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Abstract

Human behavior has the nature of indeterminacy, which
requires the pedestrian trajectory prediction system to
model the multi-modality of future motion states. Unlike ex-
isting stochastic trajectory prediction methods which usu-
ally use a latent variable to represent multi-modality, we
explicitly simulate the process of human motion variation
from indeterminate to determinate. In this paper, we present
a new framework to formulate the trajectory prediction
task as a reverse process of motion indeterminacy diffu-
sion (MID), in which we progressively discard indetermi-
nacy from all the walkable areas until reaching the desired
trajectory. This process is learned with a parameterized
Markov chain conditioned by the observed trajectories. We
can adjust the length of the chain to control the degree of in-
determinacy and balance the diversity and determinacy of
the predictions. Specifically, we encode the history behav-
ior information and the social interactions as a state em-
bedding and devise a Transformer-based diffusion model to
capture the temporal dependencies of trajectories. Exten-
sive experiments on the human trajectory prediction bench-
marks including the Stanford Drone and ETH/UCY datasets
demonstrate the superiority of our method. Code is avail-
able at https://github.com/gutianpei/MID.

1. Introduction

Human trajectory prediction plays a crucial role in
human-robot interaction systems such as self-driving vehi-
cles and social robots, since human is omnipresent in their
environments. Although significant progresses have been
achieved over past few years [6,28,29,32,38,45,49,53], pre-
dicting the future trajectories of pedestrians remains chal-
lenging due to the multi-modality of human motion.

The future trajectories of pedestrians are full of indeter-
minacy, because human can change future motion accord-
ing to their will or adjust their movement direction based
on the surroundings. Given a history of observed trajecto-
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Figure 1. Illustration of the reverse diffusion process for hu-
man motion indeterminacy variation. Under high indeterminacy,
the trajectory distribution can be regarded as a noise Gaussian
distribution which denotes ambiguous walkable areas. With the
decreasing of indeterminacy, this distribution gradually approxi-
mates the real data distribution to generate desired trajectory. This
process from high indeterminacy to low indeterminacy is defined
as a reverse diffusion process, in which we learn a Markov chain to
progressively discard the indeterminacy. By adjusting the length
of the chain, we can make a trade-off between diversity and deter-
minacy, where the longer chain leads to lower diversity and higher
determinacy. Best viewed in color.

ries, there exist many plausible paths that pedestrians could
move in the future. Facing this challenge, most of prior
researches apply the generative model to represent multi-
modality by a latent variable. For instance, some meth-
ods [6,9,12,19,37,43,54] utilize generative adversarial net-
works (GANs) to spread the distribution over all possible
future trajectories, while other methods [3,16,20,25,38,46]
exploit conditional variational auto-encoder (CVAE) to en-
code the multi-modal distribution of future trajectories. De-
spite the remarkable progress, these methods still face in-
herent limitations, e.g., training process could be unstable
for GANs due to adversarial learning, and CVAE tends to
produce unnatural trajectories.

In this paper, we propose a new trajectory prediction
framework, called motion indeterminacy diffusion (MID),
to model the indeterminacy of human behavior. Inspired by
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non-equilibrium thermodynamics, we consider the future
positions as particles in thermodynamics in our framework.
The particles (positions) gather and deform to a clear trajec-
tory under low indeterminacy, while stochastically spread
over all walkable areas under high indeterminacy. The pro-
cess of particles evolving from low indeterminacy to high
indeterminacy is defined as the diffusion process. This pro-
cess can be simulated by gradually adding noise to the tra-
jectory until the path is corrupted as Gaussian noise. The
goal of our MID is to reverse this diffusion process by pro-
gressively discarding indeterminacy, and converting the am-
biguous prediction regions into a deterministic trajectory.
We illustrate the reverse diffusion process of motion inde-
terminacy in Figure 1. Contrary to other stochastic pre-
diction methods that add a noise latent variable on the tra-
jectory feature to obtain indeterminacy, we explicitly simu-
late the motion indeterminacy variation process. Our MID
learns a Markov chain with parameterized Gaussian transi-
tion to model this reverse diffusion process and train it using
variational inference conditioned on the observed trajecto-
ries. By choosing different lengths of the chain, we can ob-
tain the predictions with a flexible indeterminacy that is ca-
pable of adapting to dynamic environment. Moreover, our
method is more efficient to train than GANs, and is capable
of producing more high-quality samples than CVAEs.

