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Abstract

Interactive object understanding, or what we can do to
objects and how is a long-standing goal of computer vi-
sion. In this paper, we tackle this problem through obser-
vation of human hands in in-the-wild egocentric videos. We
demonstrate that observation of what human hands interact
with and how can provide both the relevant data and the
necessary supervision. Attending to hands, readily local-
izes and stabilizes active objects for learning and reveals
places where interactions with objects occur. Analyzing the
hands shows what we can do to objects and how. We apply
these basic principles on the EPIC-KITCHENS dataset, and
successfully learn state-sensitive features, and object affor-
dances (regions of interaction and afforded grasps), purely
by observing hands in egocentric videos.

1. Introduction

Consider the cupboard in Figure 1. Merely localizing
and naming it is insufficient for a robot to successfully in-
teract with it. To enable interaction we, we need to identify
what are plausible sites for interaction, how should we in-
teract with each site, and what would happens when we do.
The goal of this paper is to acquire such an understanding
about objects. Specifically, we formulate it as a) learning a
feature space that is sensitive to the state of the object (and
thus indicative of what we can do with it) rather than just its
category; and b) identifying what hand-grasps do objects
afford and where. These together provide an interactive
understanding of objects, and could aid learning policies
for robots. For instance, distance in a state-sensitive fea-
ture space can be used as reward functions for manipulation
tasks [52,54,64]. Similarly, hand-grasps afforded by objects
and their locations provide priors for exploration [38, 39].

While we have made large strides in building models for
how objects look (the various object recognition problems),
the same recipe of collecting large-scale labeled datasets

Project website: https://s-gupta.github.io/hands-as-probes/.
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Figure 1. Human hands reveal information about objects as they
interact with them. They tell us where and how we can interact
with an object (the handle of the cupboard via an adducted thumb
grasp), and what happens when we do (cupboard opens to reveals
many more objects within). This paper develops techniques to
extract an interactive understanding of objects through the obser-
vation of hands in a corpus of egocentric videos. Specifically, we
produce a) features that are indicative of object states, and b) ob-
ject affordances (i.e. regions of interaction, and afforded grasps).

for training doesn’t quite apply for understanding how ob-
jects work. First of all, no large-scale labeled datasets al-
ready exist for such tasks. Second, manually annotating
these aspects on static images is challenging. For instance,
objects states are highly contextual: the same object (e.g.
cupboard in Figure 1) can exist in many different states
(closed, full, on-top-of, has-handle, in-contact-with-hand)
at the same time, depending on the interaction we want to
conduct. Similarly, consciously annotating where and how
one can touch an object can suffer from biases, leading to
data that may not be indicative of how people actually use
objects during normal daily conduct. While one might an-
notate that we pull on the handle to open the cupboard; in
real life we may very often just flick it open by sliding our
fingers in between the cupboard door and its frame.

Motivated by these challenges, we pursue learning di-
rectly from the natural ways in which people interact with
objects in egocentric videos. Since, egocentric data focuses
upon hand-object interaction, it solves both the data and
the supervision problem. Egocentric observation of human
hands reveals information about the objects they are inter-
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acting with. Attending to locations that hands attend to,
localizes and stabilizes active objects in the scene for learn-
ing. It shows where all hands can interact in the scene. Ana-
lyzing what the hand is doing reveals information about the
state of the object, and also how to interact with it. Thus, ob-
servation of human hands in egocentric videos can provide
the necessary data and supervision for obtaining an interac-
tive understanding of objects.

To realize these intuitions, we design novel techniques
that extract an understanding of objects from the under-
standing of hands as obtained from off-the-shelf models.
We apply this approach to the two aspects of interactive
object understanding: a) learning state-sensitive features,
and b) inferring object affordances (identifying what hand-
grasps do objects placed in scenes afford and where).

For the former goal of learning state-sensitive features,
we hand-stabilize the object-of-interaction. We exploit the
appearance and motion of the hand as it interacts with the
object to derive supervision for the object state. This is done
through contrastive learning where we encourage objects
associated with similar hand appearance and motion, to be
similar to one another. This leads to features that are more
state-sensitive than those obtained from alternate forms of
self-supervision, and even direct semantic supervision.

