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Abstract

Online class-incremental continual learning aims to
learn new classes continually from a never-ending and
single-pass data stream, while not forgetting the learned
knowledge of old classes. Existing replay-based method-
s have shown promising performance by storing a subset
of old class data. Unfortunately, these methods only fo-
cus on selecting samples from the memory bank for re-
play and ignore the adequate exploration of semantic in-
formation in the single-pass data stream, leading to poor
classification accuracy. In this paper, we propose a novel
yet effective framework for online class-incremental con-
tinual learning, which considers not only the selection of
stored samples, but also the full exploration of the data
stream. Specifically, we propose a gradient-based sample
selection strategy, which selects the stored samples whose
gradients generated in the network are most interfered by
the new incoming samples. We believe such samples are
beneficial for updating the neural network based on back
gradient propagation. More importantly, we seek to ex-
plore the semantic information between two different views
of training images by maximizing their mutual informa-
tion, which is conducive to the improvement of classifica-
tion accuracy. Extensive experimental results demonstrate
that our method achieves state-of-the-art performance on
a variety of benchmark datasets. Our code is available on
https://github.com/YananGu/DVC.

1. Introduction
Intelligent systems [24, 30, 33, 49, 53, 56] based on con-

volutional neural networks have achieved excellent perfor-
mance on various tasks, some of which even exceed human-
level performance. However, these intelligent systems,
which need to restart the training process when new data
is available, lack the ability to accumulate knowledge over
time as humans do. Actually, such a restart practice is of-
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ten not applicable in real scenarios because of training costs
and privacy concerns. In order to achieve a higher level in-
telligent system, Continual Learning [17,35,38] studies the
problem of learning from a never-ending data stream. A sig-
nificant problem such a never-ending learning process faces
is catastrophic forgetting—the inability to retain previously
learned knowledge when learning new tasks.

Existing methods [1, 32, 42, 55] often relax the problem
of continual learning to a more accessible task-incremental
setting. In a task-incremental setting, the data stream is di-
vided into several tasks with clear boundaries, and each task
is learned offline. However, this setting lacks flexibility, be-
cause data in real world scenarios is often streamed online
without task identity. In this paper, we focus on a more
general online class-incremental continual setting, where a
stream of samples is seen only once and task identity is un-
available during the training and testing phases.

There are already many types of methods proposed for
task-incremental setting [1, 32, 34, 37], which can be pri-
marily divided into three categories: regularization-based,
parameter-isolation, and replay-based methods. In these
methods, replay-based methods [2,13,45] have been proved
to be simple yet efficient compared to other methods in the
online class-incremental continual setting. Such methods
usually keep previous performance by recording some sam-
ples of old classes for replay. Specifically, the recorded and
incoming samples are put together to train the model, which
makes the model preserve the previous knowledge to the
greatest extent and learn new knowledge simultaneously.
However, these methods only focus on finding the optimal
recorded samples for replay and lack a full exploration of
semantic information in the single-pass data stream, lead-
ing to poor classification accuracy.

In this paper, we propose a novel yet effective framework
for online class-incremental continual learning to address
the deficiencies observed above. Specifically, we propose
a Maximally Gradient Interfered (MGI) retrieval strategy,
which selects the stored samples whose gradients generat-
ed in the network are most interfered by the new incoming
samples. We believe such samples are beneficial for updat-
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ing the neural network based on back gradient propagation.
More importantly, we propose a Dual View Consistency (D-
VC) strategy to fully leverage the data stream, including the
incoming and retrieved images. Besides learning the tradi-
tional input-output mapping, the network is also forced by
DVC to explore a consistent mapping between the represen-
tations of two transformed inputs with the same label (dual
view image pairs). More specifically, we maximize the mu-
tual information among dual view image pairs, which con-
strains the network to mine the common semantic informa-
tion between image pairs. In this way, the model can learn
the invariant image representations, which is beneficial for
improving classification accuracy. Extensive experiments
demonstrate both MGI and DVC improve the performance
of the proposed method, which is found to achieve state-of-
the-art performance on three commonly used datasets.

To sum up, our contributions are as follows:

• Unlike existing methods that only focus on selecting
samples from the memory bank for replay, we pro-
pose a novel yet effective framework for online class-
incremental continual learning, which simultaneously
considers optimal samples selection and sufficient ex-
ploration of the single-pass data stream.

