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Abstract

We target at the task of weakly-supervised action lo-
calization (WSAL), where only video-level action labels
are available during model training. Despite the recent
progress, existing methods mainly embrace a localization-
by-classification paradigm and overlook the fruitful fine-
grained temporal distinctions between video sequences,
thus suffering from severe ambiguity in classification learn-
ing and classification-to-localization adaption. This paper
argues that learning by contextually comparing sequence-
to-sequence distinctions offers an essential inductive bias in
WSAL and helps identify coherent action instances. Specif-
ically, under a differentiable dynamic programming formu-
lation, two complementary contrastive objectives are de-
signed, including Fine-grained Sequence Distance (FSD)
contrasting and Longest Common Subsequence (LCS) con-
trasting, where the first one considers the relations of var-
ious action/background proposals by using match, insert,
and delete operators and the second one mines the longest
common subsequences between two videos. Both contrast-
ing modules can enhance each other and jointly enjoy
the merits of discriminative action-background separation
and alleviated task gap between classification and localiza-
tion. Extensive experiments show that our method achieves
state-of-the-art performance on two popular benchmarks.
Our code is available at https://github.com/
MengyuanChen21/CVPR2022-FTCL.

1. Introduction
Action localization is one of the most fundamental tasks

in computer vision, which aims to localize the start and end

timestamps of different actions in an untrimmed video [41,

63, 67, 75]. In the past few years, the performance has gone

through a phenomenal surge under the fully-supervised set-

ting. However, collecting and annotating precise frame-
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Figure 1. Pipeline of the localization-by-classification paradigm.

It first extracts snippet-level features and adopts attention/MIL

mechanisms for learning CAS under video-level supervisions.

wise information is a bottleneck and consequently limits the

scalability of a fully supervised framework for real-world

scenarios. Therefore, weakly-supervised action localiza-

tion (WSAL) has been explored [26,27,56,69], where only

video-level category labels are available.

To date in the literature, current approaches mainly

embrace a localization-by-classification paradigm [54, 57,

65, 68], which divides each input video into a series of

fixed-size non-overlapping snippets and aims for generating

the temporal Class Activation Sequences (CAS) [56, 71].

Specifically, as shown in Figure 1, by optimizing a video-

level classification loss, most existing WSAL approaches

adopt the multiple instance learning (MIL) formulation [45]

and attention mechanism [56] to train models to assign snip-

pets with different class activations. The final action lo-

calization results are inferred by thresholding and merging

these activations. To improve the accuracy of learned CAS,

various strategies have been proposed, such as uncertainty

modeling [69], collaborative learning [26, 27], action unit

memory [42], and causal analysis [37], which have obtained

promising performance.

Despite achieving significant progress, the above learn-

ing pipelines still suffer from severe localization ambi-
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Figure 2. Fine-grained temporal distinctions between two videos. Here, the two untrimmed videos are from the same action category

CleanAndJerk. Note that the distinctions are derived from two aspects: (1) Fine-grained action-background distinctions. The snippets in

the action instances and background subsequences are semantically different, which should be effectively separated in a robust WSAL

model. (2) Fine-grained distinctions between action instances. In this example, the three snippets of the action instance in Video2 can

be aligned with the partial action instance in Video1. In addition, we can observe that the three snippets linked by the red arrows are the

longest common sequences of both videos. We argue that considering the above fine-grained distinctions can benefit WSAL learning.

guity due to the lack of fine-grained frame-wise annota-

tions in the temporal dimension, which dramatically hinders

the WSAL performance of the localization-by-classification

paradigm. Specifically, the ambiguity is two-fold: (1) With-

out sufficient annotations in the weakly-supervised setting,

the learned classifier itself is not discriminative and robust

enough, causing difficulties in action-background separa-

tion. (2) Since there exists a large task gap between classifi-

cation and localization, the learned classifiers usually focus

on the easy-to-distinguish snippets while ignoring those that

are not prominent in localization. As a result, the localized

temporal sequences are often incomplete and inexact.

To alleviate the above ambiguity, we argue that videos

naturally provide a rich source of temporal structures

and additional constraints for improving weakly-supervised

learning. As outlined in Figure 2, an action video gener-

ally includes a series of fine-grained snippets, while dif-

ferent action/background instances possess correlative and

fine-grained temporal distinctions. For example, given a

pair of videos from the same action category but captured

in varied scenes, there exists a latent temporal association

between both videos. With this in mind, a key consider-

ation is to leverage such temporal distinctions for improv-

ing representation learning in WSAL. However, when elab-

orately comparing two videos, no guarantee ensures that

they can be aligned directly. Recently, dynamic time warp-

ing (DTW) [2,55] was proposed to tackle the misalignment

issue in various video analysis tasks such as action clas-

sification [25], few-shot learning [7], action segmentation

and video summarization [9, 10]. DTW computes the dis-

crepancy between two videos based on their optimal align-

ment from dynamic programming. However, the above ap-

proaches either assume the video is trimmed [7, 25] or re-

quire additional supervision [9, 10] such as action orders,

which impedes the direct use of DTW in WSAL.

