
Interpretable part-whole hierarchies and conceptual-semantic relationships in

neural networks

Nicola Garau, Niccoló Bisagno, Zeno Sambugaro, and Nicola Conci

University of Trento - Department of Information Engineering and Computer Science - DISI

Via Sommarive, 9, 38123 Povo, Trento TN

nicola.garau,niccolo.bisagno,zeno.sambugaro,nicola.conci@unitn.it

Figure 1. [Better seen in color]. Overview of the proposed solution. Our Agglomerator is a novel architecture for vision applications,

in which column structure (c) mimics hyper-columns typical of the human visual cortex [14]. The input data (a) is fed to the columns

using a patch-based embedding (b). The Agglomerator architecture iteratively routes the information across its structure, creating a neural

representation of each image, similar to neural fields [37]. In the neural representation, part-whole hierarchies (d) emerge at different levels

of the columns. The same column can represent the same patch of the image with different levels of abstraction (e.g., the ears, the head,

and the dog) corresponding to each level in the column. Neighbor columns agree on a part representation (e.g ears, head) at lower levels,

ideally representing the same whole (e.g. dog) at the top level. The resulting feature space represents the conceptual-semantic relationships

between data (e) resembling the human hierarchical organization [38]. Samples belonging to the same super-class (e.g., animals, vehicles)

are clustered together, with conceptually close categories (e.g., birds and airplanes) represented on the edge of the super-classes.

Abstract
Deep neural networks achieve outstanding results in a

large variety of tasks, often outperforming human experts.

However, a known limitation of current neural architec-

tures is the poor accessibility to understand and interpret

the network response to a given input. This is directly re-

lated to the huge number of variables and the associated

non-linearities of neural models, which are often used as

black boxes. When it comes to critical applications as au-

tonomous driving, security and safety, medicine and health,

the lack of interpretability of the network behavior tends to

induce skepticism and limited trustworthiness, despite the

accurate performance of such systems in the given task.

Furthermore, a single metric, such as the classification ac-

curacy, provides a non-exhaustive evaluation of most real-

world scenarios. In this paper, we want to make a step for-

ward towards interpretability in neural networks, providing

new tools to interpret their behavior. We present Agglomer-

ator, a framework capable of providing a representation of

part-whole hierarchies from visual cues and organizing the

input distribution matching the conceptual-semantic hierar-

chical structure between classes. We evaluate our method

on common datasets, such as SmallNORB, MNIST, Fash-

ionMNIST, CIFAR-10, and CIFAR-100, providing a more

interpretable model than other state-of-the-art approaches.

1. Introduction

The extensive adoption of neural networks and, in gen-

eral, learning models has been raising concerns regarding

our chances, as humans, to explain their behavior. Inter-

pretability would be a highly desirable feature for neural

networks, especially in those applications like autonomous

driving [13], healthcare [40], and finance [45], where safety,

life, and security are at stake.

Deep neural networks have achieved superhuman perfor-

13689



mances in many domains, from computer vision [16, 29] to

natural language processing [10,54], and data analysis [45].

However, the achieved performances have come at the ex-

pense of model complexity, making it difficult to interpret

how neural networks work [34]. These neural networks are

usually deployed as ”black boxes”, with millions of param-

eters to be tuned, mostly according to experience and rule

of thumb. Interpreting how a trainable parameter in the net-

work setup directly affects the desired output from a given

input has nearly zero chances.

According to the literature, interpretability is defined as

“the degree to which a human can understand the cause of

a decision” [39]. When a machine learning model reaches

high accuracy on a task such as classification and predic-

tion, can we trust the model without understanding why

such a decision has been taken? The decision process is

complex and we tend to evaluate the performance of a sys-

tem in solving a given task using metrics computed at the

end of the processing chain. While single metrics, such

as the classification accuracy, reach super-human results,

they provide an incomplete description of the real-world

task [11]. As humans, when looking at an object that has

eyes and limbs, we can infer via reasoning and intuition

that these are elements (parts) that belong to the same entity

(whole) [5], say an animal, and we can explain and motivate

why such decision is taken, generally based on past experi-

ences, beliefs and attitude [1]. Moreover, even in presence

of an animal never seen before, we can probably tell from

the visual features, our frames of reference [14] and our hi-

erarchical organization of objects in the world [38] whether

it is a fish or a mammal. We would like neural networks to

display the same behavior, so that objects that are close in

the conceptual-semantic and lexical relations are adjacent

in the feature space as well (as shown in Fig. 1e). By do-

ing so, it would be intuitive to identify hierarchical relations

between samples and how the model has learned to build

a topology describing each sample. Consequently, we can

agree on the definition of interpretability in deep learning

as the “extraction of relevant knowledge from a machine-

learning model concerning relationships either contained

in data or learned by the model” [42].