• We propose a Maximally Gradient Interfered retrieval
strategy to better maintain the performance of old
classes, and offer a Dual View Consistency strategy to
further improve the classification accuracy.

• Extensive empirical results demonstrate our method
performs significantly better than existing methods on
several benchmark datasets.

2. Related Work
2.1. Continual Learning

Continual learning [21, 32, 35, 37, 51, 52] aims to build a
model that can learn sequentially and accumulate acquired
knowledge over time. During the learning process, only
a small portion of input data from one or a few tasks is
available at once. The main challenge of continual learn-
ing is to learn without catastrophic forgetting: with the in-
crease of new tasks or fields, the performance of previously
learned tasks or fields should not significantly degrade over
time. There are three major categories of continual learning
methods based on the techniques they use: regularization-
based [1, 32, 42, 55], parameter-isolation [31, 37, 54] , and
replay-based methods [2, 13, 45]. Regularization-based
methods attempt to impose constraints on the update of net-
work parameters to mitigate catastrophic forgetting. Some
regularization-based approaches [1, 32, 42, 55] add well-
designed regularization terms into the loss function to pe-
nalize the update of critical model parameters. Some meth-

ods [12, 25, 34] adjust model’s gradient during optimiza-
tion to preserve previous knowledge, and others utilize
knowledge distillation techniques [27] to reduce the fea-
ture drift on old tasks. Parameter-isolation methods ex-
pand the network and mask parameters to prevent forget-
ting, and each task has different parameters. Specifically,
Parameter-isolation methods can be divided into two types:
Fixed Architecture (FA) [19,37,44] and Dynamic Architec-
ture (DA) [3, 43, 54]. The main difference between them
is whether new parameters are introduced into the model.
FA methods only activate relevant parameters for each task
without modifying the architecture while DA methods in-
troduce new parameters for new tasks and maintain old pa-
rameters unchanged.

Replay-based methods [2, 41, 45] utilize a memory bank
to store a subset of data from the previous task, which have
achieved appealing results in the online class-incremental
continual setting. For each batch of incoming images,
replay-based methods retrieve another mini-batch from the
memory bank. Then these methods use the incoming and
the retrieved images to update the model. Specifically,
Chaudhry et al. proposed an Experience Replay (ER) [13]
method, retrieving samples randomly from the memory
bank for replay. Further, Maximally Interfered Retrieval
(MIR) [2] takes a controlled sampling strategy of stored
samples for replay, which retrieves the samples whose loss-
es are most interfered by the new incoming samples. Shim
et al. proposed an Adversarial Shapley value Experience
Replay (ASER) [45] method, which leverages Shapley val-
ue adversarially in memory retrieval.

However, these replay-based methods for online class-
incremental continual learning only focus on finding the op-
timal samples from the memory bank for replay, lacking a
full utilization of the single-pass data stream. The proposed
DVC strategy seeks to find a consistent mapping between
the representations of dual view image pairs, which makes
most of the single-pass data stream.

2.2. Contrastive learning

Contrastive learning is widely used in self-supervised
representation learning [7,8,14,23,26,47]. The general goal
of contrastive learning is to learn a hidden space in which
the representation of “similar” samples should be mapped
close together, while that of “dissimilar” samples should be
further away. Chen et al. proposed a simple framework
SimCLR [14] to perform contrastive learning, where pos-
itive pairs are composed of two random augmented views
of the same image and negative ones are obtained with d-
ifferent images. Moco [23] maintains the negative samples
queue and converts a branch of Siamese network [16] into a
momentum encoder to improve consistency of the queue.
DenseCL [50] performs dense contrastive learning at the
pixel level. Recently, contrastive learning has been used in
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Figure 1. This is the flow of our method. At time t, the model receives an incoming batch of images from the data stream. Then the
MGI retrieval strategy is used to select some samples from the memory bank for replay. The incoming and retrieved images are combined
to form a training batch. Finally, the training batch of images is transformed into image pairs with different views, and sent to the same
network to maximize the agreement of their representations. ϕ(x1, θ) and ϕ(x2, θ) share the same parameters θ.

various areas and shown promising results, including com-
puter vision [10, 20], natural language processing [15, 18],
graph [22,40] and multi-modal data [6,46]. Some key com-
ponents contribute to the success of contrastive learning in
learning useful representations, including proper data aug-
mentations, the learnable nonlinear transformation between
the representation, contrastive loss, and large batch size for
negative samples.