In this paper, to address the above issues, we propose a

novel Fine-grained Temporal Contrastive Learning (FTCL)

framework for weakly-supervised temporal action localiza-

tion. By capturing the distinctive temporal dynamics of

different video sequences, FTCL focuses on optimizing

the structural and fine-grained snippet-wise relations be-

tween videos by leveraging end-to-end differentiable dy-

namic programming goals, with loss that is informed from

the structural relations. Specifically, (1) To improve the ro-

bustness of action-background separation, we contrast the

fine-grained sequence distance (FSD) calculated from dif-

ferent action/background instance pairs by designing an im-

proved and differentiable edit distance measurement. The

measurement can evaluate whether two sequences are struc-

turally analogous by calculating the minimum cost required

to transform one to the other. (2) To alleviate the task gap

between classification and localization, we aim at contrast-

ing the mined Longest Common Subsequence (LCS) be-

tween two untrimmed videos that contain the same action.

Different video sequences from the same category can pro-

vide complementary clues for exploring the complete action

instance by optimizing the LCS. Therefore, LCS learning

between different video sequences improves the coherence

in a predicted action instance. Finally, with FSD and LCS

contrasting, a unified framework is constructed in an end-

to-end manner, while the proposed FTCL strategy can be

seamlessly integrated into any existing WSAL approach.

The main contributions of this paper are three-fold:

• In light of the above analysis, we contend that localizing

action by contextually contrasting fine-grained temporal

distinctions offers an essential inductive bias in WSAL.

We thus introduce the first discriminative sequence-to-

sequence comparing framework for robust WSAL to

address the lack of frame-wise annotations, capable of

leveraging fine-grained temporal distinctions.

• A unified and differentiable dynamic programming

formulation, including fine-grained sequence distance
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learning and longest common subsequence mining, is

designed, which jointly enjoys the merits of (1) discrim-

inative action-background separation and (2) alleviated

task gap between classification and localization.

• Extensive experimental results on two popular bench-

marks demonstrate that the proposed FTCL algorithm

performs favorably. Note that the proposed strategy is

model-agnostic and non-intrusive, and hence can play a

complementary role over existing methods to promote

the action localization performance consistently.

2. Related Work
Fully-supervised Temporal Action Localization (TAL).
Compared with traditional video understanding tasks [8,17,

19,20,23], TAL aims to classify every activity instance in an

untrimmed video and predict their accurate temporal loca-

tions. Existing TAL approaches can be roughly divided into

two categories: two-stage methods [11,13,61,63,66,73,75]

and one-stage methods [4,34,35,41,58,64,67]. For the for-

mer one, action proposals are firstly generated and then fed

into a classifier. This pipeline mainly focuses on improv-

ing the quality of proposals [11, 61, 75] and the robustness

of classifiers [63, 73]. One-stage methods instead predict

action location and category simultaneously. SS-TAD [4]

utilizes recurrent neural networks to regress the temporal

boundaries and action labels jointly. Lin et al. [34] intro-

duces an anchor-free framework in a coarse-to-fine man-

ner. Although the above model achieves significant perfor-

mance, the fully-supervised setting limits their scalability

and practicability in the real world [18, 21, 22].

Weakly-supervised Action Localization. To overcome the

above limitation, WSAL has drawn significant attention in

recent years by leveraging different types of supervisions,

e.g., web videos [16], action orders [3], single-frame anno-

tation [31, 44], and video-level category labels [36, 52, 65].

Among these weak supervisions, the last one is the most

commonly used due to the low cost. UntrimmedNet [65]

is the first work that uses video-level category labels for

WSAL via a relevant segment selection module. Currently,

most existing approaches can be roughly divided into three

groups, namely attention-based methods [26, 26, 39, 42, 49,

56, 57, 68], MIL-based methods [32, 43, 45, 48, 54], and

erasing-based methods [62, 72, 74]. Attention-based ap-

proaches aim at selecting snippets of high activation scores

and suppressing background snippets. ACM-Net [56] in-

vestigates a three-branch attention module by simultane-

ously and effectively considering action instances, context,

and background information. MIL-based pipeline treats the

entire video as a bag and utilizes a top-k operation to select

positive instances. W-TALC [54] introduces a co-activity

relation loss to model inter- and intra-class information.

The erasing-based methods, e.g., Hide-and-Seek [62], typ-

ically attempt to erase input segments during training for

highlighting less discriminative snippets.

