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Abstract

In this paper, we take an early step towards video repre-
sentation learning of human actions with the help of large-
scale synthetic videos, particularly for human motion rep-
resentation enhancement. Specifically, we first introduce
an automatic action-related video synthesis pipeline based
on a photorealistic video game. A large-scale human ac-
tion dataset named GATA (GTA Animation Transformed
Actions) is then built by the proposed pipeline, which in-
cludes 8.1 million action clips spanning over 28K ac-
tion classes. Based on the presented dataset, we design
a contrastive learning framework for human motion rep-
resentation learning, which shows significant performance
improvements on several typical video datasets for ac-
tion recognition, e.g., Charades, HAA 500 and NTU-RGB.
Besides, we further explore a domain adaptation method
based on cross-domain positive pairs mining to alleviate the
domain gap between synthetic and realistic data. Extensive
properties analyses of learned representation are conducted
to demonstrate the effectiveness of the proposed dataset for
enhancing human motion representation learning.

1. Introduction

Spatiotemporal semantic features are important for video
understanding. Early works [41,44] adopt two-stream net-
works to extract appearance features and motion informa-
tion separately. However, the extraction of optical flow is
expensive in both time and space. And the flow of objects
and background are also retained, which introduce scene
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Figure 1. The proposed contrastive learning framework for our
GATA dataset. Unlike previous methods, we construct positive
pairs offline, which are different views rendered using the same
semantic 3D skeleton action sequence with diverse backgrounds,
human appearances and camera views. Our method samples real
views rather than simple traditional data augmentation for con-
trastive unsupervised learning.

bias and thus affect the human motion representation learn-
ing. [20] adopts 3D convolutions to capture the spatiotem-
poral features directly from raw videos. However, stacked
3D convolutions require tremendous parameters and the
motion dynamics are capture implicitly. Recently, many re-
searchers [21,25,49] attempts to design elaborate architec-
tures to extract motion features explicitly through neighbor-
ing feature-level difference, which provide complementary
features for action recognition and achieve convincing per-
formance. Therefore, learning a strong motion representa-
tion is essential for human action understanding. In contrast
to the task-specific architecture designs for motion model-
ing, we try to solve this problem from the data perspective.

To analyze the human motion extraction process, a large-
scale motion-oriented human action dataset is essential.
However, existing public datasets, e.g., Kinetics [7, 8] and
YouTube-8M [3], fail to effectively support the motion rep-
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resentation learning due to the overwhelming bias of scene
context [11]. That is said, correct action predictions can
be made merely based on scene context instead of human
actors. For example, a classroom environment or a white-
board usually indicates the action of giving a lecture, while
the actual activity in the scene is underrepresented. There
are also some motion-oriented datasets, e.g., Charades [40]
and NTU-RGB [39]. However, the size and diversity of
these datasets are limited. Therefore, with the help of a
high-performance automatic data collection pipeline based
on GTA, we collect a large-scale synthetic video dataset
named GATA, which contains ~ 8.1M action instances cov-
ering ~28k classes. In this dataset, an action class is defined
by a specific character animation or a pose sequence. Ran-
domized human characters are controlled to play this action
under diverse scene settings with random camera views. In
short, scene bias is weakened or even eliminated in the pro-
posed dataset. Figure 2 illustrates some examples of our
GATA.

Based on the proposed GATA dataset, a general and ro-
bust human motion representations can be learned using a
ready-made action recognition model (e.g., SlowFast [13],
TSM [26], etc.). And the encoded knowledge can be easily
transferred to down-stream action understanding tasks. As
shown in Figure 1, we design a contrastive learning frame-
work for GATA, where a skeleton sequence is euqgivalent to
a sample, and the action instance is equivalent to a view in
the tranditional contrastive learning setting. However, this
view is not generated by simple online data augmentation
but is rendered and stored offline by the CG pipeline. Fur-
thermore, we analyze the learned representations through
confusion matrix, Nearest-Neighbor retrieval and Class Ac-
tivation Maps (CAMs) [50]. And we can find that our model
tends to focus on human motion to recognize actions, while
the model trained with Kinetics [8] is more inclined to rec-
ognize actions through scenes and surrounding objects. Sur-
prisingly, we also find that our synthetic GATA and web-
crawled videos are complementary. By jointly training with
Kinetics and HAAS500, the model can learn a more compre-
hensive representation for scenes, objects, and human mo-
tion. Furthermore, we propose a domain adaptation method
based on cross-domain positive pair mining to alleviate the
domain gap between synthetic and realistic data.

