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Abstract

Attributed to both the development of deep networks and
abundant data, automatic face recognition (FR) has quickly
reached human-level capacity in the past few years. Howev-
er; the FR problem is not perfectly solved in case of uncon-
trolled illumination and pose. In this paper, we propose to
enhance face recognition with a bypass of self-supervised
3D reconstruction, which enforces the neural backbone to
focus on the identity-related depth and albedo information
while neglects the identity-irrelevant pose and illumination
information. Specifically, inspired by the physical model of
image formation, we improve the backbone FR network by
introducing a 3D face reconstruction loss with two auxiliary
networks. The first one estimates the pose and illumination
from the input face image while the second one decodes the
canonical depth and albedo from the intermediate feature
of the FR backbone network. The whole network is trained
in end-to-end manner with both classic face identification
loss and the loss of 3D face reconstruction with the physi-
cal parameters. In this way, the self-supervised reconstruc-
tion acts as a regularization that enables the recognition
network to understand faces in 3D view, and the learnt fea-
tures are forced to encode more information of canonical
facial depth and albedo, which is more intrinsic and ben-
eficial to face recognition. Extensive experimental results
on various face recognition benchmarks show that, without
any cost of extra annotations and computations, our method
outperforms state-of-the-art ones. Moreover, the learnt rep-
resentations can also well generalize to other face-related
downstream tasks such as the facial attribute recognition
with limited labeled data.

1. Introduction

With abundant data [2,8] and the development of margin-
based loss functions [5, 17,30, 31], great progresses have
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Figure 1. Illustration of the proposed 3D bypass enhanced repre-
sentation learning (3D-BERL). Inspired by the physical model of
image formation, 3D-BERL incorporates a self-supervised 3D re-
construction bypass to improve the face recognition. Besides, the
shallow stages of the backbone can also serve as a good foundation
model for downstream tasks such as facial attribute recognition
with only limited labeled data.

been achieved on face recognition. The accuracy on the fa-
mous LFW benchmark [10] is almost perfect, e.g., 99.83%
by ArcFace [5]. Even though, existing methods degenerate
severely under large poses, various illuminations and partial
occlusions. Face recognition under unconstrained scenarios
still remains a challenging task. Unfortunately, convention-
al methods with fixed-margins do not fit well with these fac-
tors as they do not consider the difficultness of each sample,
and may result in convergence issue. To alleviate this prob-
lem, AdaptiveFace [16], AdaCos [39], MagFace [20] and
CurricularFace [12] propose to dynamically tune the mar-
gin during the training process. MagFace [20] proposes a
quality assessment method to evaluate the face quality and
then adaptively adjust its margins. To some extent, these
adaptive margin methods have alleviated the convergence
issue. However, the performance still degenerates when
testing under large poses, various illuminations and occlu-
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sions as they do not explicitly consider kicking out identity-
irrelevant features during training process.

An ideal solution is to annotate all the image factors
of each face, and then disentangle these identity-irrelevant
factors from the face embedding via multi-task supervised-
learning. However, this kind of annotation is labor-intensive
and is almost infeasible, especially when current face recog-
nition training sets commonly contain millions of faces. To
be free from this, we resort to another technology roadmap,
namely self-supervise learning. Apart from supervised
learning methods, it does not require manual annotation-
s. Instead, the image representations are learnt via pretext
tasks [7,22] which commonly apply a transformation to the
image and then enforce the neural network to predict the
properties of the transformation. The self-supervised learn-
ing has shown the potential to become an alternative ap-
proach to learn feature representation. It even outperforms
supervised learning methods on image classification task.
However, the work in [27] has shown that the commonly
used pretext tasks such as jigsaw puzzle [22] and rotation
prediction [7] do not work well on face-related task. The
possible reason is that it is hard to prevent existing pretex-
t tasks collapse to trivial solutions for face images which
have unified structure and similar textures.