Note that most existing methods only consider the video-

level supervision but ignore the fine-grained temporal dis-

tinctions between videos, and can hardly benefit from dis-

criminative learning of snippet-wise contrasting. Although

some approaches have investigated different types of con-

trastive regularization, e.g., hard snippet contrasting in

CoLA [71], they perform contrasting by only considering

video-level information [30, 50, 54] or neglecting the fine-

grained temporal structures [49, 53, 71]. To the best of

our knowledge, we are the first to introduce the contrastive

learning of fine-grained temporal distinctions to the WSAL

task. Experimental results demonstrate that the proposed

FTCL learns discriminative representations, thus facilitat-

ing the action localization.

Dynamic Programming for Video Understanding. Re-

cent progress has shown that learning continuous relaxation

of discrete operations (e.g., dynamic programming) can

benefit video representation learning [7,9,10,25]. A popular

framework is to adopt sequence alignment as a proxy task

and then uses dynamic time warping (DTW) to find the opti-

mal alignment [2,6,12,14,15,46,55]. For example, based on

a novel probabilistic path finding view, Hadji et al. [25] de-

sign contrastive and cycle-consistency objectives for video

representation learning by leveraging differentiable DTW.

Chang et al. [10] propose discriminative prototype DTW to

learn class-specific prototypes for temporal action recogni-

tion. However, the above dynamic programming strategies

either assume the video is trimmed [7, 25] or require addi-

tional supervision [9, 10] such as action orders, thus cannot

be applied to the WSAL task. Different from the above

approaches, this paper proposes to leverage fine-grained

sequence distance and longest common subsequence con-

trasting for discriminative foreground-background separa-

tion and robust classification-to-localization adaption.

3. Our Approach
In this work, we describe our WSAL approach based

on Fine-grained Temporal Contrastive Learning (FTCL).

As shown in Figure 3, given a set of video sequence

pairs, our training objective is the learning of an embed-

ding function applied to each snippet. We firstly adopt fea-

ture extractors to obtain the appearance (RGB) and mo-

tion (optical flow) features of each snippet (Section 3.1).

Then, under a differentiable dynamic programming formu-

lation, two complementary contrastive objectives are de-

signed for learning fine-grained temporal distinctions in-

cluding Fine-grained Sequence Distance (FSD) contrasting

(Section 3.2) and Longest Common Subsequence (LCS)

contrasting (Section 3.3). Finally, the whole framework is

end-to-end learned (Section 3.4), which can jointly achieve

discriminative action-background separation and alleviated

task gap between classification and localization.
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3.1. Notations and Preliminaries

Given an untrimmed video X with its groundtruth label

y ∈ RC , where C is the number of action categories. yi =
1 if the i-th action class is present in the video and yi = 0
otherwise. For the video, we divide it into non-overlapping

T snippets and apply feature extractors to obtain snippet-

wise features X = [x1, ...,xi, ...,xT ] ∈ RD×T , where D
is the feature dimension and each snippet has 16 frames.

In this paper, for a fair comparison, we follow previous ap-

proaches [50, 54, 56, 71] to extract features from both RGB

and optical flow streams by using the I3D network [8] pre-

trained on the Kinetics dataset. After that, the two types

of features are concatenated together and then input into an

embedding module, e.g., convolutional layers [56], for gen-

erating X. The goal of WSAL is to learn a model that si-

multaneously localizes and classifies all action instances in

a video with timestamps as (ts, te, c, φ), where ts, te, c, and

φ denote the start time, the end time, the predicted action

category and the confidence score of the action proposal,

respectively.

Currently, existing dominant approaches mainly em-

brace a localization-by-classification framework, which

first learns importance scores for aggregating snippet-level

features into a video-level embedding and then perform ac-

tion classification by using the video-level labels:

x =

T∑
t=1

αt ∗ xt

Lcls = −
C∑
i=1

yi log ỹi

(1)

where αt = fα(xt) is the learned importance score. The

generated video-level feature is further fed into a classifer

to obtain the prediction results ỹ = fcls(x). After model

training, fα(·) and fcls(·) is used for inferring the snippet-

level Class Activation Sequences (CAS) of a test video. To

learn the two functions, various strategies can be applied

such as multiple attention learning [56] and modality col-

laborative learning [26].

3.2. Discriminative Aciton-Background Separation
via FSD Contrasting

To learn discriminative action-background separation in

the above localization-by-classification framework, a few

existing methods resort to performing contrastive learning

by either using global video features [30, 50, 54] or only

considering intra-video contrast without temporal model-

ing [49, 53, 71]. However, these models ignore the fine-

grained temporal distinctions between videos, resulting in

the insufficient discriminative ability for classification.