Unlike the traditional contrastive learning methods
which needs many negative samples, our method only re-
quires dual view image pairs (positive samples). Therefore,
our method can work well in cases where the batch size is s-
mall, while the performance of traditional contrastive learn-
ing methods may be affected.

3. Proposed Method
In this section, we first introduce the problem definition

of online class-incremental continual learning, after which
we detail the sample selection strategy based on the pro-
posed MGI. Finally, we present the derivation and calcula-
tion process of the proposed DVC strategy.

3.1. Problem Definition

Following recent continual learning literature [2,4,5,35,
45], we consider a supervised online class-incremental con-
tinual learning setting, where a model needs to learn new
classes continually from an online data stream (the samples
in the data stream can be seen only once). Consider a data
stream D = {D1, D2, . . . , DN} over X × Y . X represents
the samples, Y represents the labels of X , and N denotes
the number of total tasks. Note that there is no overlap in
the classes between tasks, which means {Di}

⋂
{Dj} = ∅

for i ̸= j. {Dt} indicates the set of data for task t. In the
training phase, the data stream can be seen only once, which
means the data {Dt} can be used to train the network one
epoch in task t.

In addition, we adopt the single-head evaluation setup
[11], where the task identity is unavailable during both the
training and testing phases. Thus, the classifier must choose
among all labels. The goal of task t is to train a model that
can classify the classes belonging to Dt, while still preserv-
ing the ability to classify the classes belonging to Di, i < t.

3.2. Maximally Gradient Interfered Retrieval

In online class-incremental continual learning, replay-
based methods mitigate catastrophic forgetting by storing
a subset of the samples from past tasks in a memory bank.
For every incoming batch of images, replay-based method-
s retrieve another mini-batch of images from the memory
bank. Then these methods update the model using both
the incoming and retrieved images. Specially, the incom-
ing batch of images can be used to train the model only
once, meaning that the number of times old class images
are retrieved is limited. Thus, every opportunity to retrieve
samples from the memory bank is important to maintain the
performance of old classes. In this paper, we select the s-
tored samples whose gradients generated in the network are
most interfered by the new incoming samples. We believe
such samples are beneficial for updating the neural network
based on back gradient propagation.

In the training process, the model receives a small batch
Bt of size n at time t. We use the samples xt of Bt

to perform a virtual parameter update of current model
F (θ), and the virtual updated model is denoted as Fv(θv).
θv = θ − α▽L(F (xt), yt), where α denotes the learning
rate. Then we randomly select S candidate samples xr from
the memory bank, and compute the magnitude of the gradi-
ent vector caused by xr in F and Fv , respectively:

G(xr; θ) = ||▽θL(yt, F (xr, θ))||1 (1)
G(xr; θv) = ||▽θvL(yt, Fv(xr, θv))||1,

then we compute the changes in gradient and sort the
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changes in a descending order:

Score = Sort(G(xr; θv)−G(xr; θ)), (2)

we then select the top k samples as the retrieved samples.
Specifically, we focus on the changes in the last Fully

Connected (FC) layer of the network. The weight matrix of
the FC layer is denoted by w = [w1, · · · , wC ]

⊤ ∈ RC×f .
Taking the calculation process of the magnitude of the gra-
dient G(xr;w) as an example. Let h = [h1, · · · , hL]

⊤ be
a hidden feature vector in the model, which is the input of
the FC layer. F (xr, w) = [f1, · · · , fC ]⊤ is the output of
the FC layer after being processed by softmax function, and
yr = [y1, . . . , yC ] is the ground truth.

The gradient of the cross-entropy loss w.r.t. wcl is for-
mulated as follows:

∂

∂wcl
L(yr, F (xr, w)) = (fc − yc)hl. (3)

Thus, the calculation process of magnitude of the gradient
G(xr;w) can be formulated as follows:

G(xr;w) =

C∑
c

L∑
l

|(fc − yc)hl|

=

C∑
c

|(fc − yc)|
L∑
l

|hl|

= ||F (xr, w)− yr||1 · ||h||1.

(4)

G(xr;wv) can be obtained in a manner similar to G(xr;w).