In this paper, we propose a novel 3D Bypass Enhanced
Representation Learning (3D-BERL) method to improve
face recognition under unconstrained scenarios. As shown
in Fig 1, our 3D-BERL incorporates an auxiliary bypass
of self-supervised 3D face reconstruction into traditional
2D face recognition pathway. Inspired by the physical
model of image formation, we carefully design two aux-
iliary networks in the auxiliary bypass. The first one es-
timates the identity-irrelevant viewpoint (pose) and illumi-
nation parameter, and the second one decodes the canon-
ical depth and albedo from the intermediate block of ex-
isting face recognition backbone (the stage 3 in ResNet).
The pose, illumination, depth and albedo are learnt by self-
supervised 3D reconstruction, and the reconstruction pro-
cess is based on the physical model of image formation.
Among these four factors, the learning of depth and albedo
will enforce the shallow part of FR backbone (the stage 1, 2,
3 of ResNet [9]) to focus on the identity-relevant depth and
albedo. Besides, as shown in our visualization in Fig 3, the
image formation model has regularized both the depth and
albedo to with a canonical view, meaning that the effect of
pose and illumination is eliminated. Moreover, even if the
face image is occluded, the prediction of depth is still good
enough for face recognition. Then, the succeeding layers in
the FR backbone can extract features robust to pose, illumi-
nation and partial occlusion. Here, the self-supervised re-
construction acts as a regularization that enables the recog-
nition network to understand faces in 3D view. The whole
network is trained in end-to-end manner with both classic

face identification loss and the loss of 3D face reconstruc-
tion with the physical parameters. Extensive results on vari-
ous face recognition benchmarks show that our method out-
performs state-of-the-art methods without any cost of extra
annotations.

Moreover, as seen in Fig 1, the deeper part of the back-
bone (stage 4) acts as a face recognition specified head
that focuses on learning the face embedding for recogniz-
ing identities. In contrast, the shallow stages of the back-
bone jointly supervised by both the FR task and the self-
supervised 3D auxiliary task can provide a more founda-
tional face representation. Here, we transfer these shallow
stages to the facial attribute recognition task. Experiments
show that it significantly outperforms pervious method es-
pecially when only limited labeled data are available.

Briefly, the main contributions of this paper are summa-
rized as follows:

e We propose a novel 3D bypass enhanced representa-
tion learning (3D-BERL) method which improves face
recognition by incorporating a self-supervised 3D re-
construction bypass into traditional 2D face recogni-
tion pathway.

e The self-supervised reconstruction in the proposed
auxiliary bypass acts as a regularization that enables
the recognition network to understand faces in 3D view
and generate more robust face embedding under un-
constrained scenarios.

e The proposed method outperforms state-of-the-art
methods on various face recognition benchmarks, and
the shallow stages of the backbone trained by our
method can also serve as a good foundation model for
downstream tasks such as facial attribute recognition
with only limited labeled data.

2. Related Works

Learning from Labeled Data. The recent advance of
face recognition comes from large-scale labeled training
data and the rapid evolution of loss functions. Thanks to
the efforts by previous researchers, various annotated face
datasets are available. For instance, MS1MV2 [5] contain-
s 5.8 million labeled faces and Glint360K [1] contains 17
million labeled faces.

Given these labeled datasets, existing face recognition
methods mostly utilize a softmax-based loss function to
train a deep neural network. To improve the performance
of softmax loss, SphereFace [17], AM-Softmax [30], Cos-
Face [31] and ArcFace [5] incorporate additional margin-
s into conventional softmax loss function, leading to im-
proved recognition accuracy. However, these methods do
not consider the diversity in the difficulty of each sample
and only use fixed margins, which may lead to convergence
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issues. More recently, AdaptiveFace [16], AdaCos [39],
MagFace [20] and CurricularFace [12] propose to dynam-
ically tune the margin during the training process. Mag-
Face [20] proposes a quality assessment method to adap-
tively decide the angular margins for low-quality samples,
leading to an improved within-class feature distribution.
CurricularFace [12] takes advantage of curriculum learning
and adaptively adjusts the importance of easy and hard sam-
ples during different training stages. These adaptive margin
methods relieve the convergence issues of together train-
ing hard and easy samples, and achieve better performance
than ArcFace [5]. However, the performance still degen-
erates when testing under large poses, various illuminations
and occlusions as they do not explicitly consider kicking out
identity-irrelevant features during training process. Anoth-
er trend resorts to 3D face reconstruction for tackling large
pose face recognition [6, 23, 40], which has shown promis-
ing results under unconstrained scenarios.