For the latter goal of predicting regions-of-interaction
and applicable grasps, we additionally use hand grasp-type
predictions. As the hand is directly visible when the inter-
action is happening, the challenge here is to get the model
to focus on the object to make its predictions, rather than
the hand. For this, we design a context prediction task:
we mask-out the hand and train a model to predict the lo-
cation and grasp-type from the surrounding context. We
find that modern models can successfully learn to make
such contextual predictions. This enables us to identify the
places where humans interact in scenes. We better recall
small interaction sites such as knobs and handles, and also
make more specific predictions when interaction sites are
localized to specific regions on the objects (e.g. knobs for
stoves). We are also able to successfully learn hand-grasps
applicable to different objects.

For both these aspects, deriving supervision from hands
sidesteps the need for and possible pitfalls of semantic su-
pervision. We are able to conduct learning without having
to define a complete taxonomy of object states, or suffer
from inherent ambiguity in defining action classes.

2. Related Work
We survey research on understanding human hands, us-

ing humans or their hands as cues, interactive object under-
standing, and self-supervision.
Understanding hands. Several works have sought to build
a data-driven understanding of human hands and how they
manipulate objects from RGB images [63], RGB-D im-

ages [51], egocentric data [31], videos [17] and other sen-
sors [2, 58]. This understanding can take different forms:
grasp type classification [3,51,63] from a hand-defined tax-
onomy [15], hand keypoint and pose estimation [17], un-
derstanding gestures [18], detecting hands, their states and
objects of interaction [55, 56], 3D reconstruction of the
hand and the object of interaction [4, 21], or even estimat-
ing forces being applied by the hand onto the object [13].
We refer the reader to the survey paper from Bandini and
Zariffa [1] for an analysis of hand understanding in context
of egocentric data. Our goals are different: we build upon
the understanding of hands to better understand objects.

Using humans or their hands as probes. The most rele-
vant research to our work is that of using humans and hands
as probes for understanding objects, scenes and other hu-
mans. [16,57,61] learn about scene affordance by watching
how people interact with scenes in videos from YouTube,
sitcoms and self-driving cars. Brahmbhatt et al. [2] learn
task-oriented grasping regions by analyzing where people
touch objects using thermal imaging. Wang et al. [60] use
humans as visual cues for detecting novel objects. Mandikal
and Grauman [38] extend work from [2] to learn policies
for object manipulation using predicted contact regions. Ng
et al. [45] use body pose of another person to predict the
self-pose in egocentric videos. Unlike these past works, we
focus upon observation of hands (and not full humans) in
unscripted in-the-wild RGB egocentric videos (rather than
in lab or with specialized sensors), to learn fine-grained as-
pects of object affordance (rather than scene affordance).
Concurrent work from Nagarajan et al. [43] works in a sim-
ilar setting but focuses on learning activity-context priors.

Interactive Object Understanding. Observing hands in-
teract with objects is not the only way to learn about how
to interact with objects. Researchers have used other forms
of supervision (strong supervision, weak supervision, im-
itation learning, reinforcement learning, inverse reinforce-
ment learning) to build interactive understanding of ob-
jects. This can be in the form of learning a) where and
how to grasp [9, 20, 25, 26, 28, 33, 34, 37, 41, 49], b) state
classifiers [24], c) interaction hotspots [14, 40, 42, 59], d)
spatial priors for action sites [44], e) object articulation
modes [11,36], f) reward functions [27,29,48,50], g) func-
tional correspondences [32]. While our work pursues simi-
lar goals, we differ in our supervision source (observation of
human hands interacting with objects in egocentric videos).

Self-supervision. Our techniques are inspired by work
in self-supervision where the goal is to learn without se-
mantic labels [5, 7, 8, 12, 19, 65]. Specifically, our work
builds upon recent use of context prediction [12, 47] and
contrastive learning [6, 53] for self-supervision. We design
novel sources of supervision in the context of egocentric
videos to enable interactive object understanding.
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Figure 2. Data preparation. Given egocentric videos from the EPIC-KITCHENS dataset [10], we obtain per-frame detections for hand,
object-of-interaction, and contact-state from [55]. These detections are strung together over time to form paired object-hand tracks. We
represent the motion of the hand hm

t around the object by stacking the hand box location and scale relative to the object over 3 adjacent
frames. Object-of-interaction tracks, hand tracks and hand motion are together used to learn state sensitive feature spaces (Section 3.1).
We also obtain hand grasp labels through a classifier trained on the GUN-71 dataset [51]. The detected hand and object-of-interaction
pairs along with these hand grasp labels are used for learning regions of interaction and the grasps afforded by these regions (Section 3.2).