In this work, we propose to contrast two video sequences

temporally in a fine-grained manner. Existing methods usu-

Untrimmed Videos
Longest Common Subsequence

(LCS) Contrasting

I3D Model

Fine-grained Sequence 
Distance (FSD) Contrasting

Embedding 
Module

Video-level Classification

Embedded 
Features

DeleteMatchMatch

Delete Match Insert

stack

Optical Flow
Features

RGB
Features

Video: X

Z

Action proposal: U

Action proposal: V

Action proposal: U

Background proposal: V'

Figure 3. Our proposed FTCL architecture and toy example. The

pretrained I3D model is first adopted for the input videos to ob-

tain RGB and optical flow features. Then an embedding mod-

ule is further applied to extract snippet-wise features under video-

level supervisions. To achieve discriminative action-background

separation, FSD contrasting is designed to consider the relations

of different action/background proposals using Match, Insert, and

Delete operators. For classification-to-localization adaption, we

employ LCS contrasting to find the longest common subsequences

between two videos. Both contrasting strategies are implemented

via differentiable dynamic programming.

ally calculate the similarity of two sequences by measuring

the vector distance between their global feature representa-

tions. Different from this matching strategy, as shown in

the left of Figure 3, we would like to determine whether

two sequences are structurally analogous by evaluating the

minimum cost required to transform one sequence to the

other. The naive idea is to exhaustively compare all the

possible transformations, which is NP-hard. A fast so-

lution is to utilize solvable dynamic programming tech-

niques, where sub-problems can be nested recursively in-

side larger problems. Here, motivated by the widely used

edit distance1 [51] in computational linguistics and com-

puter science, we design differentiable Match, Insert, and

Delete operators for sequence-to-sequence similarity cal-

culation. Specifically, with the learned CAS, we can gen-

erate various action/background proposals, where an ac-

tion proposal U contains snippets with high action acti-

vations and a background proposal V is just the oppo-

site. For the two proposal sequences with lengths of M
and N , U = [u1, ...,ui, ...,uM ] ∈ RD×M and V =
[v1, ...,vi, ...,vM ] ∈ RD×N , their similarity is evaluated

with the following recursion:

S(i, j) = μi,j+max

⎧⎪⎨
⎪⎩
S(i− 1, j − 1) ( Match )

gi,j + S(i− 1, j) ( Insert )

hi,j + S(i, j − 1) ( Delete )

(2)

1Edit distance is a way of quantifying how dissimilar two strings are

to one another by counting the minimum number of operations required to

transform one string into the other.
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where the sub-sequence similarity score S(i, j) is evaluated

on position i in the first sequence U and on position j in

the second sequence V. S(0, :) and S(:, 0) are initialized

to zeros. Intuitively, in position (i, j), if ui and vj are

matched, the sequence similarity score should be increased.

If the insert or delete operation is conducted, there should

be a penalty on the similarity score. To this end, we learn

three types of residual values (scalars), μi,j , gi,j , and hi,j

for these operations. Taking μi,j and gi,j as an example,

which can be calculated as follows:

μi,j = σμ(cos(Δμ
i,j)), gi,j = σg(cos(Δg

i,j)) (3)

where Δμ
i,j = [fμ(ui), fμ(vj)] and Δg

i,j is defined simi-

larly. fμ(·), fg(·), and fh(·) are three fully-connected lay-

ers. We utilize these functions to simulate different oper-

ations including match, insert, and delete. σμ and σg are

activation functions for obtaining the residual values.

After conducting the above recursive calculation, S(i, j)
is guaranteed to be the optimal similarity score between the

two sequences. It is evident that the similarity between two

action proposals from the same category should be larger

than it between an action proposal and a background pro-

posal. By leveraging this relation, we design the FSD con-

trasting loss as follows:

LFSD = �
(
s[UV′] − s[UV]

)
+ �

(
s[U′V] − s[UV]

)
(4)

where �(x) denotes the ranking loss. The subscript [UV]
indicates the two action proposals from the same category

for calculating the sequence-to-sequence similarity s =
S(M,N). U′ and V′ represents the background proposals.

In our implementation, we utilize the learned importance

score α [56] to select action and background proposals.

Smooth Max Operation. As the max operation in Eq. (2) is

not differentiable, the recursive matrices and the traceback

cannot be differentiated in current formulation. Therefore,

we are motivated to utilize a standard smooth approxima-

tion for the max operator [46]:

smoothMax(a; γ) = log(
∑
i

exp(γai)) (5)

where a = [a1, ...,ai, ...] is a vector for max operator. γ
represents the temperature hyper-parameter. Note that other

types of smooth approximation [6, 12, 25] can also be ap-

plied for differentiating while designing a novel smooth

max operation is not the goal of our paper.