In summary, our contributions are three folds:

e We introduce an automatic high-performance data col-
lection pipeline and synthesize a large-scale human ac-
tion dataset. The videos of an action class are trans-
formed from a specific character animation with the
help of modern graphics technology, which is essen-
tial for human motion modeling.

* We formalize the GATA training process with a con-
trastive learning framework and design a joint con-

trastive learning strategy together with realistic videos
for a more comprehensive video representation.

L]

Detailed experiments are conducted to learn and an-
alyze the human motion representation with the help
of proposed GATA, which shows considerable perfor-
mance improvement on downstream tasks and evident
enhancement of motion modeling by training solely or
jointly with our proposed GATA.

2. Related Works

Action Datasets. Recently, many datasets have been
proposed, including UCF101 [42], Kinetics [8], Activi-
tyNet [5], Moments-in-Time [31], and others [6, 17, 18,
,29,37,45,47,48]. However, they suffer from server
scene bias. Charades [40] collects videos of daily in-
door activities, which has no scene bias but is small.
Something-Something [15] and Jester [27] are typically
temporally related datasets, but they are not universal
enough. Something-Something focuses on the interaction
between hand and object, and Jester is a gesture dataset.
Synthetic Datasets. Data synthesis based on computer
graphics is an inexpensive way to obtain high-quality data
for deep learning. [22,34,35] collect synthetic scenes based
on GTA-V. Specifically, [35] develops a fast annotation
method based on the rendering pipeline. [22] presents a
method to analyze the internal engine buffers according
to the depth information, which can produce accurate ob-
ject masks. [34] proposes an approach to extract data with-
out modifying the source code and content from GTA-V,
which can provide six types of ground truth. [38] exploits
the Unity Engine to construct synthetic street scene data for
autonomous driving, which generates pixelwise segmenta-
tion labels and depth maps. [36] defines some actions and
then render videos through procedural generation. We can
obtain some semantic action categories by this way. But it
is difficult to define a larger categoriy set.
Action Recognition and Motion Representation Learn-
ing. Early action recognition methods have focused on
learning spatiotemporal or motion features. [43] propose 3D
CNN to learn spatiotemporal features, while [4 1] employ an
independent temporal stream to learn motion features from
precomputed optical flows. [43, 46] propose decomposing
3D convolution filters into 2D spatial and 1D temporal fil-
ters. [51] propose studying mixed 2D and 3D networks with
the frame sampling method of temporal segment networks
(TSNs) [44]. [26] propose the temporal shift module (TSM)
that simulates 3D convolution using 2D convolution with
a part of input feature channels shifted along the temporal
axis. [21] propose a module to extract motion features by
spatial shift and subtraction operations between appearance
features. In contrast, we propose a dataset without scene
bias for better motion learning.
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Unsupervised Contrastive Learning. Contrastive learn-
ing has demonstrated great potential in unlabeled data.
Thanks to contrastive learning approaches, the model can
be empowered to distinguish samples from separate do-
mains without labels. There are some prior works in this
area. [16] propose a momentum dictionary to store and ex-
clude learned features on the fly for input samples so that the
number of stored features can be heavily expanded. [9] pro-
pose a simplified contrastive learning framework including
only major components that benefit the learned representa-
tion. However, these methods all rely on spatial or temporal
data augmentation [32, 33] to construct separate views of
input samples. In this paper, we achieve this by rendering
the video background and human body based on computer
graphics technology rather than simple data augmentation.