3.3. Dual View Consistency

In online class-incremental continual learning, the in-
coming data can be seen only once for every task. In other
words, the incoming images can be used to update the mod-
el only one epoch in the training process, which means the
passing images are far from being fully utilized. To make
full use of the single-pass data stream, the proposed DVC
strategy forces the network not only to learn to classify the
input images, but also to make the representations of dual
view image pairs consistent. Specifically, we use mutual
information to estimate the consistency.

Mutual Information Estimation. Mutual Information
(MI) is a fundamental quantity to measure the relationship
between random variables. The MI between X1 and X2 can
be understood as the decrease of the uncertainty in X1 given
X2:

I(X1;X2) = H(X1)−H(X1|X2), (5)

and I(X1;X2) can also be expressed equivalently as fol-
lows:

I(X1;X2) = H(X2)−H(X2|X1) (6)
= H(X1, X2)−H(X1|X2)−H(X2|X1).

According to Eqs. (5) and (6), we reformulate I(X1;X2) as
follows:

3I(X1;X2) = H(X1) +H(X2) +H(X1, X2) (7)
− 2H(X1|X2)− 2H(X2|X1).

Further, Eq. (7) can be rewritten as follows:

I(X1;X2) =
1

3
(H(X1) +H(X2) +H(X1, X2)) (8)

+
2

3
(
∑
x1,x2

p(x1, x2)log
p(x1, x2)

p(x2)

+
∑
x1,x2

p(x1, x2)log
p(x1, x2)

p(x1)
),

where p(x1), p(x2) represent the marginal distributions of
x1 and x2, respectively. And p(x1, x2) represents the joint
distribution of x1 and x2. By forcing the joint distribution
to be the same as the marginal distribution, I(X1;X2) can
be approximated as follows:

I(X1;X2) ≈
1

3
(H(X1) +H(X2) +H(X1, X2)). (9)

Joint Distribution Estimation. In the training process,
the model receives a small batch Bt of size n at time t.
The joint probability matrix P ∈ RC×C can be computed
by Invariant Information Clustering (IIC) [28] as :

P =
1

n

n∑
i=1

F (x1
i ) · F (x2

i )
⊤
, (10)

where x1
i and x2

i are two transformed versions of the same
image xi, xi ∈ Bt. F (x) = σ(ϕ(x)) = softmax(z) ∈
[0, 1]C . This can be interpreted as the distribution of a dis-
crete random variable z over C classes, formally given by
P (z = c|x) = Fc(x). Each element of P at row c1 and
column c2 denotes the joint probability P c1c2 = P (z1 =
c1, z2 = c2). The marginal distributions P c1 = P (z1 =
c1) and P c2 = P (z2 = c2) can be obtained by summing
over the rows and columns of this matrix P . Since we gen-
erally consider symmetric problems and P c1c2 = P c2c1, P
is symmetrized by P = P+P⊤

2 .
Such a joint distribution can also be estimated by a 2-

layer Multi-Layer Perceptron (MLP) [7]. As shown in
Fig. 1, after we add a 2-layer MLP at the end of the back-
bone network, the outputs of the two transformed images
are concatenated and sent to the MLP layer to get the joint
distribution. The features of the two inputs belong to the
same class and so is the joint distribution.

Optimization Objective Function. In order to maximize
I(z1; z2), the MI loss can be formulated as follows:

LMI = −I(z1; z2). (11)
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We use the approximate calculation of MI mentioned
above (Eq. (9)) to compute LMI , thus we must have a dis-
tance loss to constrain the distance between the joint distri-
bution and the marginal distributions:

LDL = L1(p(z1, z2), p(z1)) + L1(p(z1, z2), p(z2)), (12)

where L1 indicates Mean Absolute Error (MAE) loss. The
total loss function LT can be formulated as follows:

LT = λ1LCE + λ2LMI + λ3LDL, (13)

where λ1, λ2 and λ3 are the balance coefficients of the three
losses. LCE denotes Cross-Entropy loss.

Compared with traditional contrastive learning, our
method only needs to maximize the MI between dual view
image pairs and does not require the participation of nega-
tive samples. We compare our method with the contrastive
learning method SCR [36] in online class-incremental con-
tinual learning in Sec. 4.5.

4. Experiments
In this section, we review the benchmark datasets, met-

rics, baselines we compared against and our experimental
setting. We then report and analyze the results to validate
the effectiveness of our approach.