3.3. Robust Classification-to-Localization Adaption
via LCS Contrasting

In the above section, action-background separation is

considered, which improves the discriminative ability of

the learned action classifiers. However, the goal of WSAL

task is to localize action instances temporally with precise

timestamps, resulting in a large task gap between classifi-

cation and localization. To alleviate this gap, we attempt

to mine the longest common subsequence (LCS) between

two untrimmed videos X and Z thus improve the coher-

ence in the learned action proposals. The intuition behind

this idea is two-fold: (1) If the two videos do not share the

same actions, the length of LCS between X and Z should be

small. Obviously, due to the diverse background and sub-

stantial difference between the two types of actions, snip-

pets from the two individual videos are likely to be highly

inconsistent, resulting in short LCS. (2) Similarly, if two

videos share the same action, their LCS is prone to be long

since action instances from the same category are composed

of similar temporal action snippets. Ideally, the LCS in this

situation is as long as the shorter action instance. For exam-

ple, as shown in Figure 2, the action CleanAndJerk consists

of several sequential sub-actions like squat, grasp, and lift.
Based on the above observation, as shown in the right

of Figure 3, we propose to model the LCS between X and

Z by designing a differentiable dynamic programming strat-

egy. Specifically, we maintain a recursive matrix R ∈
R(T+1)×(T+1), with elements R(i, j) stores the length of

longest common subsequence of prefixes Xi and Zj . To

find the LCS of prefixes Xi and Zj , we first compare xi

and zj . If they are equal, then the calculated common sub-

sequence is extended by that element and thus R(i, j) =
R(i− 1, j − 1)+ 1. If they are not equal, the largest length

calculated before is retained for R(i, j). In the WSAL task,

since a pair of snippets cannot be exactly the same even

they depict the same action, we adopt their similarities to

calculate the accumulated soft length of two sequences. As

a result, we design the recursion formula of LCS modeling:

R(i, j) =

⎧⎨
⎩

0, i = 0 or j = 0
R(i− 1, j − 1) + ci,j , ci,j � τ

max{R(i− 1, j),R(i, j − 1)}, ci,j < τ
(6)

where τ is a threshold that determines whether the i-th snip-

pet of video X and the j-th snippet of video Z is matched.

ci,j = cos(xi, zj) is the cosine similarity of snippets xi

and zj . Note that by using the equation above, we can seek

the longest common subsequence between two videos. Al-

though not used here, the mined subsequence can qualita-

tively demonstrate the effectiveness and improve the inter-

pretability of our approach (Section 4.3).

With the above dynamic programming, the resulting val-

ues r = R(T, T ) represents the soft length of the longest

common subsequence between the two videos. We utilize a

cross-entropy loss to serve as a constraint for LCS learning:

LLCS = δxz log(r[XZ]) + (1− δxz) log(1− r[XZ]) (7)
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where δxz is the groundtruth indicating whether the two

videos X and Z have the same action categories.

Discussion. In this work, FSD and LCS learning strate-

gies are proposed via differentiable dynamic programming,

while both are designed for sequence-to-sequence contrast-

ing. However, the two modules are not redundant and have

substantial difference: (1) They have different goals by con-

sidering different types of sequences. We utilize FSD to

learn robust action-background separation while different

action and background proposals are employed. While LCS

contrasting is designed to find coherent action instances

in two untrimmed videos, thus achieving classification-to-

localization adaption. (2) They have different contrasting

levels. In FSD contrasting, the relations between different

action/background pairs are considered (Eq. (4)), whereas

in LCS, the contrasting is conducted in a pair of untrimmed

videos (Eq. (7)). We also demonstrate that jointly learning

FSD and LCS can enhance and complement each other for

pursuing effective WSAL in Section 4.3.

3.4. Learning and Inference

Training. The above two objectives can be seamlessly in-

tegrated into existing WSAL frameworks and collaborate

with each other. For optimizing the whole model, we com-

pose the classification loss and the two contrastive losses:

L = Lcls + LFSD + LLCS (8)

Since our proposed method is model-agnostic and non-

intrusive, the two contrastive losses can well cooperate with

any other weakly-supervised action localization objectives

by replacing Lcls with different types of loss functions and

backbones (Please refer to Section 4.3).

Inference. Given a test video, we first predict the snippet-

level CAS and then apply a threshold strategy to obtain ac-

tion snippet candidates following the standard process [56].

Finally, continuous snippets are grouped into action pro-

posals, and then we perform non-maximum-suppression

(NMS) to remove duplicated proposals.

4. Experimental Results
We evaluate the proposed FTCL on two popular datasets:

THUMOS14 [28] and ActivityNet1.3 [5]. Extensive ex-

perimental results demonstrate the effectiveness of our pro-

posed method.

4.1. Experimental Setup

THUMOS14. It contains 200 validation videos and 213

test videos annotated with temporal action boundaries from

20 action categories. Each video contains 15.4 action in-

stances on average, making this dataset challenging for

weakly-supervised temporal action localization. Following

previews works [26, 37, 56, 69, 71], we apply the validation

set for training and the test set for evaluation.

