-stage domain adaptation network which
can avoid affecting the inference time. Our implementa-
tion is available at https://github.com/ghuan99/
CCDistill.

1. Introduction
Semantic segmentation as one of the fundamental top-

ics in computer vision, has been widely used in many crit-
ical downstream tasks [4, 12]. While a large variety of
approaches have been proposed [2, 30], they are predomi-
nantly designed to train on daytime images with favorable
illumination. However, outdoor applications require satis-
factory performance in more challenging scenes, such as
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Figure 1. Every two embeddings connected by the dotted line
come from two domains, and they only have one difference in illu-
minance (i.e., each column) or dataset (i.e., each row). The cross-
domain correlation reflects the similarity of the two domains, and
can also be considered as a concrete representation of the domain
shift. Here we only illustrate the cross-domain style distillation.
Our main idea is to make the different cross-domain correlations
under the same domain shift consistent.

nighttime. In this work, we focus on semantic segmentation
at nighttime, which is primarily limited by the low exposure
of the captured images and the lack of ground truth.

To handle this problem, many domain adaptation meth-
ods have been proposed to adapt the daytime-trained model
to nighttime without requiring ground-truth labels in the
nighttime domain. In [34–36, 38, 48], they apply an im-
age transfer network to stylize daytime or nighttime images
and generate synthetic datasets. However, the style trans-
fer network cannot fully utilize the semantic embedding of
the segmentation task and also increases the inference time.
Some works [7, 35, 36] utilize the twilight as the intermedi-
ate target domain. These methods require additional train-
ing data and the training process is complex. Most impor-
tantly, all these methods ignore inherent difference between
datasets, treating daytime images from different datasets as
the same style. Prior work [13] points out that appearance
discrepancy has a significant impact on the effect of adap-
tation. Ignoring the inherent difference can adversely affect
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domain adaptation.
Considering the illumination and inherent difference be-

tween labeled daytime images and unlabeled nighttime im-
ages, we intend to construct an end-to-end multi-source
multi-target domain adaptation framework for nighttime se-
mantic segmentation (shown in Fig. 1). The Dark Zurich
[35] containing unlabeled daytime (Td) and nighttime (Tn)
image pairs and Cityscapes [6] containing labeled daytime
images (Sd) are adopted as our datasets. It can be seen from
Fig. 1, that Td and Tn are taken at different times in the close
scene, thus there is the huge difference of illumination but
highly overlapped semantic information. Although Sd and
Td are both daytime images, there are obvious differences
in the urban style and color tone. We treat the difference in
illumination and dataset as the domain shift.

There is a wide literature on knowledge distillation
works [9, 20, 24, 39, 44, 51] that have explored the cross-
modal learning. One of strategies in these methods is to ex-
ploit the semantic consistency of images across domains as
prior knowledge [39,44]. However, most of them [9,22,39]
focus on one teacher and one student. As illustrated in
Fig. 1, we observe that if we can get the Sn with content
of Sd and illumination style of Tn, the degree of difference
in content between Sd and Td should be consistent with that
between Sn and Tn. Similarly, the degree of difference in il-
lumination or content between Sd and Sn is consistent with
that between Td and Tn. Therefore, we can leverage the in-
variance of domain shifts as prior knowledge to implement
knowledge distillation in multi-source multi-target domain.

With this insight, we propose a cross-domain correlation
distillation approach, which is implemented on the content
and style knowledge contained in the feature. The degree of
cross-domain difference is obtained by the similarity of two
content or style embeddings with only one domain shift,
and it can also be regarded as a concrete representation of
the domain shift. The cross-domain content correlation is
utilized to realize the knowledge distillation from the la-
beled daytime to the unlabeled nighttime domain, so as to
improve the performance of the nighttime semantic seg-
mentation. The premise for the effectiveness of the cross-
domain content distillation is that the generated and real
nighttime images tend to be as consistent as possible in
style. Therefore, we first employ a simple image transla-
tion method [13] to align holistic distribution on LAB color
space to initially reduce the style discrepancy between day
and night. And the cross-domain style distillation can fur-
ther achieve the style transfer at the semantic-level.

