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Abstract

Weakly-supervised temporal action localization aims to
recognize and localize action segments in untrimmed videos
given only video-level action labels for training. Without
the boundary information of action segments, existing meth-
ods mostly rely on multiple instance learning (MIL), where
the predictions of unlabeled instances (i.e., video snippets)
are supervised by classifying labeled bags (i.e., untrimmed
videos). However, this formulation typically treats snippets
in a video as independent instances, ignoring the underly-
ing temporal structures within and across action segments.
To address this problem, we propose ASM-Loc, a novel
WTAL framework that enables explicit, action-aware seg-
ment modeling beyond standard MIL-based methods. Our
framework entails three segment-centric components: (i)
dynamic segment sampling for compensating the contribu-
tion of short actions; (ii) intra- and inter-segment attention
for modeling action dynamics and capturing temporal de-
pendencies; (iii) pseudo instance-level supervision for im-
proving action boundary prediction. Furthermore, a multi-
step refinement strategy is proposed to progressively im-
prove action proposals along the model training process.
Extensive experiments on THUMOS-14 and ActivityNet-
v1.3 demonstrate the effectiveness of our approach, estab-
lishing new state of the art on both datasets. The code
and models are publicly available at https://github.
com/boheumd/ASM-Loc.

1. Introduction
Weakly-supervised temporal action localization

(WTAL) has attracted increasing attention in recent
years. Unlike its fully-supervised counterpart, WTAL
only requires action category annotation at the video level,
which is much easier to collect and more scalable for
building large-scale datasets. To tackle this problem, recent
works [1–12] mostly rely on the multiple instance learning
(MIL) framework [13], where the entire untrimmed video
is treated as a labeled bag containing multiple unlabeled
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Figure 1. Action-aware segment modeling for WTAL. Our
ASM-Loc leverages the action proposals as well as the proposed
segment-centric modules to address the common failures in exist-
ing MIL-based methods.

instances (i.e., video frames or snippets). The action clas-
sification scores of individual snippets are first generated
to form the temporal class activation sequences (CAS) and
then aggregated by a top-k mean mechanism to obtain the
final video-level prediction [3, 6, 8, 14].

While significant improvement has been made in prior
work, there is still a huge performance gap between the
weakly-supervised and fully-supervised settings. One ma-
jor challenge is localization completeness, where the mod-
els tend to generate incomplete or over-complete action seg-
ments due to the inaccurate predictions of action bound-
aries. Another challenge is the missed detection of short
action segments, where the models are biased towards seg-
ments with longer duration and produce low-confidence
predictions on short actions. Figure 1 demonstrates an ex-
ample of these two common errors. Although these chal-
lenges are inherently difficult due to the lack of segment-
level annotation, we argue that the absence of segment-
based modeling in existing MIL-based methods is a key rea-
son for the inferior results. In particular, these MIL-based
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methods treat snippets in a video as independent instances,
where their underlying temporal structures are neglected in
either the feature modeling or prediction stage.

In this paper, we propose a novel framework that en-
ables explicit, action-aware segment modeling for weakly-
supervised temporal action localization, which we term
ASM-Loc. To bootstrap segment modeling, we first gen-
erate action proposals using the standard MIL-based meth-
ods. These proposals provide an initial estimation of the
action locations in the untrimmed video as well as their du-
ration. Based on the action proposals, we introduce three
segment-centric modules that correspond to the three stages
of a WTAL pipeline, i.e., the feature extraction stage, the
feature modeling stage and the prediction stage.

First, a dynamic segment sampling module is proposed
to balance the contribution of short-range and long-range
action segments. As shown in Figure 1, action proposals
with short duration are up-sampled along the temporal di-
mension, with the scale-up ratios dynamically computed ac-
cording to the length of the proposals. Second, intra- and
inter-segment attention modules are presented to capture
the temporal structures within and across action segments at
the feature modeling stage. Specifically, the intra-segment
attention module utilizes self-attention within action pro-
posals to model action dynamics and better discriminate
foreground and background snippets. On the other hand,
the inter-segment attention module utilizes self-attention
across different actions proposals to capture the relation-
ships, facilitating the localization of action segments that
involve temporal dependencies (e.g., “CricketBowling” is
followed by “CricketShotting” in Figure 1). Note that both
attention modules are segment-centric, which is critical to
suppress the negative impact of noisy background snippets
in untrimmed videos. Third, a pseudo instance-level loss
is introduced to refine the localization result by providing
fine-grained supervision. The pseudo instance-level labels
are derived from the action proposals, coupled with uncer-
tainty estimation scores that mitigate the label noise effects.
Finally, a multi-step proposal refinement is adopted to pro-
gressively improve the quality of action proposals, which in
turn boosts the localization performance of our final model.