In the image classification field, available techniques,

such as transformers [10, 12, 54], neural fields [37],

contrastive learning representation [7], distillation [19]

and capsules [44], have achieved state-of-the-art perfor-

mances, introducing a number of novelties, such as pow-

erful attention-based features and per-patch analysis, po-

sitional encoding, similarity-based self-supervised pre-

training, model compression and deep modeling of part-

whole relationships. Taken as standalone, these methods

have contributed to improving the interpretability of net-

works, while still lacking direct emphasis on either data

relationships [7, 10, 12, 37, 54] (e.g. conceptual-semantic

relationships) or model-learned relationships [19, 44] (e.g.

part-whole relationships). Retrieving part whole hierarchy

is not a new task per se, as it has been exploited in dif-

ferent research areas as scene parsing [3, 9] and multi-level

scene decomposition [23, 59]. Instead of aiming at learning

the part-whole hierarchy as the final goal of our architec-

ture, we focus on learning the part-whole representation as

a mean to interpret the network behavior at different levels.

In [18], a concept idea on how to represent part-whole hi-

erarchies in neural networks is introduced, which attempts

to merge the advantages of the above state-of-the-art frame-

works into a single theoretical system (known as GLOM).

GLOM aims at mimicking the human ability in learning to

parse visual scenes. Inspired by the theoretical concepts de-

scribed in [14, 18], we build a working system, called Ag-

glomerator, which achieves part-whole agreement [20] at

different levels of the model (relationships learned by the

model) and hierarchical organization of the feature space

(relationships contained in data), as shown in Fig. 1.

Our contribution is summarised as follows:

• we introduce a novel model, called Agglomerator1,

mimicking the functioning of the cortical columns in

the human brain [15];

• we explain how our architecture provides interpretabil-

ity of relationships learned by the model, specifically

part-whole relationships;

• we show how our architecture provides interpretability

of relationships contained in data, namely the hierar-

chical organization of the feature space;

• we provide results outperforming or on par with cur-

rent methods on multiple common datasets, such as

SmallNORB [31], MNIST [30], FashionMNIST [57],

CIFAR-10 and CIFAR-100 [27], also relying on fewer

parameters.

2. Related work

Convolutional Neural Networks (CNNs) [16, 46] have

risen to a prominent role in computer vision when they

started to outperform the existing literature in the im-

age classification task of the ImageNet challenge [28].

The convolution operator can effectively describe spatially-

correlated data resulting in a feature map, while the pooling

operation down-samples the obtained feature map by sum-

marizing the presence of certain features in patches of the

image. The pooling operation in CNNs has been the sub-

ject of criticism since it does not preserve the information

related to the part-whole relationship [48] between features

belonging to the same object [44].

1The code and the pre-trained models can be found at

https://github.com/mmlab-cv/Agglomerator

13690



Transformers [12, 25, 35] have proven able to outper-

form CNNs, thanks to their ability to encode powerful fea-

tures using self-attention and patch-based analysis of im-

ages. Multi-headed transformers [10] require the query, key,

and value weights to be trained differently for each head,

which is more costly than training a CNN. The main advan-

tage compared to CNNs is the ability of the multiple heads

to combine information from different locations in the im-

age with fewer losses than the pooling operation [32]. How-

ever, when compared with CNNs, Transformer-like models

usually require intensive pre-training on large datasets, to

achieve state-of-the-art performances.

Multi Layer Perceptrons (MLPs) [33, 52] are charac-

terised by fully connected layers, in which each node is

connected to every other possible node of the next layer.

Even though they are easier to train and have simpler ar-

chitecture compared to CNNs, the fully connected layers

may cause the network to grow too fast in size and num-

ber of parameters, not allowing powerful scalability. MLPs

have experienced a resurgence, thanks to patch-based ap-

proaches [33,52], that allowed reaching state-of-the-art per-

formances. They can also be seen as 1x1 convolutions

[18, 33, 52], which do not require the pooling operation.

Capsules networks [21,26,36,41,43,44] try to mimic the

way the human brain creates a parse tree of parts and wholes

by dynamically allocating groups of neurons (capsules) that

can model objects at different levels of the part-whole hi-

erarchy. The routing algorithm determines which capsules

are activated to describe an object in the image, with lower-

level capsules describing the parts (e.g. eyes and limbs),

and higher-level capsules describing wholes (e.g. mammals

and fish). While effectively routing information from dif-

ferent locations in the image, activated capsules cannot de-

scribe every single possible object in the image, thus limit-

ing their effectiveness on more complex datasets (e.g. Ima-

geNet, CIFAR-100), while achieving state-of-the-art results

on simpler ones (e.g. MNIST). While part-whole hierar-

chies have been investigated in other fields like scene pars-

ing [3,9] and multi-level scene decomposition [23,59], cap-

sule networks aim at building an internal representation of

the hierarchy, which allows for better interpretability of the

final task (e.g. classification).

There has been a recent push toward the so-called bio-

logically inspired Artificial Intelligence (AI) [14,22], which

tries to build deep learning networks able to mimic the

structure and functions of the human brain. In [14], the

authors propose a column-like structure, similar to hyper-

columns typical of the human neocortex. In [53], the au-

thors build upon cortical columns implemented as separate

neural networks called Cortical Column Networks (CCN).

Their framework aims at representing part-whole relation-

ships in scenes to learn object-centric representations for

classification.