3. Approach
We work with the challenging EPIC-KITCHENS dataset

from Damen et al. [10], and use the hand and object-of-
interaction detector from Shan et al. [55] This detector pro-
vides per-frame detection boxes for both hands and the
objects undergoing interaction, along with the hand con-
tact state (whether the hands are touching something or
not). We further obtain predictions for hand grasp-types
for the detected hands, using a model trained on the 71-way
grasp-type classification dataset from Rogez et al. [51]. We
string together detected hands and objects-of-interaction in
consecutive frames to form object-of-interaction and hand
tracks as shown in Figure 2. We use these tracks for learning
state-sensitive features (Section 3.1). Affordances (where
and how hands interact with objects) are learned using per-
frame predictions (Section 3.2).

3.1. State Sensitive Features via Temporal and
Hand Consistency

Our formulation builds upon two key ideas: consistency
of object states in time and with hand pose. Our training
objective encourages object crops, that are close in time
or are associated with similar hand appearance and mo-
tion, to be similar to one another; while being far from
random other object crops in the dataset. We realize this
intuition through contrastive learning and propose a joint
loss: Ltemporal + λLhand. Ltemporal encourages temporal con-
sistency by sampling naturally occurring temporal augmen-
tations as additional transforms. Lhand uses hands as con-
trasting examples; positives being the hands that temporally
correspond to the object crop, and negatives being other ran-
domly sampled hands. Lhand indirectly encourages similar-
ity between different objects that are similarly interacted by
hands, and so are likely to be in similar states.

We construct batches for contrastive learning by sam-
pling an object crop oi and a temporally close hand crop

ha
i from tracks shown in Figure 2. We also encode the hand

motion hm
i , by concatenating the location and scale of the

hand box relative to the object box over three neighboring
frames. ha

i and hm
i jointly represent the hand: ha

i describes
the appearance and hm

i describes the motion. We sample
another frame o′i from the same object track, as a temporal
augmentation of oi.

Given N such quadruples (oi, o′i, h
a
i , h

m
i ), we construct

positive and contrasting negative pairs as shown in Figure 3.
In Ltemporal, for each oi, o′i is positive and all other objects
ojs and o′js are negatives. In Lhand, for each oi, [ha

i , h
m
i ]

(hand appearance and motion) serves as the positive while
all other objects o′js and hands [ha

j , h
m
j ]s are negatives; and

for each [ha
i , h

m
i ], oi is positive and all other objects ojs

and hands [ha
j , h

m
j ]s are negatives. All crops oi, o

′
i, h

a
i are

transformed using the standard SimCLR augmentations.
We setup contrastive losses by passing object and hand

crops through convolutional trunks ϕo and ϕh, respectively.
We use a projection head fo for Ltemporal, and 2 projection
heads fh, gh (for object and hand crops, respectively) for
Lhand. hm

i is encoded via positional encoding and appended
to ϕh(h

a
i ) before being fed into projection head gh. We

use cosine similarity, and the normalized temperature scaled
cross-entropy loss (NT-Xent) following SimCLR [6].

We call our full formulation with both these loss terms
as Temporal SimCLR with Object-Hand Consistency or
TSC+OHC. We also experiment with Temporal SimCLR or
TSC that only uses the temporal term (i.e. setting λ to 0).
The output of these formulations is ϕo, which is our state-
sensitive feature representation. In Section 4.1, we evaluate
the quality of ϕo on an object state classification task.

3.2. Object Affordances via Context Prediction

The next aspect of interactive object understanding that
we tackle is to infer what interactions do objects placed in
scenes afford and where, which we refer to jointly as object
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Figure 3. Temporal SimCLR with Object-Hand Consistency (TSC+OHC). Given batches of quadruples containing object crops pairs
oi, o

′
i, alongside the corresponding hand crop ha

i and hand motion hm
i , TSC+OHC employs two losses Ltemporal and Lhand. Ltemporal encour-

ages object crops close in time to be close to one another, while being far away from other object crops. Lhand encourages corresponding
object and hands to be close to one another, while being far away from other objects and hands. Different encoders are used for objects
and hands (ϕo and ϕh), and different heads (fo and fh) are used for objects for Ltemporal and Lhand. Best viewed in color.
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Figure 4. Affordances via Context Prediction (ACP). We sample a patch (orange) from the input image around the detected hand (shown
on the left). We then consider a context region (black) of twice the size around the sampled patch containing parts of the object being
interacted with. We mask out the sampled patch (Masking) to hide the hand. Our model uses the surrounding context to make predictions
for probability of interaction and grasps afforded in the masked region. We paste the hand and object boxes to generate supervision for
interaction regions. Supervision for grasp prediction branch comes by running a network trained on GUN71 dataset [51] on the hand crop.

affordances. Specifically, we want to infer a) the Regions of
Interaction (ROI) in the scene (i.e. pixels that are likely to be
interacted with when undertaking some common actions),
and b) the hand-grasp type that is applicable at that region.