We summarize our main contributions as follows:
• We show that segment-based modeling can be utilized

to narrow the performance gap between the weakly-
supervised and supervised settings, which has been ne-
glected in prior MIL-based WTAL methods.

• We introduce three novel segment-centric modules that
enable action-aware segment modeling in different
stages of a WTAL pipeline.

• We provide extensive experiments to demonstrate the
effectiveness of each component of our design. Our
ASM-Loc establishes new state of the art on both
THUMOS-14 and ActivityNet-v1.3 datasets.

2. Related works

Temporal Action Localization (TAL). Compared with ac-
tion recognition [15–21], TAL is an more challenging task
for video understanding. Current fully-supervised TAL
methods can be categorized into two groups: the anchor-
based methods [22–25] perform boundary regression based
on pre-defined action proposals, while the anchor-free
methods [26–28] directly predict boundary probability or
actionness scores for each snippet in the video, and then em-
ploy a bottom-up grouping strategy to match pairs of start
and end for each action segment. All these methods require
precise temporal annotation of each action instance, which
is labor-intensive and time-consuming.

Weakly-supervised Temporal Action Localization. Re-
cently, the weakly supervised setting, where only video-
level category labels are required during training, has drawn
increasing attention from the community [1–12, 29–35].
Specifically, UntrimmedNet [1] is the first to introduce
the multiple instance learning (MIL) framework to tackle
this problem, which selects foreground snippets and groups
them as action segments. STPN [2] improves Untrimmed-
Net by adding a sparsity loss to enforce the sparsity of
selected snippets. CoLA [9] utilizes contrastive learn-
ing to distinguish the foreground and background snippets.
UGCT [10] proposes an online pseudo label generation
with uncertainty-aware learning mechanism to impose the
pseudo label supervision on the attention weight. All these
MIL-based methods treat each snippet in the video indi-
vidually, neglecting the rich temporal information at the
segment-level. In contrast, our ASM-Loc focuses on mod-
eling segment-level temporal structures for WTAL, which
is rarely explored in prior work.

Pseudo Label Guided Training. Using pseudo labels to
guide model training has been widely adopted in vision
tasks with weak or limited supervision. In weakly super-
vised object detection, one of the seminal directions is self-
training [36–39], which first trains a teacher model and then
the predictions with high confidence are used as instance-
level pseudo labels to train a final detector. Similarly,
in semi-supervised learning [40–44] and domain adapta-
tion [45–47], models are first trained on the labeled / source
dataset and then used to generate pseudo labels for the un-
labeled / target dataset to guide the training process.

Similar to these works, our ASM-Loc utilizes pseudo
segment-level labels (i.e., action proposals) to guide our
training process in the WTAL task. However, we do not
limit our approach to using pseudo labels for supervision
only. Instead, we leverage the action proposals in multiple
segment-centric modules, such as dynamic segment sam-
pling, intra- and inter-segment attention.
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3. WTAL Base Model

WTAL aims to recognize and localize action segments in
untrimmed videos given only video-level action labels dur-
ing training. Formally, let us denote an untrimmed training
video as V and its ground-truth label as y ∈ RC , where
C is the number of action categories. Note that y could be
a multi-hot vector if more than one action is present in the
video and is normalized with the l1 normalization. The goal
of temporal action localization is to generate a set of action
segments S = {(si, ei, ci, qi)}Ii=1 for a testing video, where
si, ei are the start and end time of the i-th segment and ci, qi
are the corresponding class prediction and confidence score.

Most existing WTAL methods [1–12] employ the multi-
ple instance learning (MIL) formulation. A typical pipeline
of MIL-based methods consists of three main stages (de-
picted in Figure 2): (i) The feature extraction stage takes the
untrimmed RGB videos and optical flow as input to extract
snippet-level features using pre-trained backbone networks.
(ii) The feature modeling stage transforms the extracted fea-
tures to the task-oriented features by performing temporal
modeling. (iii) The prediction stage generates class proba-
bilities and attention weights for each time step and com-
putes video-level loss following the MIL formulation dur-
ing training. In the following subsections, we review the
common practices of these three stages and present our base
model in detail.