Different from reducing the illumination shift adopted by
previous works, it is possible to obtain accurate features of
nighttime images by exploiting the consistency of domain
shift. We evaluate the performance of CCDistill on Dark
Zurich [35], ACDC [37] datasets. Our main contributions
are summarized as follows:

• For nighttime semantic segmentation, we propose an
end-to-end unsupervised domain adaptation framework,
CCDistill, which requires neither extra data nor style
transfer network, thus it does not affect the inference time
of the semantic segmentation network.

• We propose the cross-domain correlation distillation al-
gorithm, which utilizes the invariance of domain shifts to
perform knowledge distillation on content and style em-
beddings separately. It enables knowledge distillation to
be free from the adverse effect caused by the complex do-
main shifts.

• Extensive experiments on the Dark Zurich and ACDC
datasets verify that our network achieves a new state-of-
the-art performance of nighttime semantic segmentation.

2. Related works

Domain adaptation. Domain adaptation can effectively
tackle the inconsistent data distribution in different do-
mains. A line of methods utilize the principle of model
consistency to reduce the data distribution gap by data aug-
mentation [32]. Chen et al. [3] combine source and tar-
get domain by the cutmix [54] and concat. And [33] holds
the view that the input level does not follow the cluster as-
sumption, which can be maintained in the embedding space.
Therefore, they add different perturbations to the output of
the encoder.

However, domain adaptation methods based on style
transfer are often more intuitive and integrated [16, 49].
In [13, 31], they both convert the source domain image to
the LAB color space for style translation. Isobe et al. [21]
convert all other domains into the style of the current target
domain for further training.

Instead of using data augmentation or style transfer, de-
signing the loss function to constrain the data distribution
can also achieve feature alignment [10, 18, 19, 23, 26, 53].
Wang et al. [47] apply the projection head to map the fea-
ture to a 256-d l2-normalized vector, and use the NCE loss
on the mapped vector to explore the global semantic rela-
tionship. Liu et al. [29] utilize the KL divergence on the
mean and variance stored in the BN layer of the model to
make the data distributions similar to each other.

Taking into account the characteristics of the night-
time semantic segmentation, the general domain adapta-
tion methods may fail to cope with the complex domain
shift between the daytime and nighttime domains. There-
fore, we combine the latter two strategies to construct multi-
source and multi-target domains through image-level and
semantic-level style transfer, and obtain content embedding
by using the JS divergence to constrain data distribution.

Knowledge distillation . In knowledge distillation (KD),
the goal is to transfer additional feedback from the teacher
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Figure 2. Framework. 1) The overview of our proposed framework is shown on the left. The architecture consists of two semantic
segmentation models Md and Mn. The colored solid arrows represent the data flow of the middle layer features FD from different
domains, and the colored dash arrows represent the supervision to the outputs PD . 2) The specific distillation is shown on the right. The
eD and GD represent content and style embedding, respectively. For FD , PD , eD and GD , the subscript indicates which domain they are
obtained from.

to the student. In early KD methods [15], the knowledge
transfer is implemented by minimizing the Kullback-Leibler
(KL) divergence between the predicted distribution of the
student and teacher. Recent studies have explored cross-
model KD, which transfers high-level knowledge across
different modalities [8, 17, 20, 24, 39, 44, 45, 50].

The IntRA-KD [17] calculates the mean, variance, and
skewness of each category in the feature as the statistics of
the current distribution, and uses the cosine similarity of the
moment vectors to perform distillation. Similarly, [8] ap-
plies the Euclidean distance to represent the correlation be-
tween instances. And [28, 44] realize pair-wise distillation
by dividing the feature into several nodes and then calculat-
ing the similarity between different nodes.

Inspired by the above methods, we explore to make use
of the correlation contained in features. The aforemen-
tioned methods mostly focus on the situation of a single
teacher and a single student. Instead, there are multiple do-
mains in our task, and the inputs of different models include
differences in illumination and datasets. Hence, we adopt
the distance of embeddings from the two domains with only
one kind of domain shift as the high-level representation to
transfer knowledge.