3. The GATA Dataset

In this section, we introduce how to automatically col-
lect large-scale synthetic action videos and the details of the
proposed GATA dataset, analyze its features and compare it
with the related datasets.

3.1. Data Collection

The center block of our data collection pipeline relies on
modern computer graphics technology for efficient realis-
tic video content synthesis. We leverage the video game
Grand Theft Auto V (GTA-V) [1] as this block because of
1) its real-time rendering capability for photorealistic video
content synthesis; 2) a large virtual world with all kinds of
urban scenes, weather, lighting conditions and pedestrian
character models with optional clothing/equipment; 3) the
feasibility to control elements of the virtual world includ-
ing scene settings, human character and animation by game
Mods; and 4) most importantly, its enormous amount of
high-quality human character animations, created by mo-
tion capture and refined by artists.

With all the aforementioned advantages, we develop a
high-performance automatic data collection pipeline ex-
tended from JTA [2, 12] for large-scale human action video
dataset synthesis. To collect a dataset for representation
learning, we tend to render all the available animations
in diverse randomized scene settings. The large num-
ber of rendering tasks motivates us to have a pipeline de-
signed with automation and efficiency. The pipeline con-
sists of three main parts handled by different computing
nodes: scene setting generation, scene rendering and post-
processing. The scene setting generation module executed
by a manager server automatically generates diverse ran-
dom scene settings. Scene rendering is conducted by mul-
tiple worker machines in parallel to render video frames
and write them out with annotations according the received
scene settings. The postprocessing step handled by a data

server gathers all the synthesis data and filters out failed data
samples. We detail the pipeline in supplementary.

There are two aspects of factors to guide the generation
which is configured in scene settings : environment and hu-
man subject. The environment is determined by scene lo-
cation, weather, time of day and camera view. The human
subject variation includes character gender, stature,clothing
and so on. Figure 2 shows these factors.

3.2. Database statistics, Comparison and Analysis

As shown in Table 1, we discuss the characteristics of
several typical datasets.
Database size. Our dataset provides approximately 8.1M
action clips with 27,814 fine-grained labels. An action clip
is a tracklet of a subject playing a specific action animation.
We place multiple subjects in the same scene for the parallel
rendering of the same animation to scale up data samples ef-
ficiently. The 27814 fine-grained labels mean different an-
imation instances. These instances are merged and filtered
from game animation assets of GTA-V, which has more
than 100K animation asset items in total. Despite the se-
mantic labels being defined at animation-instance-level, the
unprecedented scale of GATA as a synthetic video action
dataset is much larger than those representative real video
datasets and synthetic dataset like PHAV [36], which gives
the possibility to learning video representation through the
synthetic dataset. More dataset-related details can be found
in supplementary.
Data source. Our dataset is generated by the Computer
Graphic engine, which is easier to generate large-scale
data with more accurate, noise-free annotations than web
datasets. The previous synthetic datasets are mostly used
for image tasks such as object detection, semantic segmen-
tation and depth estimation [34], while GATA focuses on
human motion representation, a more difficult task, where
large-scale and diverse videos are necessary.
Clues for classification. There are three clues for classi-
fying an action: scene, object and human motion. Many
categories can be identified by scene and object in Kinet-
ics. Charades, NTU-RGB and HAAS500 decouple scenes
and actions to a great extent. But a model classifies an ac-
tion by understanding the objects and human motion be-
cause many labels are combinations of a verb and a noun,
which may result in representation bias because it is diffi-
cult to enumerate and collect data for all verb-noun combi-
nations [19, 28]. Different from them, human motion is the
only discriminative clue in GATA.
Other features of GATA. As shown in Figure 2, thanks
to the synthesis engine, our dataset contains many diversity
factors, such as scene, view, time of day and weather, which
is very beneficial for robust representation learning. In ad-
dition, GATA provides informative annotations except for
action classes, such as 2D/3D bounding boxes, key points
with visibility and camera parameters. (These pieces of in-
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Figure 2. Overview of the proposed GATA dataset (zoom for better view). As the naming of the dataset, based on the rich animations of
the video game GTA-V, we generate a large-scale human action dataset with randomized scenes, time of day, weather, camera views and
human body configurations. A character animation related to an action clip is defined by a 3D skeleton motion sequence essentially in CG

pipeline.