3.1. Feature Extraction and Modeling

Following the recent WTAL methods [2,4,10,32,34], we
first divide each untrimmed video into non-overlapping 16-
frame snippets, and then apply a Kinetics-400 pre-trained
I3D model [15] to extract features for both RGB and op-
tical flow input. After that, the RGB and optical flow fea-
tures are concatenated along the channel dimension to form
the snippet-level representations F ∈ RT×D, where T is
the number of snippets in the video and D = 2048 is the
feature dimensionality. Following [4, 6, 9, 48], the features
are then fed into a temporal convolution layer and the ReLU
activation for feature modeling: X = ReLU(conv(F )).

3.2. Action Prediction and Training Losses

Given the embedded features X , a fully-connected (FC)
layer is applied to predict the temporal class activation se-
quence (CAS) P ∈ RT×(C+1), where C + 1 denotes the
number of action categories plus the background class. To
better differentiate the foreground and background snippets,
a common strategy [2, 4, 7] is to introduce an additional at-
tention module that outputs the attention weights for each
time step of the untrimmed video. Following [34, 48], we
generate the attention weights A ∈ RT×2 using an FC
layer, where the two weight values at each time step are nor-
malized by the softmax operation to obtain the foreground

and background attention weights, respectively. Finally, the
CAS and the attention weights are combined to get the at-
tention weighted CAS: P̂m(c) = P (c)⊙Am,m ∈ {fg, bg},
where c indicates the class index and ⊙ denotes element-
wise multiplication.

Following the MIL formulation, the video-level classifi-
cation score is generated by the top-k mean strategy [3,6,8].
For each class c, we take the k largest values of the at-
tention weighted CAS and compute their averaged value:
p̂m(c) = 1

k

∑
Top-k(P̂m(c)). Softmax normalization is

then performed across all classes to obtain the attention
weighted video-level action probabilities. We adopt three
video-level losses in such a weakly-supervised setting.

Foreground loss. To guide the training of video-level ac-
tion classification, we apply the cross-entropy loss between
the foreground-attention weighted action probabilities p̂fg

and the video-level action label yfg = [y; 0], written as:

Lfg = −
C+1∑
c=1

yfg(c) log p̂fg(c). (1)

Background loss. To ensure that the negative instances in
the untrimmed video are predicted as the background class,
we regularize the background-attention weighted action
probabilities p̂bg with an additional background loss [32,
48]. Specifically, we compute the cross-entropy between
p̂bg and the background class label ybg:

Lbg = −
C+1∑
c=1

ybg(c) log p̂bg(c), (2)

where ybg(C + 1) = 1 and ybg(c) = 0 for all other c.

Action-aware background loss. Although no action is tak-
ing place in background snippets, we argue that rich context
information is still available to reflect the actual action cat-
egory label. As an example in Figure 3(c), even though the
background frames are stationary with only a billiard table,
one can still expect the existence of the action category “Bil-
liard” somewhere in the video. Therefore, the background
instances are related to not only the background class label
but also the action class label.

Based on this observation, we formulate the action-
aware background loss as the cross-entropy loss between
the background-attention weighted action probabilities p̂bg

and the video-level action label yfg:

Labg = −
C+1∑
c=1

yfg(c) log p̂bg(c). (3)

The total video-level loss for our base model is the
weighted combination of all three losses:

Lvid = λfgLfg + λbgLbg + λabgLabg, (4)

where λfg, λbg and λabg are trade-off parameters for balanc-
ing the contribution of the three losses.
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Figure 2. (a) Framework Overview. The gray modules indicate the components of the base model (e.g. conv and FC), while the others
are our action-aware segment modeling modules. (b) Dynamic segment sampling is based on the cumulative distribution of the sampling
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⊙
,
⊗

and
⊕

denote element-wise multiplication, matrix multiplication, and element-wise addition. T , N are the
number of snippets and action proposals, respectively.

3.3. Discussion

As discussed in Sec. 1, our base model follows the MIL
formulation and neglects the temporal structures among
video snippets. Nevertheless, the prediction results gener-
ated by the base model still provide a decent estimation of
the action locations and durations in the untrimmed video,
which can serve as a bootstrap for our segment modeling
process. In particular, we generate the initial action pro-
posals based on the prediction results of the base model:
S 7→ S̃ = {(sn, en, cn)}Nn=1, where sn, en and cn denote
the start time, the end time, and the predicted category label
of the n-th action proposal, respectively. More details on
generating action proposals are available in the supplemen-
tary material. The main focus of our work is to leverage
the action proposals for segment-level temporal modeling,
as described in the following section.