Information about both these aspects is directly available
in egocentric videos. As hands interact with objects, we ob-
serve where they touch and via what grasp. However, learn-
ing models from such data as-is is hard; wherever we have
the hand for supervision, we also have the same hand that
trivially reveals the information that we want to predict. As
a result, a naively trained model won’t learn anything about
the underlying object. To circumvent this issue, we propose
a context prediction task: prediction of the hand locations
and grasp type from image patches around the hand, but
with hands masked out. Our context prediction task encour-
ages the model to use the context around an object to predict
regions of interaction. For instance in Figure 4, the model
can predict the region-of-interaction (location of the handle)
from part of the pan visible in the context region. We call
our model Affordances via Context Prediction (ACP).

Data Generation. Our data generation process, shown
in Figure 4, assumes detections for hands, object-of-
interaction, contact state, and grasp-type (see Figure 2).
Starting with the hand that are in contact state, we sample a
s×s patch around the detected hand. We crop out a 2s×2s
asymmetric context region around this patch, with the s× s
hand patch being at the bottom center of this context re-
gion. We mask out the s× s hand patch to obtain a masked
context region that serves as the input to our model. The
goal for the model is to predict a) the segmentation mask
for the hand (and optionally also the object-of-interaction)
inside the masked region, and b) the grasp-type exhibited by
the hand. Supervision for these comes from the detections
and the grasp predictions as described above. As the de-
tector from [55] only outputs boxes, we derive an approxi-
mate segmentation mask by pasting the detection boxes. We
also sample additional positives from around the object-of-
interaction detections and negatives from the remaining im-
age. We sample patches at varying scale and reshape them
to 128× 128 before feeding them into our network.

3296



Model Architecture and Training. The masked context
region is processed through a ResNet-50 encoder, followed
by two separate heads to predict the segmentation mask and
the grasp type. The segmentation head uses a deconvolu-
tional decoder to produce 64× 64 segmentation masks, and
is trained using binary cross-entropy loss with the positive
class weighed by a factor of 4. The grasp-type prediction
uses 2 fully-connected layers to predict the applicable grasp
types. As more than one grasp is applicable, we model it
as a multi-label problem and train using independent binary
cross-entropy losses for each grasp-type. For each example,
the highest scoring class from GUN71 model is treated as
positive, lowest 15 are treated as negatives, and the remain-
ing are not used for computing loss.
Inference. For inference, we sample patches densely at 3
different scales. We reshape them to 128×128 and mask out
the 64× 64 bottom center region, before feeding them into
our model. Predictions from the patches are pasted back
onto the original image to generate per-pixel probability for
a) interaction, and b) afforded hand grasps.

Though we only considered predicting coarse segmenta-
tion and grasp-types our contextual prediction framework is
more general. Given appropriate pre-trained models, ACP
can be trained for richer hand representations such as fine-
grained segmentation, 2D or 3D hand pose.

4. Experiments
We train our models on in-the-wild videos from EPIC-

KITCHENS [10]. Our experiments test the different as-
pects of interactive object understanding that we pur-
sue: state-sensitive features (Section 4.1), and object af-
fordance prediction (i.e. identifying regions-of-interaction
(Section 4.2) and predicting hand grasps afforded by objects
(Section 4.3)). We focus on comparing different sources of
supervision, and on evaluating our design choices. As we
pursue relatively new tasks, we collect two labeled datasets
on top of EPIC-KITCHENS to support the evaluation: EPIC-
STATES for state-sensitive feature learning and EPIC-ROI
for regions-of-interaction. We adapt the YCB-Affordance
benchmark [9] for afforded hand-grasp prediction.

All our experiments are conducted in the challenging set-
ting where there is no overlap between training and test-
ing participants for EPIC-KITCHENS experiments,1 and no
overlap in objects for experiments on YCB-Affordance.