The author in [18] proposes a conceptual framework,

called GLOM, based on inter-connected columns, each of

which is connected to a patch of the image and is com-

posed of auto-encoders stacked in levels. Weights sharing

among MLP-based [33] auto-encoders allows for an eas-

ily trainable architecture with fewer weights, while knowl-

edge distillation [19] allows for a reduction of the training

parameters. The patch-based approach combined with the

spatial distribution of columns allows for a sort of posi-

tional encoding and viewpoint estimation similarly to what

is used in neural fields [37, 48]. At training time, the au-

thor recommends that GLOM should be trained using a

contrastive loss function [7]. This procedure, combined

with a Transformer-like self-attention [54] mechanism on

each layer of the columns, aims at reaching a consensus be-

tween columns. Routing the information with layer-based

attention and stacked autoencoders would theoretically al-

low GLOM to learn a different level of abstraction of the

input at a different location and level in the columns, cre-

ating a part-whole structure with a richer representation if

compared to capsule networks [44].

While GLOM is presented in [18] more as an intuition

rather than a proper architecture, in this work we develop

its foundational concepts and turn them into a fully working

system, with application to image classification.

3. Method

The framework we propose aims at replicating the

column-like pattern, similar to hyper-columns typical of the

human visual cortex [14]. An overview is shown in Fig. 1.

Agglomerator brings together concepts and building

blocks from multiple methods, such as CNNs [33], trans-

formers [10, 12, 54], neural fields [37], contrastive learning

representation [7], distillation [19], and capsules [44]. Here,

we introduce the mathematical notation needed to explain

the details of the main building blocks of the architecture.

Each input image is transformed into a feature map di-

vided into N = h × w patches. The n-th patch, with n ∈
{1, . . . , N} is fed to the corresponding column Cn(h,w),
spatially located at coordinates (h,w). The subscript n
is omitted in the next equations for better readability. As

shown in Fig. 2, each column C(h,w) consists of K em-

bedding levels {l
(h,w),k
t | k = 0, . . . ,K} connected by

a stack of auto-encoders at location (h,w) at time t ∈
{0, . . . , t − 1, t, t + 1, . . . , T}, as suggested in [18]. The

superscript (h,w) is omitted in the next instances of lkt for

better readability. Each level lkt of the column is an em-

bedding vector representation of size d. Levels lk−1
t and lkt

represent consecutive levels; lk−1
t represents a part of the

whole lkt . We indicate as lkt ∈ Lk
t all the levels lkt in all

columns C(h,w) sharing the same k value and belonging

to the same layer Lk
t . Being K the last layer of our archi-

tecture at the last time step T , it is represented as LK
T .

13691



Figure 2. [Better seen in color]. Architecture of our Agglomer-

ator model (center) with information routing (left) and detailed

structure of building elements (right). Each cube represents a

level lkt . Left: (a) legend of the arrows in the figure, represent-

ing the top-down network NTD(lk+1

t−1 ), the bottom-up network

NBU (l
k−1

t−1 ), attention mechanism A(Lk

t−1) and time step t. (b)

Contribution to the value of level lkt given by lkt−1, NTD(lk+1

t−1 )

and NBU (l
k−1

t−1 ). (c) The attention mechanisms A(Lk

t−1) share

information between lkt−1 ∈ Lk

t−1. Center: bottom to top, the

architecture consists of the Tokenizer module, followed by the

columns C(h,w), with each level lkt connected to the neighbors

with NTD(lk+1

t−1 ) and NBU (l
k−1

t−1 ). On top of the structure, the

contrastive H1 and cross entropy H2 heads. Right: (d) struc-

ture of heads H1 and H2. (e) Structure of the top-down network

NTD(lk+1

t−1 ) and the bottom-up network NBU (l
k−1

t−1 ).

3.1. Patches embedding

At the embedding stage, as in [33], we apply a convolu-

tional Tokenizer to extract the feature map of each image of

size H ×W pixels, which provides a richer representation

compared to the original image. Following the implemen-

tation in [33], the obtained feature map has size h× w × d
where h = H/4 and w = W/4. We then embed each of the

n d-dimensional embedding vectors into the bottom levels

l0t ∈ L0
t at the corresponding coordinates (h,w) of the cor-

responding column C(h,w). Feeding the n-th each patch to

a spatially located column C(h,w) resembles the positional

encoding of neural fields [37], where each d-sized embed-

ding lkt represents at the same time the sample and its rela-

tive observation viewpoint. At each time step t, we embed

each image sample into the first layer of the columns, which

is represented as the bottom layer L0
t .