4. Action-aware Segment Modeling
Figure 2(a) illustrates an overview of our ASM-Loc

framework. Given the action proposals generated by the
base model, we introduce action-aware segment modeling
into all three stages of the WTAL pipeline: dynamic seg-
ment sampling in the feature extraction stage (Sec. 4.1),
intra- and inter-segment attention in the feature modeling
stage (Sec. 4.2) and pseudo instance-level supervision in

the prediction stage (Sec. 4.3). A multi-step proposal refine-
ment is adopted to progressively improve the action propos-
als and the localization results, as discussed in Sec. 4.4.

4.1. Dynamic Segment Sampling

Action segments in an untrimmed video may have var-
ious duration, ranging from less than 2 seconds to more
than 1 minute. Intuitively, short actions have small tempo-
ral scales, and therefore, their information is prone to loss or
distortion throughout the feature modeling stage. As shown
in Table 5, we observe that models are indeed biased to-
wards the segments with longer duration and produce lower
confidence scores on short segments, resulting in missed de-
tection or inferior localization results. Similar observations
are in object detection, where smaller objects have worse
detection performance than larger ones [49, 50].

In order to address this problem in the WTAL setting, we
propose a novel segment sampling module that dynamically
up-samples action proposals according to their estimated
duration. Formally, we first initialize a sampling weight
vector W ∈ RT with values equal to 1 at all time steps.
Then, we compute the updated sampling weight for short
proposals with duration less than a pre-defined threshold γ:

W [sn : en] =
γ

en − sn
, if (en − sn) ≤ γ, (5)
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where sn, en denote the start and end time of the n-th action
proposal. The sampling procedure is based on the Inverse
Transform Sampling method as shown in Figure 2(b). The
intuition is to sample snippets with frame rates proportional
to their sampling weights W . We first compute the cumu-
lative distribution function (CDF) of the sampling weights
fW = cdf(W ), then uniformly sample T timesteps from
the inverse of the CDF: {xi = f−1

W (i)}Ti=1. In this way, the
scale-up ratio of each proposal is dynamically computed ac-
cording to its estimated duration. We apply linear interpo-
lation when up-sampling is needed.

4.2. Intra- and Inter-Segment Attention
Intra-Segment Attention. Action modeling is of cen-
tral importance for accurate action classification and tem-
poral boundary prediction. Recent work [18, 51] applies
temporal attention globally on trimmed videos for action
recognition and achieves impressive performance. How-
ever, untrimmed videos are usually dominated by irrelevant
background snippets which introduce extra noise to the ac-
tion segment modeling process. Motivated by this obser-
vation, we propose the intra-segment attention module that
performs self-attention within each action proposal.

We formulate this module using a masked attention
mechanism, as shown in Figure 2(c). Specifically, an atten-
tion mask M ∈ RT×T is defined to indicate the foreground
snippets corresponding to different action proposals. The
attention mask is first initialized with 0 at all entries and
assigned M [sn : en, sn : en] = 1 for all proposals. The
attention mask is then applied to the attention matrix com-
puted by the standard self-attention approach [52,53]:

Q = XWQ, K = XWK , V = XWV , (6)

Ai,j =
Mi,jexp(QiK

T
j /

√
D)∑

k Mi,kexp(QiKT
k /

√
D)

(7)

Z = X + BN(AVWO), (8)

where WQ,WK ,WV ,WO ∈ RD×D are the linear projec-
tion matrices for generating the query, key, value and the
output. Multi-head attention [52] is also adopted to im-
prove the capacity of the attention module. In this way, we
explicitly model the temporal structures within each action
proposal, avoiding the negative impact of the irrelevant and
noisy background snippets.

Inter-Segment Attention. Action segments in an
untrimmed video usually involve temporal dependencies
with each other. For example, “CricketBowling” tends to
be followed by “CricketShotting”, while “VolleyballSpik-
ing” usually repeats multiple times in a video. Capturing
these dependencies and interactions among action segments
can therefore improve the recognition and localization per-
formance.