4.1. Datasets

Split CIFAR-10 splits the CIFAR-10 [29] dataset into 5
disjoint sub-datasets for 5 tasks, and each task has 2 classes.

Split CIFAR-100 splits the CIFAR-100 [29] dataset into
10 sub-datasets for 10 tasks with non-overlapping classes,
and each task has 10 classes.

Split Mini-ImageNet splits the Mini-ImageNet [48]
dataset into 10 sub-datasets for 10 disjoint tasks, and each
task contains 10 classes.

We conduct several experiments on these datasets and
take the average results of these experiments as the final
results. For a fair comparison, the classes in each task and
the order of tasks are fixed in all experiments.

In the original Mini-ImageNet, 100 classes are divided
into three parts, including 64, 16, and 20 classes respective-
ly. In this paper, following [45], we combine the three parts
into one dataset. We then split the combined dataset into 10
sub-datasets. The first task contains the first 10 classes; the
second task contains the next 10 classes, and so on.

4.2. Metrics

Continual learning aims to build a model that can learn
sequentially and accumulate acquired knowledge over time.
Thus, we use two standard metrics in the continual learning

literature to measure performance: Average Accuracy and
Average Forgetting. Average Accuracy measures the over-
all performance of testing sets from seen tasks, and Average
Forgetting measures how much the learned knowledge the
algorithm has forgotten.

Let ai,j be the performance of the model on the held-out
testing set of task j after the model is trained from task 1 to
i. fj represents how much the model forgets about task j
after being trained on task i. For T tasks :

Average Accuracy(AT ) =
1

T

T∑
j=1

aT,j . (14)

Average Forgetting(FT ) =
1

T − 1

T−1∑
j=1

fT,j ,

where fi,j = max
l∈{1,...,i−1}

al,j − ai,j .

(15)

4.3. Baselines

We compare our method with several state-of-the-art on-
line class-incremental continual learning algorithms:

• fine-tune: As an important baseline in previous works
[2, 9, 11, 13, 45], it only trains the model in the order
the data is presented without any specific method for
forgetting avoidance.

• iid-offline: This is not the continual learning method,
but the upper limit of the performance of the continual
learning method; iid-offline trains the model over mul-
tiple epochs on the dataset with i.i.d. sampled mini-
batch. More specifically, we use 50 epochs for iid-
offline training in all experiments.

• EWC [11]: Elastic Weight Consolidation, a prior-
focused method that limits the update of parameters
that were important to the past tasks, as measured by
the fisher information matrix.

• A-GEM [12]: Averaged Gradient Episodic Memory, a
method that uses the samples in the memory bank to
constrain the parameter updates.

• ER [13]: Experience Replay, which retrieves samples
randomly from the memory bank and updates the mem-
ory bank via reservoir sampling.

• MIR [2]: Maximally Interfered Retrieval, which re-
trieves memory samples whose losses are most inter-
fered by the foreseen parameters update.

• GSS [4]: Gradient-based Sample Selection, different
from MIR, GSS pays attention to the memory update s-
trategy. It aims to diversify the gradients of the samples
in the replay memory.
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Figure 2. Average Accuracy on observed tasks. Our method outperforms other baselines especially when the model sees more classes.

• DER++ [9]: Dark Experience Replay, which leverages
Knowledge Distillation for retaining past experience.

• GDumb [39]: Greedy sampler and Dumb learner,
which greedily updates the memory buffer with the
constraint to keep a balanced class distribution. At in-
ference, it trains a model from scratch using the bal-
anced memory buffer only.

• ASER [45]: Adversarial Shapley value Experience Re-
play, which scores the samples in the memory bank
according to their ability to preserve latent decision
boundaries for previously observed classes while inter-
fering with latent decision boundaries of current classes
being learned.

4.4. Implementation Detail

Following the existing online class-incremental continu-
al learning methods [2,4,45], we use a reduced Resnet18 as
our backbone network for all the datasets. We use Stochas-
tic Gradient Descent (SGD) to optimize the network and set
the learning rate to 0.1. The model receives a batch of size
10 at a time from the data stream, and the size k of the re-
trieved batch is also set to 10 irrespective of the size of the
memory. The number S of candidate samples is set to 50.
For CIFAR-100 and Mini-ImageNet, λ1 = λ2 = 1, λ3 = 4.
For CIFAR-10, λ1 = λ2 = 1, λ3 = 2.