Learning from Unlabeled Data. The self-supervised
learning has drawn increasing attention in recent years as
it can learn feature representation without requiring manual
annotations. A popular self-supervised learning pipeline is
to design annotation-free pretext tasks for neural networks
to solve. The pretext tasks commonly apply a transforma-
tion to the image and the network is trained via predicting
the properties of the transformation. For instance, the jig-
saw puzzle [22] shuffles the patches of an image and then
trains the neural network to identify the correct location of
each patch. Some other famous pretext tasks are image col-
orizing [38] and rotation prediction [7], which learn the fea-
ture representation via predicting the color of each image
pixel or predicting the rotated angle of the input image.

To the best of our knowledge, most of the existing pre-
text tasks are based on pixel-level transformation designed
for general images. As shown in [27], although some of
them even outperforms supervised learning methods on im-
age classification task, they does not work well on face-
related task. It is necessary to design new pretext task for
face images. In [27], the face parsing and the facial com-
ponent prediction are employed as pretext tasks. These two
face perception tasks can learn semantic-aware fine-grained
feature representations and the pretrained model achieves
an improved performance on downstream facial attribute
recognition task.

Considering that the albedo and depth are another two
identity-relevant characters which inherited in face images,
it is reasonable to design a pretext task based on the albe-
do and depth. Besides, when the face image is occluded,
the depth can provide more robust 3D cues than the 2D
face texture. Inspired by the self-supervised 3D reconstruc-
tion [35], we propose to incorporate a self-supervised by-
pass of 3D reconstruction into traditional 2D face recogni-
tion pathway and the face embedding are forced to focus

on identity-relevant depth and albedo information, which is
beneficial to face recognition.

3. Method

In this section, we first briefly introduce the preliminary
knowledge on image formation model. Then, we present
an overview of the proposed method and the details of each
key components.

3.1. Preliminary on Imaging Model

Given a single view face image, we predict the face’s
depth and albedo via neural network and reconstruct the
face with imaging model. In this work, we employ the
imaging model in [35] to design our 3D reconstruction by-
pass. It assumes that an image I € R**W>*H with width W
and height H can be reconstructed with four factors, includ-
ing the canonical depth map d € R'*W>H the canonical
albedo map a € R3>*W>*H the viewpoint matrix w € R?*3
and the illumination parameter vector 1 € R*.

The depth map d contains the depth value d,,, of each
pixel (u,v). Tt is assumed that the distance between the
face and the camera is 1 meter and the camera’s field of
view (FOV) 0oy is 10°. The albedo map a contains the 3
channels RGB albedos of each pixel. The viewpoint matrix
w consists of the rotation angle vector r € R? and the trans-
lation vector t € R3, in which each element is the value
along z, y and z axes respectively. The illumination param-
eter vector 1 = [kq, kq,laz, l4y], where k, and k, are the
magnitude of the ambient and diffuse terms of lighting, and
[laz, lay) presents the lighting direction 1.

To reconstruct an canonical image I.., the normal map n
is firstly derived from the canonical depth map d, in which
each element n,, is a vector normal to the underlying 3D
surface of pixel (u, v). Then, the coefficients of directional
illumination, namely the shading map s, is calculated as
Suv = maz{0, (1, ny,)}. Finally, the canonical face I.. is
generated via the illumination model as follows:

Ic:ao(ka+kds); (1)

where o denotes the element-wise multiplication. Note that
the canonical face 1. is obtained with viewpoint matrix w =
0, we need to further warp I. to obtain the actual image I
with original view point w = [r;t]. The warping function
II(I., d,w, K) which maps the pixel (u, v) in I, to the pixel
(u/, ") inTis given in Eq. 2:

p o K(dyy - TK 'p+1t), 2)

where p’ = (v/,v,1), p = (u,v,1) and K is the camera
intrinsic matrix:

Ww-—1 0 W-1
2tan79F§)V 2
_ w-1 H-1
K= 0 2tan79F20V 2 (3)
0 0 1
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Figure 2. Overview of the 3D reconstruction auxiliary bypass. The
identity irrelevant auxiliary (IIA) network estimates the viewpoint
and illumination of the input face image. Besides, the identity rel-
evant auxiliary (IRA) network extracts the canonical albedo map
and the canonical depth map from the intermediate feature of FR
backbone. The whole network is trained in end-to-end manner
with both classic face identification loss and the loss of 3D face
reconstruction with the physical parameters. In this way, the learnt
features are forced to encode more information of canonical facial
depth and albedo, which is more intrinsic and beneficial to face
recognition.

3.2. Overview

Based on the aforementioned image formation model, to
reconstruct a face image, we design several sub-networks to
explicitly extract the canonical depth map, canonical albedo
map, view matrix and illumination parameter. As shown in
Fig 2, we put the these sub-networks into two groups. The
first group, namely the identity irrelevant auxiliary (ILA)
network, extracts identity irrelevant information, including
the viewpoint matrix and the illumination parameter by tak-
ing a face image as input. The second group, namely the
identity relevant auxiliary (IRA) network, extracts identity
relevant information, including the canonical albedo map
and the canonical depth map, which is beneficial to the suc-
ceeding face recognition task learning.

We hope that the FR backbone mainly encodes the in-
formation of the canonical depth and albedo, and neglects
the pose and illumination variances. With this in mind, we
treat the FR backbone as a unified encoder for these iden-
tity relevant information, and embed the identity relevant
auxiliary (IRA) network to decoder such identity relevant
information from the intermediate feature of FR backbone.
As shown in Fig 2, the output feature of the 3-th stage in the
ResNet backbone is fed into the identity relevant auxiliary
(IRA) network. Meanwhile, the identity irrelevant auxil-
iary (IIA) network estimates the viewpoint and illumination
from the input face image.

Both the IRA network and ITA network are trained by
self-supervised 3D reconstruction, and the reconstruction
process is based on the aforementioned model of image for-
mation and a differentiable renderer [ | 3]. Among these two
auxiliary networks, the learning of IRA network will en-

force the shallow part of FR backbone (the stage 1, 2, 3) to
focus on the identity-relevant depth and albedo. Moreover,
as the depth and albedo learnt by IRA network are with a
canonical view, the pose and illumination are mostly kicked
out from the intermediate feature of FR backbone. There-
fore, with the supervision from the margin-based loss func-
tion, the succeeding layers (stage 4) can get ride of the pose
and illumination, leading to a more robust face embedding.
It is worth mentioning that both the IRA and IIA networks
will be detached at inference time, thus the face embedding
is improved without any cost of inference speed.

3.3. Identity Irrelevant Auxiliary (ITA) Network

The identity irrelevant auxiliary (IIA) network aims to
estimate the identity irrelevant information. It consists of
two sub networks ®,, and ®;, which take the image I as
input and estimate the viewpoint matrix w = ®,,(I) and the
illumination parameter vector 1 = ®;(I), respectively.

These two sub networks have identical backbone struc-
ture with 10 layers (Conv-ReLU x 5). Besides, each of
them has a output head (Conv-Tanh) to finally generate the
viewpoint matrix w € R?*3 or the illumination parameter
vector 1 € R4,

3.4. Identity Relevant Auxiliary (IRA) Network

The identity relevant auxiliary (IRA) network aims to
extract the canonical albedo map and the canonical depth
map which are relevant to face identity. It consists of two
sub network ®, and ®,, which are both with the encoder-
decoder structure and extract the canonical depth map d and
the canonical albedo map a. As we treat the shallow stages
of the backbone (stage 1, 2, 3) as a unified encoder for the
identity-relevant encoder, the ®,; and ®, takes the 14 x 14
intermediate features fy3 from the stage 3 as their inputs.