Nighttime semantic segmentation. Previous works on

nighttime semantic segmentation apply adversarial mod-
els to achieve the style translation from daytime to night-
time [34–36, 38, 48]. In order to deal with the domain gap,
DANNet [48] uses a style translation network to transform
different domains as the same style. Besides RGB images,
HeatNet [42] additionally uses thermal data that is not sen-
sitive to illumination. Many methods adopt twilight as the
intermediate domain to gradually reduce the distribution
discrepancy [7, 35, 36]. And these methods either require
extra data, or need to design additional networks that af-
fect the inference time, and the training process is compli-
cated. Therefore, instead of reducing the illumination shift
between labeled daytime and unlabeled nighttime images
with a style transfer network, we leverage the domain shift
and regard the cross-domain correlation as the concrete rep-
resentation of the domain shift to realize domain adaptation.

3. Method

3.1. Problem Formulation

Most existing nighttime semantic segmentation methods
mainly consider illumination difference and achieve domain
adaptation by reducing the illumination shift between Sd

and Tn. While based on our observation, the domain shifts
between Sd and Tn include not only illumination differ-
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ence but also inherent difference between datasets caused
by camera equipment and urban appearance. Regardless of
which domain shift is ignored, the effect of domain adapta-
tion will be adversely affected.

In this section, through constructing the multi-source
multi-target domain adaptation network, we can select two
domains with only one domain shift and calculate the de-
gree of difference between the two domains. Then we pro-
pose the cross-domain correlation distillation by using the
invariance of cross-domain difference to achieve domain
adaptation. Formally, our network involves a source do-
main Sd, a synthetic dataset served as another source do-
main Sn, and two target domain T, denoted as Td and Tn,
where D ∈ {Sd, Sn, Td, Tn} and these four elements rep-
resent Cityscapes (daytime), Cityscapes (synthetic night-
time), Dark Zurich (daytime) and Dark Zurich (nighttime),
respectively. Note that only images from Sd and Sn have
the pixel-wise annotation. And Td and Tn are taken at dif-
ferent times in the same scene.

The overall architecture of our proposed method is
shown in Fig. 2. Our algorithm has four major components:

• Semantic Segmentation network. We adopt the RefineNet
[27] as the semantic segmentation network, training two
segmentation models Md and Mn simultaneously, where
Md takes Sd and Td as inputs, and Mn takes Sn and Tn

as inputs. Our goal is to get the accurate prediction map
PTn

for Tn without using the pixel-level annotation.
• Project Head. This block is implemented as two 1x1 con-

volutional layers with ReLU [47]. The intermediate fea-
ture FD of Md or Mn is input to the project head, and it is
mapped to the 256-d l2-normalized vector to extract con-
tent embedding for knowledge distillation. Note that this
block is only utilized during training, thus the inference
time will not be affected.

• Cross-domain content distillation. We adopt cosine simi-
larity between two content embeddings eD from different
domains to represent the degree of content difference.

• Cross-domain style distillation. Different from the con-
tent knowledge, style embedding GD is obtained by cal-
culating the Gram matrix [11] of the feature FD itself,
and we also use similarity function to measure the cross-
domain style difference.

3.2. Cross-domain correlation distillation

It can be seen from Fig. 2, in addition to the discrepancy
of illumination between daytime and nighttime, the daytime
images from different datasets also have its particular color
tone and urban style. If we can get the Sn with content
of Sd and illumination style of Tn, the degree of difference
in content between Sd and Td should be consistent with that
between Sn and Tn. Similarly, the degree of difference in il-
lumination or content between Sd and Sn is consistent with

that between Td and Tn. This invariance of difference in
illumination or content can be exploited as prior knowledge
to guide the model to extract accurate features for Tn.

Motivated by the cross-model knowledge distillation
[8, 39, 44], we propose the cross-domain content distilla-
tion (CDC) and cross-domain style distillation (CDS). The
former conducts the transfer of content knowledge which is
essential for the segmentation task, and the latter realizes
the style transfer in semantic level.

The following subsections describe in detail how content
and style embeddings are extracted and how the degree of
difference between the two domains is calculated.

Cross-domain content distillation. The same image al-
ways maintains the same semantic content in different
styles. Similarly, two images from different datasets should
maintain the degree of content difference across styles. The
CDC exploits this invariance of content difference to per-
form semantic knowledge distillation.