To be more specific, we encode the history human tra-
jectories and the social interactions as state embedding via
a spatial-temporal graph network. Then, we exploit this
state embedding as condition in the Markov chain to guide
the learning of reverse diffusion process. To model the
temporal dependencies in trajectories, we carefully design
a Transformer-based architecture as the core network of
MID framework. In the training process, we optimize the
model with the variational lower bound, and during the in-
ference, we sample the reasonable trajectories by progres-
sive denoising from a noise distribution. Extensive experi-
ments demonstrate that our method accurately forecasts rea-
sonable future trajectories with multi-modality, achieving
state-of-the-art results on Stanford Drone and ETH/UCY
datasets. We summarize the main contributions of this pa-
per as follows:

• We present a new stochastic trajectory predic-
tion framework with motion indeterminacy diffusion,
which gradually discards the indeterminacy to obtain
desired trajectory from ambiguous walkable areas.

• We devise a Transformer-based architecture for the
proposed framework to capture the temporal depen-
dencies in trajectories.

• The proposed method achieves state-of-the-art perfor-
mance on widely used human trajectory prediction
benchmarks and provides a potential direction for bal-
ancing the diversity and accuracy of predictions.

2. Related Work
Pedestrian Trajectory Prediction: Given the observed

paths, human trajectory forecasting system aims to esti-
mate the future positions. Most existing methods formu-
late trajectory forecasting as a sequential prediction prob-
lem and focus on modeling the complex social interaction.
For instance, Social Forces [13] introduces attractive and
repulsive forces to model human interaction. With the suc-
cess of deep learning, many methods design ingenious net-
works to model the social interactions. For example, Social-
LSTM [1] devises a social pooling layer to aggregate the
interaction information of neighborhoods. Some methods
apply the attention models [10, 19, 37, 47, 51] to explore
the key interactions of the crowd. In addition, the spatial-
temporal graph model is applied to jointly model the tem-
poral clues and social interactions [15, 16, 30, 38, 44, 50].
Beyond social interactions, many methods incorporate the
physical environment interactions by introducing the map
images [6, 19, 20, 28, 37]. Recently, some methods analyze
the effect of social interaction and show it is biased [2, 27].

Stochastic Prediction Model: Due to the inherent inde-
terminacy of human behavior, Many stochastic prediction
methods are proposed to model the multi-modality of fu-
ture motions. Some methods [6,9,12,19,37,43,54] employ
GANs [11] to model the multi-modality with a noise vari-
able, and another line of methods [3,16,20,25,38,46] apply
the CVAE [41] instead. Besides, some methods [7, 23, 24]
propose to learn the grid-based location encoder for multi-
modal probability prediction. Recently, the goals of pedes-
trians [28,29,52,53] are introduced in the trajectory predic-
tion system as condition to analyze the probability of mul-
tiple plausible endpoints. While remarkable progress have
been made, these stochastic prediction methods have some
inherent limitations, e.g., the unstable training or unnatu-
ral trajectories. In this paper, we propose a new stochastic
framework with motion indeterminacy diffusion, which for-
mulates the trajectory prediction problem as a process from
an ambiguous walkable region to the desired trajectory.