Similar to the intra-segment attention module, we lever-
age a self-attention mechanism to model the relationships
across multiple action proposals. As shown in Figure 2(d),
we first aggregate the snippet-level features within each ac-
tion proposal by average pooling on the temporal dimension
X̂n = 1

en−sn+1

∑en
t=sn

X(t). The multi-head self-attention
is then applied on all segment-level features {X̂n}Nn=1 to
model the interactions between different action proposal
pairs. The output features are replicated along the time axis
and added to the original feature X in a residual manner.

4.3. Pseudo Instance-level Loss

Due to the absence of segment-level annotation, standard
MIL-based methods only rely on video-level supervision
provided by the video-level action category label. To fur-
ther refine the localization of action boundaries, we leverage
the pseudo instance-level label provided by the action pro-
posals and propose a pseudo instance-level loss that offers
more fine-grained supervision than the video-level losses.

Given the action proposals S̃ = {sn, en, cn}Nn=1, we
construct the pseudo instance-level label Q̃ ∈ RT×(C+1)

by assigning action labels to the snippets that belong to the
action proposals and assigning the background class label
to all other snippets:

Q̃t(c) =

 1, if ∃n, t ∈ [sn, en] and c = cn
1, if ∀n, t /∈ [sn, en] and c = C + 1
0, otherwise

(9)

Note that Q̃ is also normalized with the l1 normalization.
As the action proposals are generated from the model

prediction, it is inevitable to produce inaccurate pseudo
instance-level labels. To handle the label noise effects, we
follow the recent work [10, 54–56] and introduce an uncer-
tainty prediction module that guides the model to learn from
noisy pseudo labels. Specifically, we employ an FC layer to
output the uncertainty score U ∈ RT , which is then used to
re-weight the pseudo instance-level loss at each time step.
Intuitively, instances with high uncertainty scores are lim-
ited from contributing too much to the loss. Coupled with
uncertainty scores, the pseudo instance-level loss can be
written as the averaged cross-entropy between the tempo-
ral CAS P and the pseudo instance-level label Q̃:

Lins =
1

T

T∑
t=1

exp(−Ut)

(
−

C+1∑
c=1

Q̃t(c) log(Pt(c))

)
+βUt

(10)
where β is a hyper-parameter for the weight decay term,
which prevents the uncertainty prediction module from pre-
dicting infinite uncertainty for all time steps (and therefore
zero loss).
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4.4. Multi-step Proposal Refinement
Action proposals play an important role in action-aware

modeling. As discussed in Sec. 5.3, the quality of propos-
als is positively correlated with the performance of mul-
tiple components in our approach. While our initial ac-
tion proposals are obtained from the base model, it is intu-
itive to leverage the superior prediction results generated by
our ASM-Loc to generate more accurate action proposals.
Based on this motivation, we propose a multi-step training
process that progressively refines the action proposals via
multiple steps.

As a bootstrap of segment modeling, we first train the
base model (Sec. 3) for E epochs and obtain the initial ac-
tion proposals S̃0. After that, we train our ASM-Loc for
another E epochs and obtain the refined action proposals
S̃1 with a more accurate estimation of the action location
and duration. The same process can be applied for multiple
steps until the quality of action proposals is converged. The
complete multi-step proposal refinement process is summa-
rized in Alg. 1. Finally, we train our ASM-Loc using the
refined proposals S̃ until the model is converged.

5. Experiment
5.1. Experimental Setup
Dataset. We evaluate our method on two popular action
localization datasets: THUMOS-14 [60] and ActivityNet-
v1.3 [61]. THUMOS-14 contains untrimmed videos from
20 categories. The video length varies from a few seconds
to several minutes and multiple action instances may exist in
a single video. Following previous works [1,3,7,9], we use
the 200 videos in the validation set for training and the 213
videos in the testing set for evaluation. ActivityNet-v1.3
is a large-scale dataset with 200 complex daily activities.
It has 10,024 training videos and 4,926 validation videos.
Following [10,35], we use the training set to train our model
and the validation set for evaluation.
Implementation Details. We employ the I3D [15] net-
work pretrained on Kinetics-400 [15] for feature extraction.
We apply TVL1 [62] algorithm to extract optical flow from
RGB frames. The Adam optimizer is used with the learn-
ing rate of 0.0001 and with the mini-batch sizes of 16, 64
for THUMOS-14 and ActivityNet-v1.3, respectively. The
number of sampled snippets T is 750 for THUMOS-14 and
150 for ActivityNet-v1.3. For the multi-step proposal re-
finement, E is set to 100 and 50 epochs for THUMOS-14
and ActivityNet-v1.3, respectively. Action proposals are
generated at the last epoch of each refinement step. More
dataset-specific training and testing details are available in
the supplementary material.