3.2. Hypercolumns

Consecutive levels in time and space in a column

C(h,w) are connected by an auto-encoder. The auto-

encoders are based on an MLP, which allows for model re-

duction [19] and faster training time. Each auto-encoder

computes the top-down contribution of a level lk+1
t−1 to the

value of the level below at the next time step lkt using

a NTD(lk+1
t−1 ) top-down decoder. Similarly, each auto-

encoder computes the bottom-up contribution of a level

lk−1
t−1 to the value of the level above at the next time step

lkt using a NBU (l
k−1
t−1 ) bottom-up encoder. NTD(lk+1

t−1 )

and NBU (l
k−1
t−1 ) share a similar structure, but for the ac-

tivation functions, as described in Fig. 2(e). The top-

down network uses GELU activation functions [17], while

the bottom up network relies on sinusoidal activation func-

tions [47, 50, 56]. All the NTD(lk+1
t−1 ) connecting Lk+1

t−1 to

layer Lk
t share the same weights. The same is true for the

NBU (l
k−1
t−1 ) connecting Lk−1

t−1 to layer Lk
t .

3.3. Routing

The key element of our architecture is how the informa-

tion is routed to obtain a representation of the input data

where the part-whole hierarchies emerge.

Before computing the loss, we need to iteratively prop-

agate each batch N through the network, obtaining a deep

representation of each image. This procedure, propagation

phase, encourages the network to reach consensus between

neighbor levels lkt ∈ Lk
t . Ideally, this means that all neigh-

bor levels in the last layer lKt ∈ LK
t should have similar

values, representing the same whole; neighbor levels at bot-

tom layers lkt ∈ Lk
t |k 6= K should instead share the value

among smaller groups, each group representing the same

part. Group of vectors that ”agree” on a similar value have

reached the consensus on the image representation at that

level, and they are called islands of agreement [18]. An

example of such representation is shown in Fig. 1(d). In

capsules-based approaches [44], group of neurons are ac-

tivated to represent the part-whole hierarchy with limited

expressive power. Our d-dimensional layers lkt provide a

richer representation of the same hierarchy.

To obtain such representation, at time step t = 0, we

randomly initialise all the values lk0 and we embed a batch

of B samples into the bottom layer L0
0. Once the values are

initialized, we compute the attention A(Lk
t ). Instead of the

self-attention mechanism used in Transformers [10, 12, 54],

a standard attention weighting is deployed as in [58]. Each

attention weight Ωn is computed as

Ωn =
eβλn·l

k

t

∑
eβλn·N(λn)

(1)

13692



Figure 3. Contrastive pre-training (dashed lines) and supervised training (continuous lines) procedures. During the contrastive pre-

training, two images Ia and Ib are produced by applying random data augmentation to the input image I. Through the Tokenizer, we

compute feature maps for both Ia and Ib, which are then divided in patches and embedded into the bottom layer of the columns L0
t . During

the propagation phase, the information is routed through the Agglomerator architecture to obtain the neural representation LK

T for each

sample. We pre-train the network with the contrastive head H1 using a supervised contrastive loss L1, obtaining weights W. During the

supervised training, we first load the frozen weights W in the network. Then, augmentation RandAugment [8] is applied on the input

image I to obtain Ic, which follows the same steps as the pre-training phase. The network, with the classification head H2, is trained for

the classification task by minimizing the cross-entropy loss L2.

where λn represents each possible level lkt belonging to

the same layer Lk
t as lkt , N(λn) is an indicator function

which indexes all the neighbors levels of λn belonging to

the same layer Lk
t and β is a parameter that determines the

sharpness of the attention.

At each time step t | t ∈ {1, . . . , T}, a batch with B
samples is fed to the bottom layer L0

t network as described

in Sec. 3.1. We compute the values lkt as

lkt = avg(ωll
k
t−1, ωBUNBU (l

k−1
t−1 ),

ωTDNTD(lk+1
t−1 ), ωAA(L

k
t−1))

(2)

where avg() indicates the arithmetical average, and

ωl, ωBU , ωTD, ωA are trainable weights. For layer LK
t ,

contribution NTD(lk+1
t−1 ) is not included, as LK+1

t does not

exist. The propagation phase takes T time steps to reach

the final representation of each image at each layer LT
k .

3.4. Training

The training procedure of our architecture is shown in

Fig. 3. It is divided in two steps: (i) a pre-training phase

using a supervised contrastive loss function [7] and (ii) a

training phase for the image classification using a Cross-

Entropy loss.

We first pre-train our network using an image-based con-

trastive loss [7]. Given a batch with B samples, we dupli-

cate each image I to obtain pairs of samples (Ia, Ib), for a

total of 2B data points. We then apply data augmentation

RandAugment [8] to both (Ia, Ib). Both samples are fed

to the network as described in Sec. 3.1, and we perform

the propagation phase in Sec. 3.3 to obtain the representa-

tion at the last layer LK
T . Then we rearrange the n levels

lKT ∈ LK
T to obtain a vector of dimensions n × d, given as

input to the contrastive head H1, as described in Fig. 2. At

the output of the contrastive head, each sample is described

by a feature vector of dimension f1. We take all the pos-

sible sample pairs (Ia, Ib) from the batch and we compute

the contrastive loss defined as:

L1 = ContrLoss(Ia, Ib) = −log
esim(Ia,Ib)

∑2B
k=1 I[k 6=a]esim(Ia,Ib)

(3)

where sim(u, v) = uT v/ ‖u‖ ‖v‖ indicates the dot

product between the normalised version of u and v, I[k 6=a]

is a indicator function valued 0 if k and a belong to the same

class, and 1 otherwise.