4.1. State Sensitive Features for Objects

We measure the state sensitivity of our learned feature
space ϕo, by testing its performance for fine-grained ob-

1Note that the detector from [55] was trained on 18K labeled frames
from the EPIC-KITCHENS dataset. To ensure that our trainings only see
realistic predictions, we use leave one out predictions from [55]: we split
the train set into 5 parts by participants, retrain [55] on 4, use predictions
on the 5th (i.e. unseen participants); and repeat this 5 times over.

ject state classification. We design experiments to measure
the effectiveness of focusing on the hands to derive a) data
and b) supervision for learning; and our choice of learning
method. We also compare the quality of our self-supervised
features to existing methods for learning such features via:
action classification on EPIC-KITCHENS and state classifi-
cation on Internet data [24].
Object State Classification Task and Dataset. For eval-
uation, we design and collect EPIC-STATES, a labeled ob-
ject state classification dataset. EPIC-STATES builds upon
the raw data in the EPIC-KITCHENS dataset and consists of
10 state categories: OPEN, CLOSE, INHAND, OUTOFHAND,
WHOLE, CUT, RAW, COOKED, PEELED, UNPEELED. We
selected these state categories as they are defined some-
what unambiguously and had enough examples in the EPIC-
KITCHENS dataset. EPIC-STATES consists of 14,346 object
bounding boxes from the EPIC-KITCHENS dataset (2018
version), each labeled with 10 binary labels corresponding
to the 10 state classes. We split the dataset into training, val-
idation, and testing sets based on the participants, i.e. boxes
from same participant are in the same split.

To maximally isolate impact of pre-training, we only
train a linear classifier on representations learned by the
different methods. We report the mean average precision
across these 10 binary state classification tasks. We also
consider two settings to further test generalization: a) low
training data (only using 12.5% of the EPIC-STATES train
set), and b) testing on novel object categories (by holding
out objects from EPIC-STATES train set).
Implementation Details. Object-of-Interaction Tracks.
We construct tracks by linking together hand-associated
object detections with IoU ≥ 0.4 in temporally adjacent
frames. We median filter the object box sizes to minimize
jumps due to inaccurate detections. This resulted in 61K
object tracks (on average 2.2s long) for training. We extract
patches at 10 fps from these tracks.
Model Architecture. All models use the ResNet 18 [23]
backbone initialized with ImageNet pre-training. We av-
erage pooled the 4×4 output from the ResNet 18 backbone
and introduced 2 fully connected layers to arrive at a 512
dimensional embedding for all models.
Self-supervision Hyper-parameters. Our proposed models
(TSC, TSC+OHC) use standard data augmentations: color
jitter, grayscale, resized crop, horizontal flip, and Gaussian
blur. Temporal augmentation frames o′i were within one
fourth of the track length. For the TSC+OHC model: hand
boxes within 0.3s from the object boxes were considered as
corresponding and hm

i was computed using 3 consecutive
frames. See other details in Supplementary.
Results. Table 1 reports the mean average precision (higher
is better) for object state classification on the EPIC-STATES
test set. We also report the standard deviation across 3 pre-
training runs. We compare among our models and against
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Table 1. Mean average precision for object state classification
on the EPIC-STATES test set (µ ± σ over 3 pre-training seeds).
Our self-supervised features outperform features from ImageNet-
pretraining, other self-supervision (TCN, SimCLR), and even se-
mantic supervision across all settings. Performance boost is larger
in harder settings: low-data and generalization to novel objects.

Novel Objects All Objects

Linear classifier training data 12.5% 100% 12.5% 100%

ImageNet Pre-trained 70.2 ±0.0 74.5 ±0.0 78.2 ±0.0 83.1 ±0.0
TCN [53] 56.1 ±1.9 63.9 ±1.1 62.5 ±0.8 73.4 ±1.4
SimCLR [6] 71.9 ±0.2 77.1 ±1.0 77.4 ±1.0 81.0 ±0.9
SimCLR + TCN 63.7 ±0.3 68.4 ±1.6 72.9 ±1.3 77.4 ±1.2
Semantic supervision

via EPIC action classification 70.9 ±1.9 77.0 ±0.9 72.1 ±0.8 77.9 ±1.3
via MIT States dataset [24] 70.1 ±1.4 73.9 ±0.8 76.4 ±0.6 81.5 ±1.3

Ours [TSC] 74.5 ±0.9 80.2 ±0.4 81.4 ±1.0 84.2 ±1.0
Ours [TSC+OHC] 79.7 ±0.6 81.8 ±0.4 82.6 ±0.2 84.8 ±0.4
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Figure 5. Object in similar states. Nearest neighbors in our
learned feature space exhibit similar state.