Table 1. Detailed comparisons of our GATA with several existing video datasets.

Clues for classification

Dataset #Clip #Class Source . .
scene  object motion only

Kinetics 400 0.2M 400 Web v v X
Kinetics 700  0.5M 700 Web v v X
Charades 66k 157 Actors X v X

NTU RGB 114k 120 Lab X v X

HAAS500 50k 500 Web X v X

GATA (Ours) 8.1M 27814 CG X X Ve

formation are not displayed in this paper, which will be pro- 4.1. MoCo Review

vided in the public dataset for research of related areas.)

4. Contrastive Learning Framework for GATA

In this section, we first describe a common unsupervised
contrastive learning framework, MoCo. Then, we imple-
ment the framework on our GATA. Last, we propose a joint
contrastive learning framework that incorporates real video
data into the training process to obtain a universal represen-
tation of human action.

Momentum Contrast (MoCo) provides a dictionary
lookup for contrastive learning. Given an encoded query ¢
and encoded keys {ko, k1, k2, ...} in a queue, the contrastive
loss of MoCo can be written as follows:

L, = —log 1:;mp(q ki /T)
2i—oexp(q - ki/7)
where 7 is a scalar. The sum is over one positive and K
negative sample. This loss tends to classify g as k. via a
softmax classification process. The query ¢ is the represen-
tation of an input sample via the encoder network, while the

(1
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Figure 3. Examples of human action clips. Based on the trained model, we visualize the feature distribution of the classes in GATA. We
randomly display 3 classes in 5 clusters and their label text which is name of the game animation assets.

keys k; are the representations of the other training samples
in the queue.

The core of momentum contrast is to dynamically main-
tain the queue. The samples in the queue are progressively
replaced following an FIFO scheme. After computing the
contrastive loss in Equation 1, the encoder is updated via
gradients, while the momentum encoder is updated as a
moving average of the encoder weights.

4.2. Contrastive Learning based on GATA

Our contrastive learning framework is shown in Figure 1.
Different from other unsupervised video contrastive learn-
ing tasks, e.g., [33], where two clips from the same video
are usually regarded as a positive pair, which is clearly not
true under our setting. For example, the first half and the
second half of a sequence generally represent completely
different semantics. Therefore, given a skeleton sequence,
we will randomly select a time window and then sample
several frames in the same window in two rendered in-
stances to form a positive pair.

We use MoCo V2 [10] as our learning algorithm. The
training process is described in Algorithm 1.

Algorithm 1 Contrastive learning algorithm for GATA.
Input: skeleton sequence set X, x; is the i-th rendered in-
stance of sequence x.

Output: well-trained model.

1: while iter < iter,,., do

2:  x =loader.next() # load a minibatch x with NV skele-
ton sequences.

3: s,e =random_window(x) # the start and end frame
index.

. x4 =sample(z, s, ) # sample a rendered instance.

5. x = sample(x, s, e) # sample another rendered in-
stance.

6:  MoCo(x, x1) # core algorithm of MoCo.

7: end while

8: return trained model

4.3. Joint Contrastive Learning with Web Videos

Since the synthetic data are different from the real video
in appearance, we introduce HAA500 and Kinetics-Tracklet
[24] for joint training. HAASOO is a single-person ac-
tion dataset that is matched with GATA. For the Kinetics-
Tracklet dataset, we crop the person tracklets in training,
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so it can also be regarded as a single-person action dataset.
These three datasets are named the JNT (joint) dataset.

When training the JNT dataset, we control the ratio of
synthetic data and real data in each minibatch to 1 : 1. For
web video, we still use data augmentation methods to obtain
views of a sample. In addition, to avoid the model using
domain clues to discriminate negatives during training, we
adopt two disjoint feature queues for synthetic data and web
video data and compute loss independently.