Due to the difference in the input of the model Md and
Mn, the feature distribution differs from each other. Here
we first utilize the project head to map the features FD into
the common embedding space, and get eD. Then we further
introduce the Jensen-Shannon (JS) divergence to constrain
the feature distribution. Specifically,

LJS = λ(JS(eSd
||eSn

) + JS(eTd
||eTn

))−
(JS(eSd

||eTd
) + JS(eSn

||eTn
))

(1)

In order to get the content knowledge contained in the fea-
ture, the distribution of embeddings with the same semantic
information needs to be close, as the first term in Eq.(1).
And at the same time, it is necessary to ensure that the em-
beddings with different semantic information keep a certain
distance, as the second term in Eq. (1). λ is the coefficient
used to control the effect of reverse JS divergence and it is
set to 4.

After getting the content embedding eD, we adopt the
similarity function to express the degree of content differ-
ence between the two domains. In this way, we can get the
cross-domain content knowledge, which is formulated as:

Corilluk
= cos(ekd

, ekn
), k ∈ {S, T} (2)

Corinr
= cos(eSr

, eTr
), r ∈ {d, n} (3)

Corilluk
indicates the correlation of the content within the

domain S or the domain T, and Corinr indicates the inher-
ent correlation between different datasets in the daytime or
nighttime scene. cos(x, y) = xT y

||x||2||y||2 is the commonly
used cosine similarity. Intuitively, the model which takes
the daytime images as input tends to be less difficult to train,
and the ground truth in the domain S can also be helpful to
extract more superior features. Therefore, CorilluS

is used
to guide CorilluT

, and Corind
is used to guide Corinn

. We
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utilize the cross-domain correlation to realize the knowl-
edge transfer from domain S to domain T, from daytime to
nighttime, and reduce the disparity of model performance.
Corillu and Corin represent the patch-level correlation, so
they are still effective even if there is the parallax between
Td and Tn. The cross-domain content distillation loss is
given as follows:

LCDC = ||CorilluS−CorilluT ||
2
2+||Corind−Corinn ||

2
2+LJS

(4)
The domain shifts that exist between these four domains
can be divided into two categories: illumination and inher-
ent difference between different datasets. We select two
domains with only one kind of shift each time, construct
their correlation graph. For example, Corind

reflects the
similarity between the content of Sd and Td, and there is
only the inherent difference between Sd and Td. Similarly,
Corinn

reflects the similarity between Sn and Tn, and they
also have only the inherent difference. Corind

and Corinn

can be regarded as concrete representations of the inherent
difference in the content of daytime and nighttime images
between datasets, respectively. Therefore, the process of
forcing Corind

and Corinn
to be equal, as the second term

in Eq. (4), is to utilize the invariance of inherent difference
between datasets to achieve the knowledge distillation while
avoiding the adverse effects caused by the other kind of do-
main shift. In a similar way, Corillu takes advantage of the
invariance of content in the same dataset.

Cross-domain style distillation. The premise to imple-
ment the CDC is to be able to generate Sn with the same il-
lumination style as Tn. Previous approaches [35,36] gener-
ate nighttime images through style translation models, e.g.,
CycleGAN [55], yet the semantic features in segmentation
task are underutilized.

We first align the mean and variance of Sd with Tn in the
LAB space to get Sn [13, 31]. This pre-process can realize
the holistic style transformation and decrease the difficulty
of model convergence. However, for nighttime images, due
to the presence of traffic lights, headlights, etc., there is lo-
cal overexposure of brightness. If only this holistic style
transformation is performed, the generated image will still
be quite different from the real nighttime image. As shown
in Fig. 2, after we perform the moment match in the LAB
space, the tone of Sn has tended to Tn at the holistic level.
But for the underexposed or overexposed areas in Tn, the
effect of this style transformation is still not satisfactory.
Therefore, we propose the cross-domain style distillation
(CDS) to further achieve semantic-level style transfer dur-
ing the training of segmentation model.

In style transfer [5, 11, 46], the Gram matrix is used
to indicate the self-correlation of features in the channel
dimension, which consists of the correlation between the
responses of different filters. We adopt the Gram matrix
GD ∈ RC×C to represent the style of the feature, where

GD is the inner product of the vectorised feature maps of
FD on channel i and j respectively:

GD =
∑
p

Fip
DFjp

D , D ∈ {Sd, Sn, Td, Tn} (5)

where p is the pixel of FD. After obtaining the style knowl-
edge of the feature FD itself, the principle of our style trans-
fer is similar to that of the CDC. We also build the cross-
domain style graph, and this can be formulated as:

CorGk
= cos(Gkd

,Gkn), k ∈ {S, T} (6)

LCDS = ||CorGS
− CorGT

||22 (7)

CorGk
reflects the degree of illumination difference in the

source or target domain. The alignment of style difference
between domain S and T achieves the semantic-level style
transfer, as defined in Eq. (7).