Once the network is pre-trained using the contrastive

loss, the weights are frozen. We apply augmentation [8] to

each sample Ic in a batch of size B, which is then fed to the

network for the propagation phase to obtain for each sample

the representation LK
T . Then, the cross-entropy head H2 is

added on top of the contrastive head H1. A linear layer re-

sizes f1-dimensional features to dimension f2, which cor-

responds to the number of classes to be predicted for each

dataset. The new layers are then trained using the cross-

entropy function:

L2 = CE(y, ŷ) = −
1

f2

f2∑

i=1

yi log(ŷi) (4)

where y is the label of a sample taken from the batch and

ŷ is the label to be predicted.

4. Experiments

We perform our experiments on the following datasets:

SmallNorb (S-NORB) [31] is a dataset for 3D object

recognition from shape. It consists of roughly 200000 im-

ages of size 96× 96 pixels of 5 classes of toys.

13693



Figure 4. Hyper-parameters sweep. Each line represents a combination of

parameters setup, with the darker lines representing the models achieving

the lowest validation loss. Image obtained with [6].

Configuration Error % (after 100 epochs)

I Vanilla (proposed) 12.8

II ReLU activation only 12.6

III Without attention 12.7

IV Linear columns layers 13.5

V Linear contrastive head 15.8

VI Linear embedding 17.2

Table 1. Ablation study results of differ-

ent Agglomerator configurations obtained on

CIFAR-10 trained for 100 epochs.

MNIST [30] and FashionMNIST [57], consist of 60000

training images and 10000 test images of grayscale hand-

written digits and Zalando’s articles of size 28× 28 pixels.

CIFAR-10 and CIFAR-100 [27] both consist of 50000

training images and 10000 test images of size 32×32 pixels,

with 10 and 100 classes, respectively.

Our network is trained in an end-to-end fashion us-

ing PyTorch Lightning on a single NVIDIA GeForce RTX

3090. Input images for each dataset are normalized using

each standard dataset’s normalization. We train our network

on each dataset’s native resolution, except for SmallNorb,

which is resized to 32 × 32 pixels, following the standard

procedure as in [21, 43]. The Tokenizer embedding creates

n = H/4 × W/4 patches represented by n d-dimensional

vectors, where H and W are the pixels dimension of the

input image. Thus the corresponding number of columns

is 8 × 8 for CIFAR-10, CIFAR-100, and SmallNorb, and

7 × 7 for MNIST FashionMNIST. During the pre-training,

we deploy the following hyper-parameters: 300 epochs,

cyclic learning rate [49] in the range [0.002, 0.05], batch

size B = 1024, levels embedding d = 128, number of lev-

els K = 3, number of iterations T = 2K = 6, dropout

value 0.3, contrastive features dimension f1 = 512, and

weight decay 5e−4. During the training phase, we resume

the network training with the same hyper-parameters, f2
being the number of classes corresponding to each dataset.

5. Quantitative results

We report the quantitative results for each dataset in

Tab. 2. Capsule-based models [21, 36, 41, 43, 44] can

achieve good performances on simple datasets (SmallNorb,

MNIST, and FashionMNIST), but they fail to generalize

to datasets with a higher number of classes (CIFAR-100).

Convolutional-based models [2, 16, 24, 46] can generalize

to different datasets, at the expense of weak model in-

terpretability, mainly due to the max-pooling operation.

Transformer-based [12] and MLP-based methods [33, 52]

are able to achieve the best performances on more complex

datasets, but they do not provide tests for smaller datasets.

However, to achieve such levels of accuracy they rely on

long pretraining (thousands of TPU days) on expensive

computational architectures, implementing data augmenta-

tion on ImageNet [28] or the JFT-300M [51] dataset, not

available publicly. As can be seen, our method performs

on par with capsule-based methods on simpler datasets,

while achieving better generalization on more complex

ones. In addition, our method has fewer parameters than

most transformer-based and MLP-based methods, and it can

be trained in less time on a much smaller architecture.

Ablation study. We analyze the contribution of the dif-

ferent components of our architecture evaluating their in-

fluence on the validation loss after 50 epochs. The con-

sidered parameters, in descending order of correlation with

the validation loss value are: the embedding dimension d,

the contrastive feature vector f1, learning rate, weight de-

cay, dropout, and the number of levels K. The results are

reported in Fig. 4. We perform 50 different training on

CIFAR-10 with different combinations of parameters.

In Tab. 1 we show how our network configuration (I)

performs similarly with (II) and (III). Both sinusoidal acti-

vations and shared attention in (I) are key to providing in-

terpretable results, allowing islands of agreement to emerge.

Simplified versions using only a linear layer instead of col-

umn layers (IV), of the contrastive head (V), or of the linear

embedding (VI) lead to a decrease in performance.

6. Qualitative results: interpretability

Our method provides interpretability of the relation-

ships learned by the model by explicitly modeling the part-

whole hierarchy, and of the relationships contained in data

through the hierarchical organization of the feature space.