4.5. Comparative Performance Evaluation

Tab. 1 shows Average Accuracy by the end of the data
stream for Mini-ImageNet, CIFAR-100 and CIFAR-10. As
the table shows, our method shows significantly improved
performance on three standard datasets.

From a dataset perspective, the improvement of our
method on CIFAR-10 is greater than that on CIFAR-100
and Mini-ImageNet. More specifically, our method has
an average improvement of 3% on Mini-ImageNet, 3.7%
on CIFAR-100, and 11.7% on CIFAR-10 compared to the
strongest baseline ASER. Actually, the overall performance

of all mentioned online class-incremental continual learning
methods on Mini-ImageNet and CIFAR-100 is lower than
on CIFAR-10. The reason for this performance difference
is that Mini-ImageNet and CIFAR-100 contain more class-
es and are divided into more tasks than CIFAR-10. More
classes and longer learning sequences increase the difficul-
ty of online continual learning.

From a memory bank size perspective, our method
performs better is cases where the size of the memory bank
is small. Taking the experiments on CIFAR-10 as an ex-
ample, the improvements of our method with M=1k, 0.5k
and 0.2k are 7%, 12.4% and 15.8% compared to ASER,
respectively. The smaller the memory size, the more sig-
nificant the performance improvement of our method. This
phenomenon also occurs on the experiments of CIFAR-100
and Mini-ImageNet. In other words, our method can perfor-
m better in the case of limited storage space, which is also
in line with practical needs.

From the perspective of the online continual learn-
ing methods, our method exceeds existing online continual
learning methods in most cases. Only a few cases (M=5k
on Mini-ImageNet) where the performance of our method
is slightly lower than GDumb. Strictly speaking, GDumb
is not specifically designed for continual learning problem-
s, but it has competitive performance on continual learning
tasks. As mentioned in [35], GDumb achieves the best per-
formance with a large memory buffer, but it achieves poor
performance when the memory buffer is small. Unlike G-
Dumb, our method performs well on all sizes of memory
buffer settings, especially on small ones.

We also compare our method with SCR [36], which
applies supervised contrastive learning into online class-
incremental continual learning. Similar to traditional con-
trastive learning methods, SCR requires a large batch size
of images for training, so it retrieves 100 images from the
memory bank for each update of the model. However, the
performance of SCR is poor when the retrieved size is smal-
l. Tab. 3 shows the comparison results when the number of
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Method M=1k M=2k M=5k M=1k M=2k M=5k M=0.2k M=0.5k M=1k

finetune 4.3± 0.2 4.3± 0.2 4.3± 0.2 5.8± 0.3 5.8± 0.3 5.8± 0.3 18.1± 0.3 18.1± 0.3 18.1± 0.3

iid offline 51.4± 0.2 51.4± 0.2 51.4± 0.2 49.6± 0.2 49.6± 0.2 49.6± 0.2 81.7± 0.1 81.7± 0.1 81.7± 0.1

EWC 3.1± 0.3 3.1± 0.3 3.1± 0.3 4.8± 0.2 4.8± 0.2 4.8± 0.2 17.9± 0.3 17.9± 0.3 17.9± 0.3

A-GEM 4.4± 0.2 4.3± 0.2 4.3± 0.2 6.0± 0.1 6.0± 0.1 5.9± 0.2 18.1± 0.3 18.3± 0.1 18.3± 0.1

ER 10.2± 0.5 12.9± 0.8 16.4± 0.9 11.6± 0.5 15.0± 0.5 20.5± 0.8 23.2± 1.0 31.2± 1.4 39.7± 1.3

GSS 9.3± 0.8 14.1± 1.1 15.0± 1.1 9.7± 0.2 12.4± 0.6 16.8± 0.8 23.0± 0.9 28.3± 1.7 37.1± 1.6

MIR 10.1± 0.6 14.2± 0.9 18.5± 1.0 11.3± 0.3 15.1± 0.3 22.2± 0.7 24.6± 0.6 32.5± 1.5 42.8± 1.4

GDumb 7.3± 0.3 11.4± 0.2 19.5± 0.5 10.0± 0.2 13.3± 0.4 19.2± 0.4 26.6± 1.0 31.9± 0.9 37.5± 1.1