Denoising Diffusion Probabilistic Models: Denoising
diffusion probabilistic models (DDPM) [14, 40], as known
as diffusion models for brevity, are a class of deep gen-
erative models inspired by non-equilibrium thermodynam-
ics. It is first proposed by Sohl-Dickstein et al. [40] and
attracts much attention recently due to state-of-the-art per-
formance in various generation tasks including image gen-
eration [5,8,14,31], 3D point cloud generation [26,55], and
audio generation [4,18,34]. The diffusion models generally
learn a parameterized Markov chain to gradually denoise
from an original common distribution to a specific data dis-
tribution. In this paper, we introduce the diffusion model to
simulate the variation of indeterminacy for trajectory pre-
diction, and design a Transformer-based architecture for the
temporal dependency of trajectories.
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Figure 2. The architecture of our MID framework. MID consists of a temporal-social encoder network and a Transformer-based decoder
network. The encoder maps the history path and social interaction clues into a state embedding. The decoder then takes yk along with
state embedding and the time embedding, where yk is corrupted k times by a noise variable from the ground truth trajectory y0. We learn
the model with the MSE loss between the model output and a noise variable in standard Gaussian distribution.

3. Proposed Approach
In this section, we introduce our MID method, which

models stochastic trajectory prediction task by motion in-
determinacy diffusion. We first explicitly formulate the in-
determinacy variation as a reverse diffusion process. Then
we describe how to train this diffusion model using the vari-
ational inference. Finally, we present the detailed network
architecture of our method shown in Figure 2.

3.1. Problem Formulation

The goal of pedestrian trajectory prediction is to gen-
erate plausible future trajectories for pedestrians based on
their prior movements. The input of the prediction system
is the N history trajectories in a scene such that xi = {sit ∈
R2|t = −Tinit,−Tinit + 1, · · · , 0}, ∀i ∈ {1, 2, · · · , N},
where the sit is the 2D location at timestamp t, Tinit de-
notes the length of the observed trajectory, and the current
timestamp is t = 0. Similarly, the predicted future trajecto-
ries can be written as yi = {sit ∈ R2|t = 1, 2, · · · , Tpred}.
For clarity, we use x and y without the superscript i for the
history and future trajectory in the following subsections.

3.2. Motion Indeterminacy Diffusion

Due to the indeterminacy of human behavior, one per-
son has multiple plausible paths in future state. Thus, we
present a new framework to formulate the stochastic trajec-
tory prediction by motion indeterminacy diffusion. Unlike
other stochastic prediction methods that add a latent vari-
able on the trajectory feature to obtain indeterminacy, our
MID generates the trajectory by gradually reducing the in-
determinacy from all walkable areas to the determinate pre-
diction with a parameterized Markov chain.

As shown in Figure 1, given the initial ambiguous region

yK under the noise distribution and the desired trajectory
y0 under the data distribution, we define the diffusion pro-
cess as (y0,y1, · · · ,yK), where K is the maximum num-
ber of diffusion steps. This process aims to gradually add
the indeterminacy until the ground truth trajectory is cor-
rupted into a noisy walkable region. On the contrary, we
learn the reverse process as (yK ,yK−1, · · · ,y0) to gradu-
ally reduce the indeterminacy from yK to generate the tra-
jectories. Both diffusion and reverse diffusion processes are
formulated by a Markov chain with Gaussian transitions.

First, we formulate the posterior distribution of the dif-
fusion process from y0 to yK as:

q(y1:K |y0) :=

K∏
k=1

q(yk|yk−1)

q(yk|yk−1) := N (yk;
√

1− βkyk−1, βkI),

(1)

where β1, β2, · · ·βK are fixed variance schedulers that con-
trol the scale of the injected noise. Due to the notable prop-
erty of the Gaussian transitions, we calculate the diffusion
process at any step k in a closed form as:

q(yk|y0) := N (yk;
√
ᾱky0, (1− ᾱk)I), (2)

where αk = 1 − βk and ᾱk =
∏k
s=1 αs. Therefore,

when K is large enough, we approximately obtain that
yK ∼ N (0, I). It indicates that the signal is corrupted
into a Gaussian noise distribution when gradually adding
noise, which conforms to the non-equilibrium thermody-
namics phenomenon of diffusion process.