It is worth noting that only the style correlation in the
domain S or the domain T is used here. The main reason
is that although there is inherent style shift between Sd and
Td, this is less noticeable than the illumination difference
between the daytime and nighttime, thus the correlation of
the Gram matrices between them is not strong. The CDS
mainly utilizes the invariance of illumination difference be-
tween daytime and nighttime images in the same dataset to
perform style transfer, so that the Sn gradually approaches
the illumination style of Tn. And this choice can also ex-
clude the adverse effect caused by the inherent difference.

3.3. Objective functions
In summary, the total loss of our method is written as

follows:

L = Lsegn + Lsegd + Lpseudo + λ1LCDC + λ2LCDS (8)

where Lsegn is the weighted cross-entropy loss between the
prediction map PSn

and the corresponding ground truth,
and Lsegd is in the same way. Lpseudo is the static loss [48],
which uses the predictions of static object categories for the
daytime images Td as the pseudo labels to provide pixel-
level supervision on Tn. The λ1, λ2 are hyper-parameters
that balance the influence of distillation losses on the main
task, which are set to 2 and 1, respectively.

4. Experiments
4.1. Datasets

The following datasets are used for model training and
performance evaluation:
Cityscapes [6] is an autonomous driving dataset captured
from street scenes in 50 cities, with pixel-wise annotations
of 19 semantic categories. It contains 2,975 images for
training, 500 images for validation and 1,525 images for
testing. All images are at a fixed resolution of 2,048×1,024.
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Table 1. Comparison with the state-of-the-art approaches and baseline models on the Dark Zurich-test set.
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mIoU

DeepLab-v2-Cityscapes [1] 79.0 21.8 53.0 13.3 11.2 22.5 20.2 22.1 43.5 10.4 18.0 37.4 33.8 64.1 6.4 0.0 52.3 30.4 7.4 28.8
RefineNet-Cityscapes [27] 68.8 23.2 46.8 20.8 12.6 29.8 30.4 26.9 43.1 14.3 0.3 36.9 49.7 63.6 6.8 0.2 24.0 33.6 9.3 28.5

AdaptSegNet-Cityscapes→DZ-night [41] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4
ADVENT-Cityscapes→DZ-night [43] 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
BDL-Cityscapes→DZ-night [25] 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8
UDAclustering-Cityscapes→DZ-night [40] 85.5 40.9 59.2 31.2 19.5 24.0 29.9 29.4 30.6 11.2 18.4 39.1 49.7 61.5 34.9 0.0 25.8 23.2 19.0 33.3
DMAda [7] 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1
GCMA [35] 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0
MGCDA [36] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
DANNet(RefineNet) [48] 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3

Ours 89.6 58.1 70.6 36.6 22.5 33.0 27.0 30.5 68.3 33.0 80.9 42.3 40.1 69.4 58.1 0.1 72.6 47.7 21.3 47.5

Figure 3. The qualitative comparison between our approach and some existing state-of-the-art methods on the Dark Zurich-val set.

In this paper, we adopt the Cityscapes training set in the
training of our network.

Dark Zurich [35] is captured in Zurich, with 3,041
daytime, 2,920 twilight and 2,416 nighttime images for
training, which are all unlabeled with a resolution of
1,920x1,080. Each nighttime image has a corresponding
daytime image as auxiliary, which constitutes a data pair
that can be used for the knowledge distillation in our pro-
posed network. Thus we use the 2,416 night-day image
pairs in our training process. The Dark Zurich also con-
tains 201 manually annotated nighttime images, of which
151 (Dark Zurich-test) are used for testing and 50 (Dark
Zurich-val) are used for validation. Note that the evaluation
of Dark Zurich-test only serves as an online benchmark, and
its ground truth is not publicly available.