Due to the domain gap between synthetic data and real
data, and our goal is to improve on real data, we design an
effective method to alleviate the gap. In detail, for a feature
of synthetic g, we will find the top-k nearest neighborhoods
in the real feature queue and treat them as positive instances.
For a query of real data, we still compute loss by Equation
1 while using the Multi Instance InfoNCE loss [30] for a
query of synthetic video:

exp(q” - Ki/T) + Xprepr, exp(@” - p"/7T)

Ly = —log—5
2izo €xp(q - ki/T) + 3 prepr, exp(q” - p7/T)

2
where PJ, is the positive set from the real feature queue for
query ¢, which is defined as:

Py ={K]l|i € topK(q" - k),k € K", K] > th} (3)
where th is a similarity threshold for stable training, which
is set as 0.7 for all experiments. Intuitively, it is cross-
domain positive pairs mining for a synthetic query in the
real feature queue while forcing the latent representation of
synthetic data to be closer to the real data representation, as
shown in Figure 3.

5. Experiments
5.1. Datasets

Charades contains 9848 videos with an average length of
30s. In each video, a person can perform one or more ac-
tions. The task is to recognize all the actions in the video
without localization. We merge the labels according to the
verb to form the Charades-Motion dataset for evaluating the
quality of motion modeling.

Kinetics-Tracklet is a subset of Kinetics 700. To provide
localized action labels on a wider variety of visual scenes,
the researchers provide AVA action labels on videos from
Kinetics-700, such that we can crop the region of a person
according to the bounding box annotation.

HAAS500 is comprised of 10k human-centric action videos
from 500 fine-grained classes, with a high average of 69.7%
detectable joints. The actions are from distinct areas, in-
cluding sports, instrument performance and daily actions.
NTU-RGB is built by actors performing specified actions
in different scenes. The dataset is collected using multicam-
era and multiview methods. In addition to RGB, there are
other modalities, such as depth and skeleton. We only study

RGB-based video representation. The dataset provides 3
settings: cross-setup (i.e., cross-scene), cross-subject and
cross-view. We adopt cross-setup setting to evaluate the
learned representations (i.e., X-setup in Table 2).

5.2. Unsupervised Training Details

Since the scale of the human body in the GATA dataset
1s almost invariant, which is not conducive to the robustness
of the representation, we adopt random scale augmentation
to train the models. For an input clip, we randomly sample
a spatial scaling factor A € [0.5,1.0], resize the clip to T" X
AH x AW and pad the clip to H x W. Here, T, H and W
are the input time, height and width, respectively.

We train the GATA dataset using three action recognition
methods: TSM, TimeSFormer [4] and SlowOnly [13]. For
TSM and TimeSFormer, given a video segment (limited by
the time window from the 3rd line in Algorithm 1), we first
divide it into 7" segments of equal duration. Then, we ran-
domly sample one frame from each segment to obtain the
input sequence with 7" frames. In addition to random scale,
we perform random cropping flipping as data augmentation
during training time. The input size T' x H x W is set as
8 x 112 x 112. For SlowOnly, we densely sample a clip
with T" frames from the video segment with a stride of 2
frames. We train the two models with 16 GPUs, and each
GPU processes a minibatch of 8 video clips. We start with
a learning rate of 0.05 and reduce it to 0.0001 by a cosine
schedule. We also use a linear warm-up strategy [!4] in
the first 8k iterations. We use momentum of 0.9 and wight
decay of 10=%. A dropout of 0.5 is used before the final
FC layer in the cross entropy loss setting, but dropout is
closed in the contractive learning setting. We train for 80k
iterations on GATA dataset. Unless otherwise specified, we
adopt ResNet-50 as the backbone of all models.