Next, we formulate the trajectories generation process
as a reverse diffusion process from noise distribution. We
model this reverse process by parameterized Gaussian tran-
sitions with the observed trajectories as condition. Given a
state feature f learned by a temporal-social encoder Fψ pa-
rameterized by ψ with the history trajectories x as input, we
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formulate the reverse diffusion process as:

pθ(y0:K |f) := p(yK)

K∏
k=1

pθ(yk−1|yk, f)

pθ(yk−1|yk, f) := N (yk−1;µθ(yk, k, f); Σθ(yk, k)),
(3)

where p(yK) is an initial noise Gaussian distribution, and
θ denotes the parameter of the diffusion model. Both pa-
rameters of diffusion model θ and encoder network ψ are
trained using the trajectory data. Note that we share the net-
work parameters for all transitions. As shown the previous
work [14], the variance term of the Gaussian transition can
be set as Σθ(yK , k) = σ2

kI = βkI. This setting denotes the
upper bound on reverse process entropy for data and shows
good performance in practice [40].

3.3. Training Objective

Having formulated diffusion and reverse diffusion pro-
cesses, we describe how to train the diffusion model. To
predict the real trajectory y0, the desired training should op-
timize the log-likelihood E[log pθ(y0)] in the reverse pro-
cess. However, the exact log-likelihood is intractable, we
thus maximize the variational lower bound for optimization:

E[log pθ(y0)] ≥ Eq[log
pθ(y0:K , f)

q(y1:K |y0)
]

= Eq[log p(yK) +

K∑
k=1

log
pθ(yk−1|yk, f)

q(yk|yk−1)
].

(4)
We utilize the negative bound as the loss function and per-
form the training by optimizing it as:

L(θ, ψ) = Eq[
K∑
k=2

DKL(q(yk−1|yk,y0)‖pθ(yk−1|yk, f))

− log pθ(y0|y1, f)].
(5)

In this loss function, we ignore the term with Eq log p(yK)
in (4), since p(yK) is a standard Gaussian and q(yK |y0)
has no learnable parameters as shown in (2).

Here we describe how to calculate the first term DKL.
The posterior q(yk−1|yk,y0) in DKL is tractable and can
be represented by Gaussian distribution as:

q(yk−1|yk,y0) = N (yk−1; µ̃k(yk,y0), β̃kI), (6)

where the closed form of µ̃k(yk,y0) and β̃k is calculated
as:

µ̃k(yk,y0) =

√
ᾱk−1βk
1− ᾱk

y0 +

√
αk(1− ᾱk−1)

1− ᾱk
yk

β̃k =
1− ᾱk−1

1− ᾱk
βkI.

(7)

Since both diffusion process (6) and reverse process (3) are
Gaussian, we can calculate the DKL by the difference be-

tween the means of µ̃k and µθ as:

DKL = Eq
[
λ‖µ̃k(yk,y0)− µθ(yk, k, f)‖2

]
+ C, (8)

where λ andC are coefficients with no effect on the gradient
direction. Note that the second term − log pθ(y0|y1, f) can
also be formulated as the form in (8) when k = 1. Finally,
we apply the parameterization method as shown in [14] to
reparameterize:

µθ(yk, k, f) =
1
√
αk

(yk −
βk√

1− ᾱk
εθ(yk, k, f)), (9)

and obtain a simplified loss function as:

L(θ, ψ) = Eε,y0,k‖ε− ε(θ,ψ)(yk, k,x)‖, (10)

where ε ∼ N (0, I), yk =
√
ᾱky0 +

√
1− ᾱkε and the

training is performed at each step k ∈ 1, 2, · · · ,K. (Please
see the detailed derivation and detail algorithms in the sup-
plementary material.)

3.4. Inference

Once the reverse process is trained, we can generate the
plausible trajectories by a noise Gaussian yK ∼ N (0, I)
through the reverse process pθ. With the reparameterization
in (9), we generate the trajectories from yK to y0 as:

yk−1 =
1
√
αk

(yk −
βk√

1− ᾱk
εθ(yk, k, f)) +

√
βkz,

(11)
where z is a random variable in standard Gaussian distribu-
tion and εθ is the trained network whose inputs include the
previous step’s prediction yk, state embedding f , and step
k.