Island of agreement as a representation of multi-

level part-whole hierarchy. During the propagation phase,

neighbor levels on the same layer Lk
t are encouraged to

reach a consensus by forming islands of agreement. The

islands of agreement represent the part-whole hierarchies at

different levels. In Fig. 5, we provide a few examples of the

islands of agreement obtained on MNIST and CIFAR-10

13694



Method Ref Backbone

Error % # of

params

(Millions)

Training

Arch.S-Norb MNIST F-MNIST C-10 C-100

E-CapsNet [36]

Caps

2.54 0.26 - - - 0.2 GPU

CapsNet [41, 44] 2.70 0.25 6.38 10.6 82.00 6.8 GPU

Matrix-CapsNet [21] 1.40 0.44 6.14 11.9 - 0.3 GPU

Capsule VB [43] 1.60 0.30 5.20 11.2 - 0.2 GPU

ResNet-110 [2, 16, 24]
Conv

- 2.10 5.10 6.41* 27.76* 1.7 GPU

VGG [2, 46] - 0.32 6.50 7.74* 28.05* 20 GPU

ViT-L/16 [12] Transf - - - 0.85* 6.75* 632 TPU

ConvMLP-L [33] Conv/MLP - - - 1.40* 11.40* 43 TPU

MLP-Mixer-L/16 [52] MLP - - - 1.66* - 207 TPU

Ours Conv/MLP/Caps 0.01 0.30 7.43 11.15 40.97 72 GPU

Table 2. Error percentages on the Top-1 accuracy results on datasets SmallNorb (S-Norb), MNIST, FashionMNIST (F-MNIST), CIFAR-10

(C-10), and CIFAR-100 (C-100). The ∗ notation indicates results obtained with networks pre-trained on ImageNet.

Figure 5. Vectorial representation of emerging islands of agreement at different K levels of sample from MNIST and CIFAR-10 datasets.

We show the vectors of agreement for each patch at each level k after 100 epochs of contrastive pre-training. At level k = 1, the network

acts similarly to a feature extractor, where each cell represent a spatial feature with little agreement between neighbors. At intermediate

levels, k = 2, 3, 4 neighbor cells reach agreement on specific parts of the image, creating different island for different part of the plane.

At the last level k = 5, two island emerge, agreeing on the representation of the object and of the background. Since we are training the

network for the classification task, the distance between the color of the two island is small since all the parts of the image tend to agree

that the image represents the same whole.

trained with K = 5 levels. Each arrow represents the value

of a level ltk at location (h,w), reduced from d-dimensional

to 2D using a linear layer. As k for Lk
t increases, neigh-

bor ltk ∈ Lk
t tend to agree on a common representation of

the whole represented in the image sample. At lower lev-

els, smaller islands emerge, each representing a part of the

whole. Samples of MNIST present fewer changes in the

islands across levels because the data is much simpler, indi-

13695



(a) ResNet-110 [16]

O=12%

(b) ViT-L/16 [12]

O=24%

(c) Ours

O=2%

(d) ConvMLP-L [33]

O=12%

(e) Matrix-CapsNet [21]

O=20% (f) Legend

Figure 6. 2D representation of the latent space for multiple methods trained only on the CIFAR-10 dataset obtained using Principal

Component Analysis (PCA) [55]. The PCA provides a deterministic change of base for the data from a multidimensional space into a

2D space. The legend (f) displays the classes, which are divided between super-classes Vehicles and Animals following the WordNet

hierarchy [38]. The different methods (a,b,c,d,e) are all able to cluster the samples between the two super-classes. However, while (a,b,e)

display a latent space where classes are close to each other, the two MLP-based methods (c,d) are able to provide a clearer separation

between the super-classes. Both methods show conceptual-semantically close samples on the edge of each superclass, such as airplanes

and birds. Inside each superclass, semantically close samples are represented contiguously, such as deers and horses, or cars and trucks.

Our method (c) provides better inter-class and intra-class separability. The overlap percentage O is reported for each method. The overlap

area is the area where a mistake with a higher hierarchical severity [4] has a higher probability to occur.

cating that fewer levels in the hierarchy can be sufficient to

obtain similar results. Our Agglomerator is thus able to rep-

resent a patch differently at different levels of abstraction.

At the same level, spatially adjacent patches take the same

value, agreeing on the representation of parts and wholes.

Latent space organization as the representation of

conceptual-semantic relationship in data. Recent net-

works aim at maximizing inter-class distances and mini-

mizing intra-class distances between samples in the latent

space. While the accuracy is high, they provide little inter-

pretability in their data representation. As a result, mistakes

are less likely to happen, but the mistake severity, defined

as the distance between two classes in WordNet lexical hi-

erarchy [38], does not decrease [4]. As shown in Fig. 6, our

network semantically organizes the input data resembling

the human lexical hierarchy.

7. Limitations

Our method introduces new types of hyper-parameters in

the network structure, such as embedding dimensions, num-

ber of levels, and size of patches, which need to be tuned.