a) ImageNet pre-training (i.e. no further self-supervised pre-
training), b) non-temporal self-supervision via SimCLR [6],
c) an alternate temporal self-supervision method (Time
Contrastive Networks, TCN [53]), and d) semantic supervi-
sion from action classification on EPIC-KITCHENS and state
classification on MIT States dataset [24]. We describe these
comparison points as we discuss our key takeaways.
Features from TSC and TSC+OHC are more state-
sensitive than ImageNet features. ImageNet pre-trained
features provide a strong baseline with an mAP of 83.1%.
TSC and TSC+OHC boost performance to 84.2% and
84.8%, respectively. Improvements get amplified in the
challenging low-data and novel category settings for all
models, with our full model TSC+OHC improving upon
ImageNet features by 4.4% and 9.5%, respectively. These
trends are also borne out when we visualize nearest neigh-
bors in the learned feature spaces in Figure 5.
TSC and TSC+OHC outperform other competing self-
supervision schemes. Temporal SimCLR, even by itself, is
more effective than vanilla SimCLR that has access to the
same crops but ignores the temporal information. We also
outperform TCN [53], a leading method for temporal self-
supervision, and TCN combined with SimCLR. TCN uses
negatives from the same track. These are harder to identify
in EPIC-KITCHENS because of the large variability in time-
scales at which changes occur (e.g. OPEN vs. CHOP action).
Supervision from object-hand consistency improves per-
formance. TSC+OHC improves over just TSC by 0.6%
with larger gains (of up to 5.2%) in the more challenging
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Figure 6. Objects affording similar hands. We retrieve objects
that are associated with hands having features similar to the query
hand. Objects that are being interacted with similarly get retrieved.

novel category and limited data settings. This confirms our
hypothesis that observation of what hands are doing, aids
the understanding of object states. Figure 6 shows some
nearest neighbors retrievals that further support this.
TSC and TSC+OHC models outperform semantically
supervised models. Conventional wisdom would have sug-
gested pre-training a model on images gathered from the In-
ternet for this or related tasks. MIT States dataset from Isola
et al. [24] is the largest such dataset with 32,915 training
images labeled with applicable adjectives. Surprisingly, our
self-supervised models outperform features learned through
supervised training on this dataset by 3.3 to 9.6%, perhaps
due to the domain gap between Internet and egocentric data.

Another common belief is to equate action classifica-
tion to video understanding. We assess this by comparing
against features from the action classification task on EPIC-
KITCHENS. This model was trained on our tracks using the
most common 32 action labels along with their temporal ex-
tent, available as part of the EPIC-KITCHENS dataset. Both
TSC and TSC+OHC features outperform action classifica-
tion features by 3 to 10%. Thus, while the action classifi-
cation task is useful for many applications, it fails to learn
good state-sensitive features.
Ablations. In Supplementary, we compare alternate ways
of obtaining tracks when learning with TSC. We ablate two
aspects: what we track (background crop, background ob-
ject, object-of-interaction) and how we track it (no track-
ing, off-the-shelf tracker [35], hand-context). Ablations re-
veal the utility of object-of-interaction tracks particularly as
they enable use of hand consistency. We also study the role
of appearance and motion individually for representing the
hand. We found both to be useful over TSC with motion
being more important than appearance.

4.2. Regions of Interaction

Regions-of-Interaction Task and Dataset. We design and
collect EPIC-ROI, a labeled region-of-interaction dataset.
EPIC-ROI builds on top of the EPIC-KITCHENS dataset, and
consists of 103 diverse images with pixel-level annotations
for regions where human hands frequently touch in every-
day interaction. Specifically, image regions that afford any
of the most frequent actions: TAKE, OPEN, CLOSE, PRESS,
DRY, TURN, PEEL are considered as positives. We man-
ually watched video for multiple participants to define a)
object categories, and b) specific regions within each cat-
egory where participants interacted while conducting any
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COCO Objects Non-COCO Objects COCO Parts Non-COCO Parts

Figure 7. Images from the proposed EPIC-ROI dataset. Each
image is annotated for regions of interaction i.e. where the hu-
man participants frequently interact with. Every annotation is also
labeled with one of four attributes: COCO objects, Non-COCO
objects, COCO parts, or Non-COCO parts.

of the 7 selected actions. These 103 images were sampled
from across 9 different kitchens (7 to 15 images with min-
imal overlap, from each kitchen). EPIC-ROI is only used
for evaluation, and contains 32 val images and 71 test im-
ages. Images from the same kitchen are in the same split.
The Regions-of-Interaction task is to score each pixel in the
image with the probability of a hand interacting with it. Per-
formance is measured using average precision.