3.5. Network Architecture

Different from the widely used UNet [36] in image-
based diffusion models [8, 14, 31], we design a new
Transformer-based network architecture for our MID. With
the Transformer, the model can better explore the temporal
dependency of paths for the trajectory prediction task. To be
specific, MID consists of two key networks: an encoder net-
work with parameters ψ which learns the state embedding
by observed history trajectories and their social interactions,
and a Transformer-based decoder parameterized by θ for the
reverse diffusion process. An overview of the whole archi-
tecture is depicted in Figure 2. We will introduce each part
in detail in the following.

The encoder network models the history behaviors and
social interactions as the state embedding f . This embed-
ding is fed into the decoder network as the condition of the
diffusion model. Note that, designing the network to model
social interactions is not the main focus of this work, and
MID is an encoder-agnostic framework which can directly
equip with different encoders introduced in previous meth-
ods. In the experiments, we apply the encoder of Trajec-
tron++ [38] for its superior representation ability.
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For the decoder, we design a Transformer-based archi-
tecture to model the Gaussian transitions in Markov chain.
As shown in Figure 2, the inputs of decoder include the
ground truth trajectory y0, the noise variable ε ∼ N (0, I),
the condition feature f from the encoder, and a time em-
bedding. In step k, we first add noise into trajectory to get
yk =

√
ᾱky0 +

√
1− ᾱkε. Simultaneously, we calculate

the time embedding and concatenate it with the feature of
observed trajectory. Then, we apply fully-connected lay-
ers to upsample both trajectory yk and condition f , then
sum up the outputs as the fused feature. We also introduce
the positional embedding in the form of sinusoidal func-
tions on the summation to emphasize the positional relation
at different trajectory timestamp t. Finally, the fused fea-
ture with positional embedding is fed into the Transformer
network to learn the complex spatial-temporal clues. The
Transformer-based decoder network consists of three self-
attention layers to sufficiently model the temporal depen-
dencies in trajectories, which takes the high dimension se-
quence as input and outputs the sequence with the same di-
mension. With a fully-connected layer, we downsample the
output sequence to the trajectory dimension. We finally per-
form mean square error (MSE) loss between the output and
a random Gaussian as (10) for current iteration to optimize
the network. Please see the network details in the supple-
mentary material.

4. Experiments

In this section, we first compared the proposed method
with state-of-the-art approaches on two widely-used pedes-
trian trajectories prediction benchmarks, then conducted ab-
lation studies to analyze the effectiveness of key compo-
nents of our MID framework and provided an analysis re-
garding the reverse diffusion process.

4.1. Experimental Setup

Datasets: We evaluated our method on two public
pedestrian trajectories forecasting benchmarks including
Stanford Drone Dataset (SDD) [35] and UCY/ETH [21,33].

Stanford Drone Dataset: Stanford Drone Dataset [35] is
a well established benchmark for human trajectory predic-
tion in bird’s eye view. The dataset consists of 20 scenes
captured using a drone in top down view around the univer-
sity campus containing several moving agents like humans
and vehicles.

ETH/UCY: The ETH [33] and UCY [21] dataset group
consists of five different scenes – ETH & HOTEL (from
ETH) and UNIV, ZARA1, & ZARA2 (from UCY). All
the scenes report the position of pedestrians in world-
coordinates and hence the results we report are in me-
tres. The scenes are captured in unconstrained environ-
ments with few objects blocking pedestrian paths.

Table 1. Quantitative results on the Stanford Drone dataset with
Best-of-20 strategy in ADE/FDE metric. “T” denotes the method
only using the trajectory position information, and ‘T + I” denotes
the method using both position and visual image information. †
means the results are reproduced by us with the official released
code. Lower is better.