ACDC [37] consists of 4006 images including four com-
mon adverse conditions: fog, rain, nighttime and snow. The

images under nighttime scenes have pixel-wise annotations,
and are further divided into 400 training, 106 validation and
500 test images. This dataset and the Dark Zurich are both
proposed by Sakaridis et al. [35], thus it shares the similar
style and appearance with the Dark Zurich. So we adopt the
ACDC-night-val to further evaluate the effect of our net-
work for domain adaptation.

4.2. Implementation details

We implement the proposed network using PyTorch on
a single Titan RTX GPU. We adopt the RefineNet [27] as
our semantic segmentation model, which is pre-trained on
the Cityscapes dataset with the ResNet-101 [14] as back-
bone. Both our models are trained by the Stochastic Gradi-
ent Descent (SGD) optimizer with a momentum of 0.9 and
a weight decay of 5 × 10−4, and the initial learning rate is
set as 2.5 × 10−4. Then the learning rate is decreased with
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Table 2. Comparison with the state-of-the-art methods and
baseline models on the ACDC-night-val set (mIoU1) and the
BDD100K-night set (mIoU2).

Method mIoU1 mIoU2

DeepLab-v2-Cityscapes [1] 16.3 17.3
RefineNet-Cityscapes [27] 20.3 20.4

AdaptSegNet-Cityscapes→DZ-night [41] 23.8 22.0
ADVENT-Cityscapes→DZ-night [43] 26.2 22.6
BDL-Cityscapes→DZ-night [25] 23.9 22.8
UDAclustering-Cityscapes→DZ-night [40] 24.5 20.0
DMAda [7] - 28.3
GCMA [35] - 33.2
MGCDA [36] 29.0 34.9
DANNet(RefineNet) [48] 37.0 30.3

Ours 37.7 33.0

the poly policy with a power of 0.9. The batch size is set to
2. The total number of training iterations is 50k. Follow-
ing [48], we apply random cropping with a crop size of 512
for Cityscapes dataset, and with a crop size of 960 for Dark
Zurich which is then resized to 512. At the inference time,
there is no any change introduced to the final model Mn.

4.3. Comparison with state-of-the-art methods

Comparison on Dark Zurich. We compare our proposed
method with some existing state-of-the-art methods, in-
cluding DMAda [7], GCMA [35], MGCDA [36], DAN-
Net [48], and several other domain adaptation approaches
[25, 40, 41,43] on Dark Zurich-test. The MGCDA, GCMA,
DMAda and DANNet adopt the RefineNet [27] as the base-
line, while other methods use the Deeplab-v2 [1]. To ensure
a fair comparison, we perform our method on the RefineNet.
Note that both the baselines use the ResNet-101 [14] as
backbone. Table 1 shows the quantitative comparison with
other methods on Dark Zurich-test. The mIoU is calculated
by the average of the intersection-over-union (IoU) among
all 19 categories.

Our method surpasses the existing methods with around
3.2% increase on mIoU. In particular, CCDistill is a one-
stage adaptation framework with requiring no additional
network in the inference. We also observe that our ap-
proach has comparable effects in all large-scale categories
such as terrain, sidewalk and road, which proves that our
method achieves the style transfer from daytime to night-
time and thus realizes the cross-domain knowledge distilla-
tion. Moreover, CCDistill significantly improves the perfor-
mance of categories with relatively few occurrences, such
as train and motorcycle. This also indicates that our method
does transfer the semantic-level correlation knowledge. The
qualitative results on Dark Zurich-val, as shown in Fig. 3,

Table 3. Ablation studies of our proposed method on Dark Zurich-
test set.

Method mIoU

RefineNet 28.5

w/o CDC 45.3
w/o project head in CDC 38.2
w/o LJS in CDC 44.6
w/o illuminance correlation in CDC 45.7
w/o inherent correlation in CDC 45.9

w/o CDS 44.0
w/o LAB-based Trans 43.5

w/o CDC and CDS 44.8

Ours 47.5

can also verify this observation.

Comparison on ACDC. In order to verify the effectiveness
of the proposed model on nighttime semantic segmentation,
we further conduct comparative experiments on the ACDC-
night-val, and the results are shown in Table 2. The ACDC-
night has a similar nighttime style with the Dark Zurich-
night, so it is reasonable that the CCDistill achieves the
best performance on ACDC-night-val, and a 0.7% improve-
ment of mIoU is gained. The visualization comparison on
ACDC-night-val is shown in Fig. 4.