ActivityNet1.3. ActivityNet1.3 contains 10,024 training

videos and 4,926 validation videos from 200 action cate-

gories, and each video contains 1.6 action instances on av-

erage. Following the standard protocol in previous work

[26, 37, 56, 69, 71], we train on the training set and test on

the validation set.

Evaluation Metrics. Following previous models [38, 54,

65], we use mean Average Precision (mAP) under differ-

ent temporal Intersection over Union (t-IoU) thresholds as

evaluation metrics. The t-IoU thresholds for THUMOS14

is [0.1:0.1:0.7] and for ActivityNet is [0.5:0.05:0.95].

Implementation Details. Following existing methods, we

use I3D [8] model pretrained on Kinetics dataset as the

RGB and optical flow feature extractors. The dimension

of the output feature is 2048. Note that no fine-tuning op-

erations are applied to the I3D feature extractor for a fair

comparison. The number of sampled snippets T for THU-

MOS14 and ActivityNet is set to 750 and 75, respectively.

To implement fα(·) and fcls(·), we adopt the pre-trained

ACM-Net [56] as the backbone for video-level classifica-

tion. For FSD contrasting, we select action/background

proposals by using the learned CAS. For LCS contrast-

ing, to save the computational cost, we do not use the en-

tire untrimmed video but select the top-J activated snippets

for contrasting, J is set to 30 and 10 for THUMOS14 and

ActivityNet, respectively. The output dimension of fμ(·)
and fg(·) is 1024. For simplicity, fh(·) is the same with

fg(·). The temperature hyper-parameter γ and threshold τ
in Eq. (5) and Eq. (6) are 10 and 0.92. Our model is im-

plemented with PyTorch 1.9.0, and we utilize Adam with a

learning rate of 10−4 and a batch size of 16 for optimiza-

tion. We train our model until the training loss is smooth.

4.2. Comparison with State-of-the-art Methods

Evaluation on THUMOS14. As shown in Table 1, FTCL

outperforms previous weakly supervised methods in al-

most all IoU metrics on the THUMOS14 dataset. Specifi-

cally, our method achieves favorable performance of 35.6%
mAP@0.5 and 43.6% mAP@Avg. And an absolute gain of

1.4% and 1.0% is obtained in terms of the average mAP

when compared to the SOTA approaches ACM-Net [56]

and FAC-Net [27]. Furthermore, we observe that our meth-

ods can even achieve comparable performance with several

fully-supervised methods, although we utilize much less

supervision during training. Note that CoLA [71] gets a

higher mAP@0.7 than ours. However, we get 2.7% abso-

lute gains at average mAP. CoLA adopts a hard snippet min-

ing strategy to pursue action completeness, which can be

further equipped with our FTCL for more effective WSAL.

Evaluation on ActivityNet1.3. As in Table 2, our method

also achieves state-of-the-art performance on the Activi-

tyNet1.3 datasets. Specifically, compared with state-of-the-

art ACM-Net [56], we obtain the relative gain of 0.8%. Note
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Table 1. Temporal action localization performance comparison with state-of-the-art methods on the THUMOS14 dataset. Note that weak+

represents methods that utilize external supervision information besides video labels.

Supervision Method
mAP@t-IoU(%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 [0.1:0.5] [0.3:0.7] Avg

Fully

S-CNN [60], CVPR2016 47.7 43.5 36.3 28.7 19.0 - - 35.0 - -

CDC [58], CVPR2017 - - 40.1 29.4 23.3 13.1 7.9 - - -

R-C3D [66], ICCV2017 54.5 51.5 44.8 35.6 28.9 - - 43.1 - -

SSN [73], ICCV2017 66.0 59.4 51.9 41.0 29.8 - - 49.6 - -

TAL-Net [11], CVPR2018 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3 39.8 45.1

GTAN [41], CVPR2019 69.1 63.7 57.8 47.2 38.8 - - 55.3 - -

Weakly+ STAR [68], AAAI2019 68.8 60.0 48.7 34.7 23.0 - - 47.0 - -

3C-Net [50], ICCV2019 59.1 53.5 44.2 34.1 26.6 - 8.1 43.5 - 37.6

Weakly

UntrimmedNet [65], CVPR2017 44.4 37.7 28.2 21.1 13.7 - - 29.0 - -

Hide-and-Seek [62], ICCV2017 36.4 27.8 19.5 12.7 6.8 - - 20.6 - -

AutoLoc [59], ECCV2018 - - 35.8 29.0 21.2 13.4 5.8 - - -

STPN [52], CVPR2018 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0 18.5 27.0