Methods Input Sampling ADE FDE
CGNS [22] T + I 20 15.60 28.20

SimAug [23] T + I 20 10.27 19.71
†Y-Net [28] T + I 20 8.97 14.61

Y-Net [28]+ TTST T + I 10000 7.85 11.85
Social-GAN [12] T 20 27.23 41.44

PECNet [29] T 20 9.96 15.88
†Trajectron++ [38] T 20 8.98 19.02

LB-EBM [32] T 20 8.87 15.61
PCCSNET [45] T 20 8.62 16.16
†Expert [53] T 20 10.67 14.38

† Expert [53]+GMM T 20×20 7.65 14.38
MID T 20 7.61 14.30

Evaluation Metric: We adopted the widely-used evalu-
ation metrics Average Displacement Error (ADE) and Final
Displacement Error (FDE). ADE computes the average er-
ror between all the ground truth positions and the estimated
positions in the trajectory, and FDE computes the displace-
ment between the end points of ground truth and predicted
trajectories. The trajectories are sampled 0.4 seconds in-
terval, where the first 3.2 seconds of a trajectory is used
as observed data to predict the next 4.8 seconds future tra-
jectory. For the ETH/UCY dataset, we followed the leave
one out cross-validation evaluation strategy such that we
trained our model on four scenes and tested on the remain-
ing one [12,15,19,38]. Considering the stochastic property
of our method, we used Best-of-N strategy to compute the
final ADE and FDE with N = 20.

Implementation Details: We devised a three-layers
Transformer as the core network for our MID, where the
Transformer dimension is set to 512, and 4 attention heads
are applied. We employed one fully-connected layer to
upsample the input of the model from dimension 2 to the
Transformer dimension, and another fully-connected layer
to upsample the observed trajectory feature f to the same
dimension. We utilized three fully-connected layers to pro-
gressively downsample the Transformer output sequence to
the predicted trajectory, such that 512d-256d-2d. The train-
ing was performed with Adam optimizer, with a learning
rate of 0.001 and batch size of 256. All the experiments
were conducted on a single Tesla V100 GPU.

4.2. Comparison with state-of-the-art methods

We quantitatively compare our method with a wide range
of current methods. As shown in Table 1, we provide
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Table 2. Quantitative results on the ETH/UCY dataset with Best-of-20 strategy in ADE/FDE metric. Lower is better.

Input Sampling ETH HOTEL UNIV ZARA1 ZARA2 AVG
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

SoPhie [37] T + I 20 0.70 1.43 0.76 1.67 0.54 1.24 0.30 0.63 0.38 0.78 0.54 1.15
CGNS [22] T + I 20 0.62 1.40 0.70 0.93 0.48 1.22 0.32 0.59 0.35 0.71 0.49 0.97
Social-BiGAT [19] T + I 20 0.69 1.29 0.49 1.01 0.55 1.32 0.30 0.62 0.36 0.75 0.48 1.00
MG-GAN [6] T + I 20 0.47 0.91 0.14 0.24 0.54 1.07 0.36 0.73 0.29 0.60 0.36 0.71
Y-Net [28] + TTST T + I 10000 0.28 0.33 0.10 0.14 0.24 0.41 0.17 0.27 0.13 0.22 0.18 0.27
Social-GAN [12] T 20 0.81 1.52 0.72 1.61 0.60 1.26 0.34 0.69 0.42 0.84 0.58 1.18
Causal-STGCNN [2] T 20 0.64 1.00 0.38 0.45 0.49 0.81 0.34 0.53 0.32 0.49 0.43 0.66
PECNet [29] T 20 0.54 0.87 0.18 0.24 0.35 0.60 0.22 0.39 0.17 0.30 0.29 0.48
STAR [49] T 20 0.36 0.65 0.17 0.36 0.31 0.62 0.26 0.55 0.22 0.46 0.26 0.53
Trajectron++ [38] T 20 0.39 0.83 0.12 0.21 0.20 0.44 0.15 0.33 0.11 0.25 0.19 0.41
LB-EBM [32] T 20 0.30 0.52 0.13 0.20 0.27 0.52 0.20 0.37 0.15 0.29 0.21 0.38
PCCSNET [45] T 20 0.28 0.54 0.11 0.19 0.29 0.60 0.21 0.44 0.15 0.34 0.21 0.42
†Expert [53] T 20 0.37 0.65 0.11 0.15 0.20 0.44 0.15 0.31 0.12 0.26 0.19 0.36
†Expert [53]+GMM T 20×20 0.29 0.65 0.08 0.15 0.15 0.44 0.11 0.31 0.09 0.26 0.14 0.36
MID T 20 0.39 0.66 0.13 0.22 0.22 0.45 0.17 0.30 0.13 0.27 0.21 0.38