4.4. Generalization test

Same as the daytime images, there are also domain shifts
between nighttime images from different datasets. In order
to verify the generalization of our proposed method, we also
compare with other methods on the BDD100K-night. The
BDD100K-night contains 87 images with the resolution of
1,280×720, which is manually selected by [36] from the 345
nighttime images of BDD100K [52]. The appearance and
lighting tone between Dark Zurich and BDD100K-night are
quite different. As shown in Table 2, even though the target
domain of our proposed method is Dark Zurich and it is
the domain shift between Cityscapes and Dark Zurich that
we utilize, we still get the comparable performance on the
BDD100K-night.

4.5. Ablation study

In this section, extensive experiments on several model
variants are conducted to verify the effectiveness of each
proposed component. We measure the performance of each
ablated version by evaluating it on the Dark Zurich-test. Re-
sults are summarized in Table 3.

The content correlation across domains is the core of the
knowledge distillation in our method. We set up five ablated
version to prove the effect of the proposed CDC. First, re-
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Figure 4. The qualitative comparison between our approach and some existing state-of-the-art methods on the ACDC-night-val set.

moving the CDC and relying only on CDS for knowledge
distillation lead to a drop of 2.2% mIoU. We further as-
sess the role of each component in the CDC. Training with-
out the project head astonishingly deteriorates the mIoU by
9.3%, which verifies that the difference in feature distribu-
tion caused by the domain gap in the task will seriously
affect the effectiveness of knowledge distillation. Features
from different domains need to be mapped to the common
embedding space to approximate the distribution range, and
then the effective correlation knowledge can be extracted.
On the basis of the project head, LJS is conducive to further
obtaining the content embedding. Experiment shows that
disabling the LJS causes a 2.9% mIoU decrease. Subse-
quently, Corillu and Corin will be used in the CDC to real-
ize the distillation of the content correlation across domains,
which contribute 1.8% and 1.6% mIoU respectively. Note
that after removing the project head or LJS in the CDC, the
performance is worse than disabling the CDC completely.
This proves from the side that CDS has realized the satis-
factory style transfer which is beneficial for the nighttime
semantic segmentation. More importantly, it reflects that
knowledge distillation in the domain adaptation is very sen-
sitive that the failure to extract the appropriate embedding
will be detrimental to the model. In summary, these model
variants verify that for domain adaptation with large domain
shifts, the adequate and effective use of correlation knowl-
edge within a similar range of data distribution can greatly
improve the performance of the model.

The same illumination style between the Sn and Tn is the
prerequisite for the cross-domain content distillation. We
disable the CDS resulting in a drop of 3.5% mIoU, which
is in line with expectations. The semantic-level style align-
ment implemented by CDS can generate nighttime images

aiming at the nighttime semantic segmentation, and obtain
the synthetic domain that satisfies our hypothetical domain
shift. The LAB-based translation advances the performance
about 4%, which reflects that the holistic style alignment
can reduce the difficulty of subsequent semantic-level trans-
fer. This also proves that it is not appropriate to employ
distillation loss directly when the domain shift is large.

After removing CDC and CDS, the model achieves
44.8% mIoU. The CDS brings a gain of 0.5% mIoU, while
only adding CDC, mIoU has dropped by 0.8%. This further
illustrates the importance of CDS to achieve semantic-level
style transfer, and on the basis of CDS, CDC can further
achieve a huge improvement.

5. Conclusions

In this paper, we propose an unsupervised domain adap-
tation framework via the invariance of cross-domain dif-
ference for nighttime semantic segmentation. We validate
the effectiveness of properly handling these two kind of do-
main shifts, i.e. illumination and inherent difference. The
proposed cross-domain content and style distillation, by ex-
tracting the content and style knowledge contained in the
features, utilize the invariance of inherent and illumination
difference across domains, and realize knowledge distilla-
tion and sementic-level style transfer simultaneously. Ex-
periment results verify the effectiveness of our proposed
method. Since the distillation is based on the domain shift
between source and target domain, it cannot always be ef-
fective enough for all nighttime style, which will be further
explored in our future work.
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