In the joint training experiment of GATA and other
datasets (we name the joint dataset JNT), we do not per-
form random scale augmentation on other datasets but ran-
domly crop 112 x 112 from a clip or its flip version, with
a shorter side randomly sampled in [128, 160] pixels. We
use two individual heads and queues for the two domains.
The final loss is the average of the two losses. We train the
JNT dataset for 100k iterations. Other settings are the same
as those in the GATA training independently. More training
and testing details can be seen in supplementary.

5.3. Main Results and Observations

As shown in Table 2, we use 3 settings to conduct ex-
periments: supervised trained over Kinetics-400, trained
over GATA (the model with ”CE” indicates training using
Cross Entropy loss), trained over INT (GATA + HAAS00 +
Kinetics-Tracklet) by contrastive learning.

Effects of pretraining over GATA. Compared with the
K400 pretrained model, our model is weak on the Charades
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Table 2. Main Results on Downstream tasks.

Model Pretrain Charades Charades-Motion HAAS500 NTU-RGB, X-setup
SlowOnly K400 sup. 355 24.5 234 40.5
TimeSFormer K400 sup. 33.8 21.1 61.3 37.0
TSM K400 sup. 34.5 24.0 65.4 41.7
SlowOnly GATA 32.0 28.2 21.7 534
SlowOnly (CE) GATA 31.5 27.9 21.4 52.0
TimeSFormer GATA 30.1 27.2 57.0 51.5
TSM GATA 31.2 28.0 58.7 51.8
SlowOnly JNT unsup. 34.8 28.1 24.7 60.7
TimeSFormer  JNT unsup. 32.6 27.8 57.4 55.2
TSM JNT unsup. 35.7 31.0 61.7 64.6
SlowOnly 101 JNT unsup. 35.7 29.9 28.3 65.3
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Figure 4. Confusion Matrix Analysis. 19—20: put on a
hat/cap—take off a hat/cap. 89—88: take object out of bag—put
object into bag. 58—59: walking towards—walking apart. 7—38:
sit down—sstand up. 55—57: giving object—shaking hands.
14—13: take off jacket—put on jacket. 87—86: take off bag—put
on bag. 11—29: writing—type on a keyboard. 15—16: put on a
shoe—take off a shoe. 107—110: knock over—step on foot.

and HAASO00 datasets, which is in line with expectations,
because some actions in these two datasets need to be dis-
tinguished by objects, such as labels in Charades: Hold-
ing a Box vs Holding a Laptop. However, the Charades-
Motion and NTU-RGB datasets pay more attention to spe-
cific human motion, and the model pretrained on GATA out-
performs the one with K400 under the same training set-
ting. In particular, for the Charades-Motion dataset, the
SlowOnly model pretrained over GATA (mAP=28.2) is 3.7
better than the baseline K400 model (mAP=24.5). There-
fore, a motion-oriented dataset generated by an automatic
graphic engine provides an even better human motion rep-
resentation pretraining.

Effects of joint pretraining. We can see that joint pre-
training can bring further improvement. On the one hand,
HAAS500 and Kinetics-Tracklet make up for the lack of
GATA’s ability to model objects and scenes. On the other
hand, joint training narrows the domain gap with the real
world. In addition, increasing the scale of the model can
further improve the performance. SlowOnly 101 can per-
form better than SlowOnly 50 on all four tasks. Besides, we

Table 3. Ablation study of the domain adaptation operation.

Pretrained Dataset GATA  Charades HAAS500
GATA 79.8 31.2 58.7
INT 76.5 35.2 61.3
INT (w/ DA) 74.2 35.7 61.7

Table 4. MAP on Charades of models trained over different dataset
combinations.

Model | GATA  HAAS500  Kinetic-Tracklet | MAP

v 31.2
TSM v v 34.5
v v v 35.7

demonstrate that both HAA 500 and Kintetics are beneficial

for the joint training in Table 4.
Effects of cross-domain positive mining. Based on TSM-

R50, we remove the domain adaptive strategy during joint
training. Here, we define the accuracy on the GATA dataset
based on the KNN algorithm. For a video, we set 3 sec-
onds as the time window with a stride of 2 and then use
the trained model to extract clip-level normalized features.
We calculate the dot similarity of two videos, and the two
sets of clip-level features are. If 3 or more of the top 5
similar videos are from the same skeleton sequence as it, it
is regarded as a correct prediction; otherwise, it is viewed
as an error. As shown in Table 3, the accuracy of GATA
in the joint training is lower than that of the independent
training GATA. After adding the domain adaptation strat-
egy, it drops by 2.3 points. However, the performance on
the downstream dataset is better.