W-TALC [54], ECCV2018 55.2 49.6 40.1 31.1 22.8 - 7.6 39.8 25.4 34.4

CMCS [36], CVPR2019 57.4 50.8 41.2 32.1 23.1 15.0 7.0 40.9 23.7 32.4

WSAL-BM [53], ICCV2019 60.4 56.0 46.6 37.5 26.8 19.6 9.0 45.5 27.9 36.6

DGAM [57], CVPR2020 60.0 54.2 46.8 38.2 28.8 19.8 11.4 45.6 29.0 37.0

TCAM [24], CVPR2020 - - 46.9 38.9 30.1 19.8 10.4 - 29.2 -

Bas-Net [32], AAAI2020 58.2 52.3 44.6 36.0 27.0 18.6 10.4 43.6 27.3 35.3

A2CL-PT [47], ECCV2020 61.2 56.1 48.1 39.0 30.1 19.2 10.6 46.9 29.4 37.8

RefineLoc [1], WACV2021 - - 40.8 32.7 23.1 13.3 5.3 - 23.0 -

Liu et al [38], AAAI2021 - - 50.8 41.7 29.6 20.1 10.7 - 30.6 -

ACSNet [40], AAAI2021 - - 51.4 42.7 32.4 22.0 11.7 - 32.0 -

HAM-Net [29], AAAI2021 65.9 59.6 52.2 43.1 32.6 21.9 12.5 50.7 32.5 41.1

Lee et al [33], AAAI2021 67.5 61.2 52.3 43.4 33.7 22.9 12.1 51.6 32.9 41.9

ASL [45], CVPR2021 67.0 - 51.8 - 31.1 - 11.4 - - 40.3

CoLA [71], CVPR2021 66.2 59.5 51.5 41.9 32.2 22.0 13.1 50.3 32.1 40.9

D2-Net [49], ICCV2021 65.7 60.2 52.3 43.4 36.0 - - 51.5 - -

FAC-Net [27], ICCV2021 67.6 62.1 52.6 44.3 33.4 22.5 12.7 52.0 33.1 42.2

ACM-Net [56], arXiv2021 68.9 62.7 55.0 44.6 34.6 21.8 10.8 53.2 33.4 42.6

FTCL(Ours) 69.6 63.4 55.2 45.2 35.6 23.7 12.2 53.8 34.4 43.6

Table 2. Comparison results on ActivityNet1.3 dataset.

Method
mAP@t-IoU(%)

0.5 0.75 0.95 Avg

STPN [52], CVPR2018 26.3 16.9 2.6 16.3

MAAN [70], ICLR2019 33.7 21.9 5.5 -

Bas-Net [32], AAAI2020 34.5 22.5 4.9 22.2

A2CL-PT [47], ECCV2020 36.8 22.0 5.2 22.5

Lee et al [31], AAAI2021 37.0 23.9 5.7 23.7

FAC-Net [27], ICCV2021 37.6 24.2 6.0 24.0

ACM-Net [56], arXiv2021 40.1 24.2 6.2 24.6

FTCL(Ours) 40.0 24.3 6.4 24.8

that the performance improvement on this dataset is not as

significant as it on the THUMOS14 dataset; the reason may

lie in that videos in ActivityNet are much shorter than those

in THUMOS14. ActivityNet only contains 1.6 instances per

video on average, while the number in THUMOS14 is 15.6.

Obviously, sufficient temporal information can facilitate the

fine-grained temporal contrasting.

4.3. Further Remarks
To better understand our algorithm, we conduct ablation

studies and in-depth analysis on the THUMOS14 dataset.

Effectiveness of FSD Contrasting. We utilize FSD con-

trasting for discriminative foreground-background separa-

tion. To evaluate the effectiveness of this contrasting, we

wipe out this module (denoted as FTCL(w/o FSD)) from

the full model and observe a significant decrease in perfor-

mance, as shown in Table 3. Specifically, our full model

FTCL outperforms the baseline by relative gains of (0.8%,

1.7%, 2.9%, 6.1%) mAP on t-IoU thresholds of [0.10, 0.30,

0.50, 0.70]. Without the FSD contrasting, fine-grained

foreground-background distinctions can not be well han-

dled, leading to insufficient classifier learning.

Effectiveness of LCS Contrasting. We also remove LCS

contrasting from the full model (FTCL(w/o LCS)) to evalu-

ate its contribution to the overall performance, and the cor-

responding performance consistently drops as shown in Ta-

ble 3, proving the positive impact for robust classification-
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Table 3. Ablation study of module effectiveness on THUMOS14.

mAP@t-IoU(%)

0.1 0.3 0.5 0.7 Avg

ACM-Net 68.9 55.0 34.6 10.8 42.6

FTCL(w/o FSD) 69.0 54.3 34.6 11.5 42.8

FTCL(w/o LCS) 69.3 55.0 34.8 11.4 43.0

FTCL(both-FSD) 69.6 55.0 35.3 11.8 43.2

FTCL(both-LCS) 69.4 55.1 34.8 11.5 43.1

FTCL 69.6 55.2 35.6 12.2 43.6

to-localization adaption. Mining LCS for untrimmed videos

enables the model to discover coherent snippets in an action

instance, thus facilitating localization performance.