We believe a better parameters setting can be found for all

the datasets, increasing accuracy while still retaining inter-

pretability. Moreover, a higher number of parameters gen-

erally causes architectures to be more prone to over-fitting

and more difficult to train. To improve the accuracy of our

network, we would need a pre-training on large datasets

(e.g., on ImageNet), which requires large computational re-

sources to be performed in a reasonable time frame. While

hoping that powerful TPU architectures become publicly

available in the future, we are currently investigating effi-

cient pre-training strategies for our network.

8. Conclusion

We presented Agglomerator, a method that makes a step

forward towards representing interpretable part-whole hier-

archies and conceptual-semantic relationships in neural net-

works. We believe that interpretable networks are key to

the success of artificial intelligence and deep learning. With

this work, we intend to promote a preliminary implementa-

tion and the corresponding results on the image classifica-

tion task, and we hope to inspire other researchers to adjust

our solution to solve more complex and diverse tasks.

13696



References

[1] Dolores Albarracin and Robert S Wyer Jr. The cognitive im-

pact of past behavior: influences on beliefs, attitudes, and

future behavioral decisions. Journal of personality and so-

cial psychology, 79(1):5, 2000. 2

[2] Filipe Assunção, Nuno Lourenço, Penousal Machado, and

Bernardete Ribeiro. Denser: deep evolutionary network

structured representation. Genetic Programming and Evolv-

able Machines, 20(1):5–35, 2019. 6, 7

[3] Daniel M Bear, Chaofei Fan, Damian Mrowca, Yunzhu Li,

Seth Alter, Aran Nayebi, Jeremy Schwartz, Li Fei-Fei, Ji-

ajun Wu, Joshua B Tenenbaum, et al. Learning physical

graph representations from visual scenes. arXiv preprint

arXiv:2006.12373, 2020. 2, 3

[4] Luca Bertinetto, Romain Mueller, Konstantinos Tertikas,

Sina Samangooei, and Nicholas A Lord. Making better mis-

takes: Leveraging class hierarchies with deep networks. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 12506–12515, 2020. 8

[5] Irving Biederman. Recognition-by-components: a the-

ory of human image understanding. Psychological review,

94(2):115, 1987. 2

[6] Lukas Biewald. Experiment tracking with weights and bi-

ases, 2020. Software available from wandb.com. 6

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In International conference on ma-

chine learning, pages 1597–1607. PMLR, 2020. 2, 3, 5

[8] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical automated data augmenta-

tion with a reduced search space. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 702–703, 2020. 5

[9] Fei Deng, Zhuo Zhi, Donghun Lee, and Sungjin Ahn. Gen-

erative scene graph networks. In International Conference

on Learning Representations, 2020. 2, 3

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018. 2, 3, 4

[11] Finale Doshi-Velez and Been Kim. Towards a rigorous

science of interpretable machine learning. arXiv preprint

arXiv:1702.08608, 2017. 2

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 2, 3, 4, 6, 7, 8

[13] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and

Gigel Macesanu. A survey of deep learning techniques for

autonomous driving. Journal of Field Robotics, 37(3):362–

386, 2020. 1

[14] Jeff Hawkins. A thousand brains: A new theory of intelli-

gence, 2021. 1, 2, 3

[15] Jeff Hawkins, Subutai Ahmad, and Yuwei Cui. A theory of

how columns in the neocortex enable learning the structure

of the world. Frontiers in neural circuits, 11:81, 2017. 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2, 6, 7, 8

[17] Dan Hendrycks and Kevin Gimpel. Gaussian error linear

units (gelus). arXiv preprint arXiv:1606.08415, 2016. 4

[18] Geoffrey Hinton. How to represent part-whole hierarchies in

a neural network. arXiv preprint arXiv:2102.12627, 2021. 2,

3, 4

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 2, 3, 4

[20] Geoffrey E Hinton. Mapping part-whole hierarchies into

connectionist networks. Artificial Intelligence, 46(1-2):47–

75, 1990. 2

[21] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix

capsules with em routing. In International conference on

learning representations, 2018. 3, 6, 7, 8

[22] Kjell Jørgen Hole and Subutai Ahmad. A thousand brains:

toward biologically constrained ai. SN Applied Sciences,

3(8):1–14, 2021. 3

[23] Yining Hong, Li Yi, Josh Tenenbaum, Antonio Torralba, and

Chuang Gan. Ptr: A benchmark for part-based conceptual,

relational, and physical reasoning. Advances in Neural In-

formation Processing Systems, 34, 2021. 2, 3

[24] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-

ian Q Weinberger. Deep networks with stochastic depth. In

European conference on computer vision, pages 646–661.

Springer, 2016. 6, 7

[25] Salman Khan, Muzammal Naseer, Munawar Hayat,

Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak

Shah. Transformers in vision: A survey. arXiv preprint

arXiv:2101.01169, 2021. 3

[26] Adam R Kosiorek, Sara Sabour, Yee Whye Teh, and Geof-

frey E Hinton. Stacked capsule autoencoders. arXiv preprint

arXiv:1906.06818, 2019. 3

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 2, 6

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Advances in neural information processing systems,

25:1097–1105, 2012. 2, 6

[29] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep

learning. nature, 521(7553):436–444, 2015. 2

[30] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

2, 6

[31] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning

methods for generic object recognition with invariance to

pose and lighting. In Proceedings of the 2004 IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition, 2004. CVPR 2004., volume 2, pages II–104.