5.2. Comparison with the State of the Art
In Table 1, we compare our ASM-Loc with state-of-

the-art WTAL methods on THUMOS-14. Selected fully-

Algorithm 1: Multi-step Proposal Refinement
Input: Training epochs E, refinement steps L
Output: Action proposals S̃

1 Train the base model for E epochs.
2 Get initial action proposals: S̃0.
3 for l in {1, ..., L} do
4 Train ASM-Loc for E epochs with S̃l−1.
5 Update action proposals with S̃l.
6 end

supervised methods are presented for reference. We observe
that ASM-Loc outperforms all the previous WTAL methods
and establishes new state of the art on THUMOS-14 with
45.1% average mAP for IoU thresholds 0.1:0.7. In par-
ticular, our approach outperforms UGCT [10], which also
utilizes pseudo labels to guide the model training but with-
out explicit segment modeling. Even compared with the
fully supervised methods, ASM-Loc outperforms SSN [25]
and TAL-Net [22] and achieves comparable results with
GTAN [57] and P-GCN [58] when the IoU threshold is low.
The results demonstrate the superior performance of our ap-
proach with action-aware segment modeling.

We also conduct experiments on ActivityNet-v1.3 and
the comparison results are summarized in Table 2. Again,
our ASM-Loc obtains a new state-of-the-art performance
of 25.1% average mAP, surpassing the latest works (e.g.
UGCT [10], FAC-Net [12]). The consistent superior results
on both datasets justify the effectiveness of our ASM-Loc.

5.3. Ablation Studies on THUMOS-14
Contribution of each component. In Table 3, we con-
duct an ablation study to investigate the contribution of
each component in ASM-Loc. We first observe that adding
the background loss Lbg and the action-aware background
loss Labg largely enhance the performance of the base
model. The two losses encourage the sparsity in the fore-
ground attention weights by pushing the background atten-
tion weights to be 1 at background snippets, and therefore
improve the foreground-background separation.

For action-aware segment modeling, it is obvious that a
consistent gain (≥1%) can be achieved by adding any of our
proposed modules. In particular, introducing segment mod-
eling in the feature modeling stage (i.e., intra- and inter-
segment attention) significantly increases the performance
by 2.4%. The two attention modules are complementary to
each other, focusing on modeling temporal structure within
and across action segments. When incorporating all the
action-aware segment modeling modules together, our ap-
proach boosts the final performance from 40.3% to 45.1%.
Are action proposals necessary for self-attention?. We
propose an intra-segment attention module that performs
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Table 1. Comparison with state-of-the-art methods on THUMOS-14 dataset. The average mAPs are computed under the IoU thresholds
[0.1,0.1,0.7]. UNT and I3D are abbreviations for UntrimmedNet features and I3D features, respectively.

Supervision Method Publication mAP@IoU (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

Full
(-)

SSN [25] ICCV 2017 66.0 59.4 51.9 41.0 29.8 - - -
TAL-Net [22] CVPR 2018 59.8 57.1 53.2 48.5 42.8 33.8 20.8 45.1
GTAN [57] CVPR 2019 69.1 63.7 57.8 47.2 38.8 - - -
P-GCN [58] ICCV 2019 69.5 67.8 63.6 57.8 49.1 - - -
VSGN [59] ICCV 2021 - - 66.7 60.4 52.4 41.0 30.4 -

Weak
(UNT)

AutoLoc [30] ECCV 2018 - - 35.8 29.0 21.2 13.4 5.8 -
CleanNet [31] ICCV 2019 - - 37.0 30.9 23.9 13.9 7.1 -
Bas-Net [6] AAAI 2020 - - 42.8 34.7 25.1 17.1 9.3 -

Weak
(I3D)