Are the Above Two Modules Redundant? Both the FSD

and LCS objectives are adopted for sequence-to-sequence

contrasting but with different goals. Astute readers may be

curious about whether the FSD and LCS learning strate-

gies are redundant, i.e., can we adopt either FSD or LCS

for jointly modeling the foreground-background separation

and classification-to-localization adaption? To answer this

question, we conduct experiments with only FSD or LCS

contrasting for tackling both the separation and adaption

objectives, namely FTCL(both-FSD) and FTCL(both-LCS)

in Table 3. We observe that our full model outperforms both

variants, proving that the above two modules are not redun-

dant. Another observation is that the two variants achieve

better performance than FTCL(w/o FSD)) and FTCL(w/o

LCS)). The reason lies in that both FSD and LCS belong

to the sequence-to-sequence measurement, which can pro-

mote the separation and adaption objectives solely. How-

ever, since the two objectives have their unique properties,

we design the FSD and LCS contrasting strategies to ad-

dress them, which obtains the best performance.

Why Not Resort to other Dynamic Programming Strate-
gies like DTW? We observe that some recent works are

pursuing the video sequence alignment based on dynamic

time warping (DTW) [7, 14, 25]. However, DTW assumes

that the two sequences can be fully aligned, thus requiring

trimmed videos. To validate the effectiveness of our FTCL,

as shown in Table 4, we compare our proposed method with

the current state-of-the-art DTW-based approaches, Cycle-

Consistency DTW (CC-DTW) [25] and Drop-DTW [14].

The results consistently demonstrate the superiority of our

framework. We also replace our FSD and LCS strategies

(Eq. (2) and Eq. (6)) with the standard differential DTW

operator [25] (denoted as DTW), which obtains inferior re-

sults as we analyzed above.

Complementary Role of the proposed FTCL. It is obvi-

ous that the proposed strategy is model-agnostic and non-

intrusive, and hence can play a complementary role over ex-

isting methods. In Table 5, we plug our FSD and LCS con-

trasting into three WSAL approaches including STPN [52],

W-TALC [54], and CoLA [71]. The results show that

Table 4. Comparison with DTW-based methods on THUMOS14.

mAP@t-IoU(%)

0.1 0.3 0.5 0.7 Avg

CC-DTW [25] 69.1 54.9 34.8 11.2 42.9

Drop-DTW [14] 69.5 55.2 35.4 11.3 43.2

DTW [25] 69.2 55.1 35.0 11.7 43.1

FTCL 69.6 55.2 35.6 12.2 43.6

Table 5. Evaluation of the complementary role of FTCL.

mAP@t-IoU(%)

0.1 0.3 0.5 0.7 Avg

STPN [52](reproduced) 52.2 35.6 16.8 4.1 27.2

STPN+FTCL 54.1(+1.9) 38.4(+2.8) 18.2(+1.4) 4.8(+0.7) 29.0(+1.8)

W-TALC [54](reproduced) 55.7 40.0 22.7 7.7 34.5

W-TALC+FTCL 57.5(+1.8) 40.9(+0.9) 23.8(+1.1) 8.4(+0.7) 35.7(+1.2)

CoLA [71](reproduced) 66.1 52.1 34.3 13.1 41.7

CoLA+FTCL 67.1(+1.0) 52.9(+0.8) 34.8(+0.5) 13.2(+0.1) 42.3(+0.6)

our proposed learning strategies can consistently improve

their performance. In addition, our method does not in-

troduce computational cost during model inference. Note

that CoLA also adopts contrastive learning in snippet-level,

while our proposed method can further boost its perfor-

mance by additionally considering the fine-grained tempo-

ral distinctions.

5. Conclusions
This paper proposes a fine-grained temporal contrastive

learning framework for WSAL, which jointly enjoys the

merits of discriminative action-background separation and

alleviated task gap between classification and localization.

Specifically, two types of contrasting strategies, includ-

ing FSD and LCS contrasting, are designed via differ-

entiable dynamic programming, capable of making fine-

grained temporal distinctions. The encouraging perfor-

mance is demonstrated in extensive experiments.

Limitations. In this work, similar to existing WSAL mod-

els, we equally employ a fixed snippet division strategy for

all videos. However, since different videos have different

duration and shots, the simple and fixed way may hinder

the fine-grained temporal contrastive learning. In the future,

we plan to conduct FTCL in an adaptive manner, e.g., con-

sidering hierarchical temporal structures or performing shot

detection and action localization in a unified framework.
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