DER++ 10.9± 0.6 15.0± 0.7 17.4± 1.5 11.8± 0.4 15.7± 0.5 20.8± 0.8 28.1± 1.2 35.4± 1.3 42.8± 1.9

ASER 11.5± 0.6 13.5± 0.8 17.8± 1.0 14.3± 0.5 17.8± 0.5 22.8± 1.0 29.6± 1.0 38.2± 1.0 45.1± 2.0

Ours 15.4± 0.7 17.2± 0.8 19.1± 0.9 19.7± 0.7 22.1± 0.9 24.1± 0.8 45.4± 1.4 50.6± 2.9 52.1± 2.5

(a) Mini-ImageNet (b) CIFAR-100 (c) CIFAR-10

Table 1. Average Accuracy (higher is better), M denotes the memory buffer size. All numbers are the average of 15 runs. The data in the
table represents Average Accuracy ± variance.

Method M=1k M=2k M=5k

Baseline 10.2± 0.5 12.9± 0.8 16.3± 0.9

+ SeparateAug 11.7± 0.5 11.8± 0.9 12.7± 1.4

+ CombineAug 12.3± 0.8 13.3± 1.0 14.8± 0.9

Table 2. Impact of different ways in which augmented images are
sent to network on performance. The experiments are performed
on Mini-ImageNet. All numbers are the average of 15 runs.

the retrieved images is 10. As the table shows, our method
is significantly better than SCR. This is because SCR re-
quires a large number of negative samples. Unlike SCR,
our method only requires dual view image pairs, so it can
work well in cases where the batch size is small.

In addition, we find that the improvement of previous
methods which focus on selecting samples is unstable. For
example, the performance of MIR is better than that of ER
on Mini-ImageNet with M=2k, but the situation is reversed
with M=1k. ASER has better performance than MIR on
Mini-ImageNet with M=1k, but it is slightly lower than
MIR with M=2k and M=5k. As a comparison, our method
performs better than the strongest baseline ASER on all the
datasets with all memory buffer sizes.

Fig. 2 shows that our method is consistently better than
other baselines on three datasets. Our method achieves bet-
ter accuracies as the tasks increase, proving that it is a pow-
erful method to overcome catastrophic forgetting.

Tab. 4 shows the Average Forgetting by the end of the
data stream for Mini-ImageNet, CIFAR-100 and CIFAR-
10. Our method shows the lowest Average Forgetting on
three datasets in most cases. In CIFAR-10, compared to

Method M=1k M=2k M=5k

SCR 13.1± 0.3 14.9± 0.2 16.3± 0.4

Ours 19.7± 0.7 22.1± 0.9 24.1± 0.8

Table 3. Comparison of our method with SCR [36]. To be fair,
for both methods, we retrieve 10 images from the memory bank
in each iteration. The experiments are performed on CIFAR-100.
All numbers are the average of 15 runs.

the strongest baseline ASER, our method achieves 29.2%
, 26.2% and 19.9 % reduction of Average Forgetting with
M=0.2k, 0.5k and 1k, respectively. Similarly, the reduction
of Average Forgetting is also significant on Mini-ImageNet
and CIFAR-100.

In summary, we have demonstrated the effectiveness of
our method in overcoming catastrophic forgetting. Our
method achieves competitive performance on three com-
monly used benchmark datasets.

4.6. Ablation Study

In this section, we verify the effectiveness of each com-
ponent of our method. As shown in Tab. 5, the DVC dra-
matically improves the performance of the baseline, both
on Average Accuracy and Average Forgetting. In particu-
lar, the DVC can significantly improve the performance of
the baseline when the memory bank size is small. For ex-
ample, at a memory bank size of 1k, the model with DVC
improves 7.1% Average Accuracy and reduces 7.8% Aver-
age Forgetting compared to baseline. In addition, MGI also
improves the performance of the model in various exper-
iments, although the improvements are less than DVC. In
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Method M=1k M=2k M=5k M=1k M=2k M=5k M=0.2k M=0.5k M=1k

fine-tune 35.6± 0.9 35.6± 0.9 35.6± 0.9 50.4± 1.0 50.4± 1.0 50.4± 1.0 81.7± 0.7 81.7± 0.7 81.7± 0.7