5.4. Analysis of the Learned Representations

In this section, we freeze the backbone to fine-tune
the downstream task to analyze the learned representation,
which is the most direct way to analyze the learned repre-
sentation. We use NTU-RGB dataset to achieve this. The
reason is that NTU-RGB provides a cross-scene setting,
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Figure 5. Video retrieval examples. The two rows are the top-3 nearest neighbors of the query video provided by the GATA model and
K400 model. Green indicates the same class as the query video, while Red indicates a different class. For brevity, we choose a keyframe

to represent a video.

where almost the same actions exist in various scenarios,
which is helpful to reflect the scene bias of a model. We
use TSM to train the GATA and then freeze the backbone to
evaluate the learned representation.

Linear Evaluation Performance on NTU RGB. Table 2
shows the linear evaluation performance on the NTU-RGB
dataset, i.e., training a new FC layer to classify with frozen
backbone. We can see that the model trained over GATA is
clearly better than the K400 model. Furthermore, training
with the JNT dataset can further improve the performance,
which verifies the complementarity of the two datasets.
Confusion Matrix Analysis. Figure 4 shows the top-10
error pairs of the K400 model on NTU-RGB and the per-
formance of other two models. We can see that the K400
model is particularly prone to make mistakes on opposite
verb pairs, such as the top-1 error pair put on a hat/cap —
take off a hat/cap. In contrast, the GATA model performs
much better on this pair (2% vs 36% error rate).

Video Retrieval. We visualize the nearest neighbor (NN)
of the video segments in the feature space in Figure 5. In
detail, one video is uniformly sampled from each video,
and the spatiotemporal feature is extracted and pooled into
a vector. Then, the feature vector is used to compute the
L2 distance. Note that the network does not receive any
class label during training. It can be seen that the K400
model prefers to encode some scene semantics, as the top-3
nearest neighbors are all from the same scene. In contrast,
our model has actually learned the human motion represen-
tation. For example, our model can discover videos with
the same class hush or a similar class thumb up. Notably,
the scenes of these neighbors are different from the query
video, which shows that our model indeed characterizes hu-
man motion rather than scenes.

Visualization. To further demonstrate the efficacy of our
dataset, we show class activation maps (CAMs) [50] from
the two models in Figure 6. We can see that the model
trained with K400 usually focuses on the irrelevant region.
However, the model trained with GATA truly discriminates

put on a shoe check time put on jacket

hand waving

-

Figure 6. Class activation maps (CAMs) of models trained using
GATA (first row) and K400 (second row) on NTU-RGB. For clar-
ity, we show only the 5-th frame of a clip with 8 frames because
the middle moment is usually when the action is most salient. The
video representation trained with GATA can be more concentrated
in the region of human.

an action based on where the person is located.

6. Conclusions and Discussions

We propose a new synthetic action database, which is

defined only by human motion. This dataset has a large vol-
ume of data, and the number of categories is much greater
than that of the existing datasets. Pretraining on this dataset
can enable a model to have a strong representation of hu-
man motion. In addition, we analyze the complementary
effect of this dataset and real datasets. Joint training over
these datasets achieves a substantial improvement. In ad-
dition, we propose a hard positive pairs mining-based do-
main adaptation method, which further enhances the abil-
ity to represent real human motion. GATA now covers
single-player action only. Meanwhile, we only use single-
player real datasets for joint training. Multiplayer action
and human-object interaction can be simulated for general
scenarios in the future.
Acknowledgements. This Research was partly supported
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Beijing Municipal Science and Technology Project (Project
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