IEEE, 2004. 2, 5

13697



[32] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-

ungjin Choi, and Yee Whye Teh. Set transformer: A frame-

work for attention-based permutation-invariant neural net-

works. In International Conference on Machine Learning,

pages 3744–3753. PMLR, 2019. 3

[33] Jiachen Li, Ali Hassani, Steven Walton, and Humphrey Shi.

Convmlp: Hierarchical convolutional mlps for vision. arXiv

preprint arXiv:2109.04454, 2021. 3, 4, 6, 7, 8

[34] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris

Kotsiantis. Explainable ai: A review of machine learning

interpretability methods. Entropy, 23(1):18, 2021. 2

[35] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,

Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-

former: Hierarchical vision transformer using shifted win-

dows. arXiv preprint arXiv:2103.14030, 2021. 3

[36] Vittorio Mazzia, Francesco Salvetti, and Marcello Chi-

aberge. Efficient-capsnet: Capsule network with self-

attention routing. arXiv preprint arXiv:2101.12491, 2021.

3, 6, 7

[37] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In European conference on computer vision, pages

405–421. Springer, 2020. 1, 2, 3, 4

[38] George A Miller. Wordnet: a lexical database for english.

Communications of the ACM, 38(11):39–41, 1995. 1, 2, 8

[39] Tim Miller. Explanation in artificial intelligence: Insights

from the social sciences. Artificial intelligence, 267:1–38,

2019. 2

[40] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang,

and Joel T Dudley. Deep learning for healthcare: review,

opportunities and challenges. Briefings in bioinformatics,

19(6):1236–1246, 2018. 1

[41] Rinat Mukhometzianov and Juan Carrillo. Capsnet compar-

ative performance evaluation for image classification. arXiv

preprint arXiv:1805.11195, 2018. 3, 6, 7

[42] W James Murdoch, Chandan Singh, Karl Kumbier, Reza

Abbasi-Asl, and Bin Yu. Definitions, methods, and applica-

tions in interpretable machine learning. Proceedings of the

National Academy of Sciences, 116(44):22071–22080, 2019.

2

[43] Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos

Kollias. Capsule routing via variational bayes. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, vol-

ume 34, pages 3749–3756, 2020. 3, 6, 7

[44] Sara Sabour, Nicholas Frosst, and Geoffrey E Hin-

ton. Dynamic routing between capsules. arXiv preprint

arXiv:1710.09829, 2017. 2, 3, 4, 6, 7

[45] Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Mu-

rat Ozbayoglu. Financial time series forecasting with deep

learning: A systematic literature review: 2005–2019. Ap-

plied Soft Computing, 90:106181, 2020. 1, 2

[46] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 2, 6, 7

[47] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-

tions with periodic activation functions. Advances in Neural

Information Processing Systems, 33, 2020. 4

[48] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-

zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. arXiv preprint

arXiv:1906.01618, 2019. 2, 3

[49] Leslie N Smith. Cyclical learning rates for training neural

networks. In 2017 IEEE winter conference on applications

of computer vision (WACV), pages 464–472. IEEE, 2017. 6

[50] Josep M Sopena, Enrique Romero, and Rene Alquezar. Neu-

ral networks with periodic and monotonic activation func-

tions: a comparative study in classification problems. 1999.

4

[51] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-

nav Gupta. Revisiting unreasonable effectiveness of data in

deep learning era. In Proceedings of the IEEE international

conference on computer vision, pages 843–852, 2017. 6

[52] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-

cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,

Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.

Mlp-mixer: An all-mlp architecture for vision. arXiv

preprint arXiv:2105.01601, 2021. 3, 6, 7

[53] Toon Van de Maele, Tim Verbelen, Ozan Catal, and Bart

Dhoedt. Disentangling what and where for 3d object-centric

representations through active inference. arXiv preprint

arXiv:2108.11762, 2021. 3

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008, 2017. 2,

3, 4

[55] Svante Wold, Kim Esbensen, and Paul Geladi. Principal

component analysis. Chemometrics and intelligent labora-

tory systems, 2(1-3):37–52, 1987. 8

[56] Kwok-wo Wong, Chi-sing Leung, and Sheng-jiang Chang.

Handwritten digit recognition using multilayer feedforward

neural networks with periodic and monotonic activation

functions. In Object recognition supported by user inter-

action for service robots, volume 3, pages 106–109. IEEE,

2002. 4

[57] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-

mnist: a novel image dataset for benchmarking machine

learning algorithms, 2017. 2, 6

[58] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption gen-

eration with visual attention. In International conference on

machine learning, pages 2048–2057. PMLR, 2015. 4

[59] Song-Chun Zhu and David Mumford. A stochastic grammar

of images. Now Publishers Inc, 2007. 2, 3

13698