To enable detailed analysis, each annotated region is as-
signed two binary attributes: a) Is-COCO-object (if region
is on an object that is included in the COCO dataset), b)
Is-whole-object (if region covers the whole object). This
results in 4 sub-classes (see Figure 7), allowing evaluation
on more challenging aspects: e.g. small objects that are not
typically represented in object detection datasets such as
knobs (Non-COCO Object), or when interaction is local-
ized to a specific object part such as the pan-handle (COCO
Part) or the cutting-board-edges (Non-COCO Part). We also
evaluate in the 1% SLACK setting where regions within 20
pixels (1% of image width) of the segmentation boundaries
is ignored to discount small leakage in predictions.
Implementation Details. We train our model on 250
videos from the 2018 EPIC-KITCHENS dataset. We exclude
videos from the 9 kitchens used for evaluation in EPIC-ROI.
Details of the grasp classification branch are in Section 4.3.
Results. Table 2 reports the average precision. We com-
pare to three classes of methods: a) objectness based ap-
proaches SalGAN [46] and DeepGaze2 [30], trained using
human gaze data / manual labels; b) instance segmenta-
tion based approaches that use Mask RCNN [22] predicted
masks for all / relevant classes; and c) interaction hotspots
from Nagarajan et al. [42] that derives supervision from
manually annotated object bounding boxes and action labels
in the EPIC-KITCHENS dataset. Given the strong perfor-
mance of Mask RCNN-based methods, we also report the
performance by aggregating predictions from Mask RCNN
with ACP and next most competitive baseline, DeepGaze2.
Aggregation is done using a weighted summation of predic-
tions (weight selected using validation performance).

Overall, Mask-RCNN when restricted to relevant cate-
gories, performs the best. This is not surprising as it is su-

pervised using over 1 million object segmentation masks.
However, its performance suffers on non-COCO objects or
their parts. Methods that utilize more general supervision
start to do better. And in spite of not being trained on any
segmentation masks at all, ACP (Ours) is able to outper-
form past methods. It starts to approach the performance of
Mask RCNN, particularly in the 1% SLACK setting.

When combined with Mask RCNN, ACP achieves the
strongest performance across all categories. It improves
upon the Mask RCNN based method by 4.7%, indicating
that our method is able to effectively learn about objects not
typically included in detection datasets (e.g. stove knobs),
and object parts (e.g. handle for fridges and drawers). Fur-
thermore, our method provides a more complete interactive
understanding by also predicting afforded grasps as we dis-
cuss in Section 4.3 and show in Figure 8.
Ablations. Experiments in Supplementary study the effects
of variations in network input (not hiding hands, symmetric
context, not filtering based on contact), model architecture,
and data sampling and supervision (using just objects, or
using just hands, or using hand masks rather than boxes).
We find that all design choices contribute to ACP’s perfor-
mance. Further improvements can be had from richer hand
understanding (segmentation masks vs. box masks).

4.3. Hand Grasps Afforded by Objects

Grasps Afforded by Objects (GAO) Task and Dataset.
We use the YCB-Affordance dataset [9] to evaluate perfor-
mance at the Grasps Afforded by Objects (GAO) task. The
dataset annotates objects in the scenes from [62] with all
applicable grasps from a 33-class taxonomy [15]. We split
the dataset into training (110K images, 776K grasps, used
only to obtain a supervised ceiling), validation (60 images,
230 grasps) and testing (180 images, 760 grasps). Val and
test sets contain novel objects not present in the training set.
Given an image with a segmentation mask for the object
under consideration, the GAO task is to predict the grasps
afforded by the object. As multiple grasps are applicable to
each object, we measure AP for each grasp independently
and report mAP across the 7 (of 33) grasps present in the
val and test sets.
Implementation Details. The grasp prediction branch in
ACP is trained on predictions from a grasp classification
model trained on the GUN71 dataset. We only use the 33
classes relevant to the task on the YCB-Affordance dataset
from the 71-way output. To test our grasp affordance pre-
diction on YCB-Affordance objects, we average the spatial
grasp scores over the pixels belonging to the object mask.

We found it useful to adapt the GUN71 classifier to
EPIC-KITCHENS to generate good supervision. This was
done via self-supervision by using an additional Ltemporal
loss on the EPIC-KITCHENS hand tracks (analogous to one
used for objects in Section 3.1) while training on GUN71.
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Table 2. Average Precision for Region-of-Interaction Prediction. We report the overall AP and AP across the different types of
interaction regions. We also report AP with 1% SLACK at the boundaries where we don’t penalize any leakage at regions within 20
pixels (1% of image width) of the mask boundaries. Without training on segmentation masks, our method outperforms methods based
on objectness (SalGAN and DeepGaze2), action classification (Interaction Hotspots), and are able to come close to Mask RCNN that is
trained with supervised segmentation masks. We achieve the strongest performance across all categories when combined with Mask RCNN.
Highest numbers are boldfaced and the second highest are italicized.