STPN [2] CVPR 2018 52.0 44.7 35.5 25.8 16.9 9.9 4.3 27.0
CMCS [4] CVPR 2019 57.4 50.8 41.2 32.1 23.1 15.0 7.0 32.4
WSAL-BM [32] ICCV 2019 60.4 56.0 46.6 37.5 26.8 17.6 9.0 36.3
DGAM [33] CVPR 2020 60.0 54.2 46.8 38.2 28.8 19.8 11.4 37.0
TSCN [7] ECCV 2020 63.4 57.6 47.8 37.7 28.7 19.4 10.2 37.8
ACM-Net [48] TIP 2021 68.9 62.7 55.0 44.6 34.6 21.8 10.8 42.6
CoLA [9] CVPR 2021 66.2 59.5 51.5 41.9 32.2 22.0 13.1 40.9
UGCT [10] CVPR 2021 69.2 62.9 55.5 46.5 35.9 23.8 11.4 43.6
AUMN [35] CVPR 2021 66.2 61.9 54.9 44.4 33.3 20.5 9.0 41.5
FAC-Net [12] ICCV 2021 67.6 62.1 52.6 44.3 33.4 22.5 12.7 42.2
ASM-Loc (Ours) - 71.2 65.5 57.1 46.8 36.6 25.2 13.4 45.1

Table 2. Comparison with state-of-the-art methods on
ActivityNet-v1.3 dataset. The AVG column shows the averaged
mAP under the IoU thresholds [0.5:0.05:0.95].

Method Publication
mAP@IoU (%)

0.5 0.75 0.95 AVG

STPN [2] CVPR 2018 29.3 16.9 2.6 16.3
ASSG [63] MM 2019 32.3 20.1 4.0 18.8
CMCS [4] CVPR 2019 34.0 20.9 5.7 21.2
Bas-Net [6] AAAI 2020 34.5 22.5 4.9 22.2
TSCN [7] ECCV 2020 35.3 21.4 5.3 21.7
A2CL-PT [64] ECCV 2020 36.8 22.0 5.2 22.5
ACM-Net [48] TIP 2021 37.6 24.7 6.5 24.4
TS-PCA [10] CVPR 2021 37.4 23.5 5.9 23.7
UGCT [10] CVPR 2021 39.1 22.4 5.8 23.8
AUMN [35] CVPR 2021 38.3 23.5 5.2 23.5
FAC-Net [12] ICCV 2021 37.6 24.2 6.0 24.0
ASM-Loc (ours) 41.0 24.9 6.2 25.1

self-attention within action proposals to suppress the noise
from background snippets. To verify the effectiveness of
our design, we compare different settings for self-attention
in Table 4. Specifically, the “Global” setting indicates that
the self-attention operation is applied directly to all snippets
in the untrimmed video. It can be observed that this setting
does not provide any gain to the baseline, as the model fails
to capture meaningful temporal structure due to the exis-
tence of irrelevant and noisy background snippets. More-
over, the “BG” setting, which stands for self-attention on
background snippets only, has negative impact and achieves

even worse localization results. Finally, our intra-segment
attention outperforms these two settings by a large margin,
indicating the importance of applying self-attention within
action proposals. We also present the settings of using the
ground-truth action segments as proposals for intra-segment
attention. This setting can be viewed as an upper bound of
our approach and it provides even more significant gains
over the baseline. This observation inspires us to further
improve the action proposals by multi-step refinement.

Impact of dynamic segment sampling. In Table 5, we
evaluate the impact of dynamic segment sampling for ac-
tion segments with different durations. We divide all ac-
tion segments into five groups according to their duration
in seconds and evaluate the averaged mAP [65] separately
for each group. As mentioned in the introduction, localiza-
tion performance on short actions (XS, S) is much worse
than longer actions (M, L, XL). By up-sampling the short
actions with our dynamic segment sampling module, the
model achieves significant gains on short actions (+4.9% for
XS and +1.2% for S) and improves the overall performance
by 1.1%. Similarly, we present the results using ground-
truth segment annotation for dynamics segment sampling,
which achieves even larger improvement over the baseline.

Impact of uncertainty estimation. We propose an uncer-
tainty estimation module to mitigate the noisy label prob-
lem in pseudo instance-level supervision. Table 6 shows
that using uncertainty estimation consistently improves the
localization performance at different IoU thresholds, and in-
creases the average mAP by 1%.

Impact of multi-step refinement. Table 7 shows the results
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Table 3. Contribution of each component. Lfg, Lbg

and Labg represents the foreground, background and
action-aware background loss, which are based on
MIL with video-level labels. While DSS, Intra, In-
ter, and Lins denote the dynamic segment sampling,
intra-segment attention, inter-segment attention, and
pseudo instance-level loss, respectively, which ex-
ploit segment-level information.