EWC 28.1± 0.8 28.1± 0.8 28.1± 0.8 39.1± 1.2 39.1± 1.2 39.1± 1.2 81.5± 1.4 81.5± 1.4 81.5± 1.4

A-GEM 35.5± 0.8 35.7± 1.1 35.1± 0.8 43.3± 0.7 43.3± 0.7 43.1± 0.7 66.1± 1.0 66.4± 0.8 66.4± 0.9

ER 32.7± 0.9 29.1± 0.7 26.0± 1.0 39.1± 0.9 34.6± 0.9 30.6± 0.9 60.9± 1.0 50.2± 2.5 39.5± 1.6

GSS 33.5± 0.8 28.0± 0.7 27.5± 1.2 38.2± 0.7 34.3± 0.6 30.2± 0.8 62.2± 1.3 55.3± 1.3 44.9± 1.4

MIR 31.5± 1.2 25.6± 1.1 20.4± 1.0 39.5± 0.6 33.3± 0.8 28.3± 0.7 61.8± 1.0 51.5± 1.4 38.0± 1.5

DER++ 33.8± 0.8 28.6± 0.8 27.1± 1.3 41.9± 0.6 36.7± 0.5 33.5± 0.8 55.9± 1.8 45.0± 1.0 34.6± 2.8

ASER 33.8± 1.3 30.5± 1.3 25.1± 0.8 43.0± 0.5 37.9± 0.6 29.6± 0.9 56.4± 1.6 47.5± 1.3 39.6± 2.0

Ours 25.1± 0.7 23.1± 0.7 21.9± 0.8 30.6± 0.7 27.8± 1.0 26.1± 0.5 27.2± 2.5 21.3± 3.1 19.7± 2.9

(a) Mini-ImageNet (b) CIFAR-100 (c) CIFAR-10

Table 4. Average Forgetting (lower is better). M denotes the memory buffer size. The data in the table represents Average Forgetting ±
variance.

Method M=1k (AA ↑ / AF ↓) M=2k (AA ↑ / AF ↓) M=5k (AA ↑ / AF ↓)

Baseline 11.6± 0.5 / 39.1± 0.9 15.0± 0.5 / 34.6± 0.9 20.5± 0.8 / 30.6± 0.9

Baseline + DVC 18.7± 0.8 / 31.3± 1.0 21.7± 0.8 / 28.2± 1.0 22.4± 1.4 / 29.2± 1.0

Baseline + DVC + MGI 19.7± 0.7 / 30.6± 0.7 22.1± 0.9 / 27.8± 1.0 24.1± 0.8 / 26.1± 0.5

Table 5. Ablation studies on CIFAR-100. “Baseline” represents the model with ER method. “DVC” represents the proposed Dual View
Consistency strategy. “MGI ” represents the proposed Maximally Gradient Interfered strategy. “AA” represents the Average Accuracy and
“AF” represents the Average Forgetting. All numbers are the average of 15 runs.

contrast to DVC, MGI works better when the memory bank
size is large. The reason is apparent—as the number of sam-
ples available increases, the strategy of selecting samples
becomes more critical.

We also explore the impact of different ways to send
augmented images to the network. As shown in Tab. 2,
the “SeparateaAug” means that we send the two augment-
ed images to the network separately. This operation can
improve the performance of the model in case where the
memory bank size is small (M=1k). However, as the size of
the memory bank increases, “SeparateaAug” may hurt the
performance (M=1k and M=5k). We think this is because
the augmented images increase the burden of model learn-
ing under the single-pass setting. “CombineAug” means
that we combine the two augmented images into one batch
for training. It can reduce the learning burden brought by
the augmented images and improve the performance of the
model. We believe this is because a large batch size of im-
ages is helpful in updating the batch normalization layer,
especially in online continual learning.

5. Conclusion

In this paper, we propose a novel yet effective framework
for online class-incremental continual learning, which con-

siders not only the selection of optimal samples, but also
the full exploration of semantic information in the single-
pass data stream. Specifically, we select the stored samples
whose gradients generated in the network are most inter-
fered by the new incoming samples. We believe such sam-
ples are beneficial for updating the neural network based
on back gradient propagation. More importantly, we maxi-
mize the mutual information among dual view image pairs,
which constrains the network to mine the common seman-
tic information between image pairs. In this way, the mod-
el can learn the invariant image representations, which is
beneficial for improving classification accuracy. Extensive
experiments on three commonly used benchmark datasets
demonstrate the effectiveness of our method.
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