Overall COCO Objects Non-COCO Objects COCO Parts Non-COCO Parts

Slack at segment boundaries 0% 1% 0% 1% 0% 1% 0% 1% 0% 1%

Mask RCNN [all] 41.9 46.7 40.6 45.0 13.3 16.0 11.5 14.4 3.6 4.3
Mask RCNN [relevant] 64.0 70.0 72.2 78.1 22.8 28.7 31.0 39.6 6.8 9.1
Interaction Hotspots [42] 43.8 52.0 26.5 33.9 23.0 29.5 12.2 16.7 6.9 9.6
SalGAN [46] 48.7 56.4 40.8 49.1 24.5 31.0 11.4 15.7 4.7 6.4
DeepGaze2 [30] 55.7 64.6 44.8 55.1 35.8 45.4 11.4 16.5 7.4 10.8
ACP (Ours) 57.4 67.3 49.6 60.8 33.7 44.7 14.7 22.5 7.2 11.3

Mask RCNN+DeepGaze2 66.6 72.9 74.4 80.1 26.2 33.5 31.7 40.6 7.1 9.8
Mask RCNN+ACP (Ours) 68.7 76.4 76.2 83.0 31.1 41.9 32.5 43.7 7.4 11.4

Sphere 
3 finger

Small 
diameter

a) b) c) d)
Figure 8. Object Affordance Predictions. For the input image (shown in (a)), we show the predicted regions of interaction in (b). Our
method successfully detects multiple possible regions of interaction: bottles, jars, general objects in the fridge, and door knobs. We also
visualize the per-pixel probability of affording the sphere 3 finger grasp in (c), and small diameter grasp in (d). The sphere 3 finger grasp
is predicted for the door knob, bottle caps and cans; while the small diameter grasp is predicted for bottles, jars and cans. Thumbnails
visualizing hand grasps reproduced from [15].

Results. For reference, chance performance is 30.2%, and
supervised performance is 56.8%. The supervised method
is trained on YCB-Affordance using ground truth annota-
tions for afforded hand grasps on the 110K training images
for the 15 training objects. Our method achieves an mAP of
38.1%. It reduces the gap between chance performance and
the supervised method by 30%. Adaptation using Ltemporal
on hands helped (34.3% vs. 38.1%).

5. Discussion and Limitations
We have shown that observation and analysis of humans

hands interacting with the environment is a rich source of
information for learning about objects and how to interact
with them; even when using a relatively crude understand-
ing of the hand via 2D boxes. A richer understanding of
hands (through segmentation, fine-grained 2D / 3D pose,
and even 3D reconstruction) would enable a richer under-
standing of objects in the future. Our work relies on off-
the-shelf models for generating data and supervision, and is
limited by the quality of their output.

The ACP model in Section 3.2, doesn’t look at the pixels
it is making predictions on. This causes our predictions to
not be as well-localized. Our EPIC-ROI task requires fine-
grained reasoning for large objects (e.g. microwaves), but
not as much for small objects because of subjectivity in an-

notation. Collecting fine-grained datasets for where we can
interact with small objects in scenes will enable better eval-
uation. Similarly, large-scale in-the-wild datasets for eval-
uation of grasps afforded by objects can help. Finally, we
tackled different aspects of interactive object understanding
in isolation, a joint formulation could do better.
Ethical considerations, bias, and potential negative so-
cietal impact: Egocentric data is of sensitive nature. We
relied on existing public data from EPIC-KITCHENS dataset
(which obtained necessary consent and adopted best prac-
tices). Though, our self-supervised techniques mitigate
bias introduced during annotation, we acknowledge that
our models inherit and suffer from bias (e.g. what objects
are present, their appearance and usage) present in the raw
videos in EPIC-KITCHENS dataset. As with all AI research,
we acknowledge potential for negative societal impact. In-
teractive object understanding can enable many useful ap-
plications (e.g. building assistive systems), but could also be
used for large-scale automation which, if not thought care-
fully about, could have negative implications.
Acknowledgements: We thank David Forsyth, Anand
Bhattad, and Shaowei Liu for useful discussion. We also
thank Ashish Kumar and Aditya Prakash for feedback on
the paper draft. This material is based upon work supported
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