Base model ASM-Loc AVG

Lfg Lbg Labg DSS Intra Inter Lins 0.1:0.7

✓ 24.3
✓ ✓ 36.6
✓ ✓ ✓ 40.3

✓ ✓ ✓ ✓ 41.4
✓ ✓ ✓ ✓ 41.8
✓ ✓ ✓ ✓ 42
✓ ✓ ✓ ✓ 41.3
✓ ✓ ✓ ✓ ✓ 42.7
✓ ✓ ✓ ✓ ✓ ✓ 43.7
✓ ✓ ✓ ✓ ✓ ✓ 44.3
✓ ✓ ✓ ✓ ✓ ✓ ✓ 45.1

Table 4. Ablation on self-attention under different
settings. “Global”, “BG” indicate self-attention
on all and background snippets, respectively.

Label Setting mAP@IoU (%)

0.1 0.3 0.5 0.7 AVG

Base 67.8 51.8 30.7 10.1 40.3
Global 67.3 50.8 30.2 10.5 40.1

Action
Proposal

BG 66 50.1 30.6 10.4 39.6
Ours 68.6 53.4 32.5 11.8 41.8

Ground
Truth

BG 64.7 49.6 30.3 9.7 38.8
Ours 73.3 56.2 33.6 13.2 44.3

Table 5. Impact of dynamic segment sampling
(DSS). Actions are divided into five duration
groups (seconds): XS (0, 1], S (1, 2], M (2, 4],
L (4, 6], and XL (6, inf).

Label Setting Averaged mAP (%)

XS S M L XL AVG

Base 10.6 33.7 45.9 48.3 38.3 40.3

Action
Proposal

+DSS 15.5 34.9 47.1 48.6 38.5 41.4
△ +4.9 +1.2 +1.2 +0.3 +0.2 +1.1

Ground
Truth

+DSS 20 38 47.6 49.7 38.8 43
△ +9.4 +4.3 +1.7 +1.4 +0.5 +2.7

Table 6. Effectiveness of the
uncertainty estimation mod-
ule.

Uncer.
mAP@IoU (%)

0.3 0.5 0.7 AVG

55.5 35.5 13.8 44.1
✓ 57.1 36.6 13.4 45.1

Table 7. Ablation on the
number of refinement steps.
“0” indicates the base model
without action-aware segment
modeling.

Num.
mAP@IoU (%)

0.3 0.5 0.7 AVG

0 51.8 30.7 10.1 40.3

1 54.4 34.1 12.5 43.1
2 56.2 35.4 13.8 44.7
3 57.1 36.6 13.4 45.1
4 57.3 36.7 14.1 45.1

of increasing the number of refinement steps for multi-step
proposal refinement. We can see that the performance im-
proves as the number of steps increases, indicating that bet-
ter localization results can be achieved by refined proposals.
We adopt 3 refinement steps as our default setting since the
performance saturates after that.

5.4. Qualitative Results

Figure 3 shows the visualization comparisons between
the base model and our ASM-Loc. We observe that the
common errors in existing MIL-based methods can be
partly addressed by our action-aware segment modeling
method, such as the missed detection of short actions and
incomplete localization of the action “VolleySpiking” (Fig-
ure 3(a)) and the over-complete localization of the action
“BaseballPitch” (Figure 3(b)). We also provide a failure
case in Figure 3(c), where our method fails to localize the
first action segment due to the largely misaligned action
proposal generated by the base model. This also verifies
the importance of improving the quality of action proposals
and should be further studied in future work.

6. Conclusion
In this paper, we propose a novel WTAL framework

named ASM-Loc which enables explicit action-aware seg-
ment modeling beyond previous MIL-based methods. We
introduce three novel segment-centric modules correspond-
ing to the three stages of a WTAL pipeline, which narrows
the performance gap between the weakly-supervised and
fully-supervised settings. We further introduce a multi-step
training strategy to progressively refine the action proposals

(a) An example of “VolleyballSpiking” action

(b) An example of “BaseballPitch” action

GT
Base

(c) An example of “Billards” action (failure case)

GT
Base

Proposals

GT
Base

ASM-Loc
Proposals

Proposals

ASM-Loc

ASM-Loc

Figure 3. Visualization of ground-truth, predictions and action
proposals. Top-2 predictions with the highest confidence scores
are selected for the base model and our ASM-Loc. Transparent
frames represent background frames.

till the localization performance saturates. Our ASM-Loc
achieves state-of-the-art results on two WTAL benchmarks.
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