Table 3. Ablation studies on MID and network architecture de-
signs. Trans is the abbreviation of Transformer

Group Method Architecture ADE FDE
1 MID Trans-512d 7.61 14.30

2
MID Trans-256d 7.91 14.50
MID Trans-1024d 7.64 14.37

3
MID Linear 8.85 17.25
MID LSTM 8.41 16.57

4
Trajectron++ LSTM 8.98 19.02
Trajectron++ Trans-256d 9.86 19.56

the comparison between our method and existing meth-
ods on the Stanford Drone dataset. We categorize methods
as Trajectory-Only methods (T) and Trajectory-and-Image
(T+I) methods, as the additional image information may be
crucial at certain circumstances yet increases computation
cost. Besides, we also report the sampling number since
adding the sampling number can effectively promote the
performance. We provide the results under standard 20 sam-
plings of MID and other methods for a fair comparison. We
observe that our method achieves an average ADE/FDE of
7.61/14.30 in pixel coordinate, which achieves the best per-
formance among all the current methods, regardless of the
involvement of image data. Specifically, our MID outper-
forms the current state-of-the-art T+I method Y-Net+TTST
on the ADE metric. Note that our method did not use the
image data and apply any post-processing such as the Test-
Time Sampling Trick (TTST) [28]. We provide the results
with the sampling trick in the supplementary.

Reverse Diffusion Step k
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ZARA1 ADE

SDD ADE
SDD FDE
SDD Diversity

ZARA1 FDE
ZARA1 Diversity

++++++

Figure 3. Trade-off between determinacy (ADE/FDE) and diver-
sity within reverse diffusion steps from 0 to 100.

We also conducted experiments on the ETH-UCY
dataset and tabulated the results in Table 2. Our method
achieves a comparable performance with only trajectory in-
put in 20 sampling, with an average performance of 0.21
ADE and 0.38 FDE. We found that MID are benefited more
on the larger dataset (e.g. the SDD dataset).

4.3. Ablation Studies

In this subsection, we conducted ablation studies to in-
vestigate the effectiveness of each key component including
diffusion model and Transformer architecture. Then, we
provided a detailed analysis for reverse diffusion process.

Diffusion Model: In order to examine the importance
of our diffusion model, we degraded our MID into a CVAE
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Figure 4. Visualization of generated trajectories at each diffusion time step t. We can see that the reverse diffusion process progressively
reduces the indeterminacy and reaches the desired trajectory through the time step. Starting from a normal distribution at t = 0 that
corresponds to all walkable areas, and the observed paths (red dash), our MID method successfully eliminates improbable trajectories and
gradually fits the ground truth future paths (blue line). Best viewed in color.

based framework, Trajectron++. We replaced the decoder
from commonly-used LSTM to our Transformer in this
CVAE based framework to verify whether the performance
boost comes from the Transformer. The group 2 and 4 in Ta-
ble 3 show the performance comparison. We observe that
using the same encoder and decoder but without our diffu-
sion model, the results degrade significantly, demonstrating
the effectiveness of our diffusion model. Besides, only re-
placing the decoder with our Transformer architecture in the
CVAE based framework does not improve performance as
shown in group 4 in Table 3.

Transformer Architecture: We also conducted exper-
iments on the decoder architecture of MID. According to
group 1 and 3 in Table 3, Transformer outperforms the
Linear and LSTM architecture by a large margin. It indi-
cates the Transformer architecture is effective for MID to
model the temporal dependencies of trajectory. Besides, we
evaluated the Transformer architectures with different di-
mensions. As tabulated in Table 3 group 1 and 2, we ob-
serve that the Transformer with 512 dimensions leads to the
best performance, and further increasing the Transformer
dimension or model parameters does not yield better results.

Analysis of Reverse Diffusion Process: To further ex-
plore the reverse diffusion process, we generated 20 trajec-
tories at each reverse diffusion step and analyzed the grad-
ual change of the distribution. We provide an analysis be-
tween the reverse diffusion step and the corresponding di-
versity and ADE/FDE, as illustrated in Figure 3. The tra-
jectory diversity is calculated as the average of Euclidean
distance between any of the two in the generated 20 trajec-
tories. When the reverse diffusion step is small, the trajec-
tory distribution is more indeterminate and produces highly
diverse trajectories. As the reverse diffusion step increases,

we observe the decline in diversity and the rise of deter-
minacy. With our MID framework, we can control the de-
gree of indeterminacy by adjusting the step numbers, and
achieve a flexible trade-off between the diversity and deter-
minacy of the generated trajectories.

In addition, we visualize the distribution of trajectories
as contours in Figure 4 and each contour map is sampled by
ten steps interval. We see that the contours are diverse at the
early stage of the diffusion process, and deform gradually to
be more concentrated and fit to the ground truth trajectory.

4.4. Qualitative Evaluation

We further investigated the ability of our framework by
the qualitative results. Figure 5 illustrates the most-likely
predictions of our MID and Trajectron++ [38] on all five
scenes on the ETH/UCY dataset. The qualitative results
show that both MID and Trajectron++ fits the ground truth
paths well. We observe that Trajectron++ performs simi-
larly to MID for short-term forecasting yet a little deviates
from the ground truth path for longer prediction. Besides,
we visualize multiple predicted trajectories on SDD in Fig-
ure 6. We observe that all predictions show their feasibility
conditioned on the observed trajectories. Though reducing
the ambiguity with the reverse diffusion model, We found
that generated trajectories are still full of the diversity in a
walkable region.

5. Conclusion & Discussion
In this paper, we introduced a new MID framework to

formulate trajectory prediction with motion indeterminacy
diffusion. In this framework, we learned a parameterized
Markov chain conditioned on the observed trajectories to
gradually discard the indeterminacy from ambiguous areas
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ETH HOTEL UNIV ZARA1 ZARA2

Observed Trajectory Ground Truth MID Trajectron++

Figure 5. Visualization of predicted trajectories on the ETH/UCY Dataset. Given the observed trajectories (red), we illustrate the ground
truth paths (blue) and predicted trajectories by MID (dashed cyan) and Trajectron++ (green) for five different scenes. We see that our
results are much closer to the ground truth compared with Trajectron++. Best viewed in color and zoom-in for more clarity.

Observed Trajectory Ground Truth MID

Figure 6. Visualization of generated trajectories in the Stanford Drone Dataset. Given the observed trajectories (red), we illustrate the
ground truth paths (blue) and predicted best-of-20 trajectories by MID (dashed cyan) in different scenes. The blue line is covered by the
cyan dashes in all scenes. Best viewed in color and zoom-in for more clarity.

to acceptable trajectories. By adjusting the length of the
chain, we can achieve the trade-off between diversity and
determinacy. Besides, we designed a Transformer-based
architecture as the core network of our method to model
complex temporal dependency in trajectories. Experimen-
tal results demonstrate the superiority of our method which
achieves state-of-the-art performance on the Stanford Drone
and ETH/UCY benchmarks.

Broader Impact: MID could be applied to a wide range
of applications with human-robots interaction. With inde-
terminacy modeling, we can generate accurate and reason-
able future trajectories, which helps much with decision
making in auto-driving. Besides, MID can adjust the de-
gree of indeterminacy, which has the potential to be applied
in dynamic and interactive environments.

Limitations: Despite the promising performance and an
applicable trade-off nature, the time cost at reverse diffu-
sion process could be expensive due to multiple steps (100
steps in our experiments). When evaluated with 512 trajec-
tories on the ZARA1 dataset, Trajectron++ needs 0.443s
but MID will need 17.368s with 100 diffusion steps set-
ting. Fortunately, many recent efforts have been made to
significantly reduce the sampling cost while keeping the
high generation performance [17, 31, 39, 42, 48]. However,
plugging these methods in our MID is not trivial. We leave
it as future work to build a more efficient system.
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