To further enlarge the reception field, we still design
a tiny encoder structure with 7 layers (Conv-GroupNorm-
LeakyReLLU, Conv-LeakyReLLU, Conv-ReLU) in the &4
and ®,. For the decoder in 4 and ®,, we employ the de-
coder structure designed in [35].

After obtaining all the outputs of the IIA network and the
IRA network, image I is reconstructed by Eq. 4:

(ko + kas), @a(fs3), Py (1), K).  (4)

The reconstruction process of Eq. 4 is briefly shown in
the Fig 2. At first, the canonical depth map d learnt by the
IRA network will be used to calculate the normal map n.
Then, with the lighting parameters estimated by the IIA net-
work, the shading map s is derived. Afterwards, we obtain
the reconstructed canonical face I. = ®,(fs3) o (ko + kgs)
by the lighting model in Eq 1. Finally, using the warping
function II, the renderer module warps the canonical face
I. to the view of ®,,(I), and produces the final reconstruct-
ed face I.

T =TI(®,(f,3) 0
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3.5. Joint Loss Function

In our 3D-BERL framework, the FR backbone is jointly
trained with the conventional face recognition loss and the
reconstruction loss of our 3D auxiliary bypass. Here, we
employ CurricularFace [12] as the FR loss Lrg. Given a
training batch of NV face samples, the L g is formulated as:

N es cos(8y, +m)

1
LFR - N Z s cos(6 m )
N P e’ ¢ s( yi+ ) + Zj?f% es G(tico‘s(e]))

®)
where if cos(6,, + m) — cos(6;) > 0, G(t,cos(8;)) =
cos(8;), otherwise G(t, cos(0;)) = cos(8,)(t + cos(6;)).
The m and s are the margin and scale parameters. The ¢ is
an adaptively updated hyper-parameter that modulates the
negative cosine similarities.
The reconstruction loss L Rec(mAis defined in Eq 6. It
minimize the L distance between I; and I;.

N
1 ~
LRecon = N § |I'L' - I7| (6)
=1

The joint loss function is formulated in Eq. 7, where the
~1 and 9 are used to balance the two losses. The gradients
of Lrp loss will back propagate through the whole back-
bone and the gradients of Lg..,, Will update both the two
auxiliary networks and the shallow part of the FR backbone
(stage 1, 2, 3).

Liotar = v1LrR + V2L Recon- @)

As seen in Fig 2, the deeper part of the backbone (stage
4) acts as a face recognition specified head that focuses on
learning the face embedding for recognizing identities. By
encoding more identity-relevant canonical depth and albe-
do into the first three stages, experiments in section 4 shows
that this face recognition head has extracted more discrimi-
native embeddings for face identification. Furthermore, the
shallow stages of the backbone jointly trained by both the
FR loss and the self-supervised 3D reconstruction loss can
provide more foundational face representations for various
face analysis tasks. The experiments in section 4 demon-
strate that those face representations can achieve superior
performance after transferring to the downstream facial at-
tribute recognition task.

4. Experiments
4.1. Dataset

We employ MS1IMV?2 [5] as our training set for fair com-
parisons with other methods. As a refined version of the
MS-Celeb-1M [8] dataset, MS1MV?2 contains 5.8 million
face images from 85K identities. To evaluate the effective-
ness of the proposed method, we extensively test our 3D-
BERL on three popular benchmarks, including IJB-B [34],

IJB-C [19] and MegaFace [14]. Moreover, we transfer the
learnt face representations to other face analysis tasks like
facial attribute recognition and conducts experiments on
CelebA [18] and LFWA [18] to further verify the effective-
ness of our method. Here, we briefly introduce the afore-
mentioned public datasets.

IJB-B and IJB-C. The IJB-B [34] dataset consists of
55K video frames and 21.8K images. As a further exten-
sion of [JB-B, the IIB-C [19] is a larger dataset with 117.5K
video frames and 31.3K images. IJB-C also contains more
natural occlusions and increased diversity of geographic o-
rigin. In this work, we conduct comparisons using the stan-
dard protocol of IJB-B and IJB-C. Besides, to further verify
the performance of recognizing occluded faces images, we
also employed an occlusion specified protocol of IJB-C, in
which each testing sample contains at least one occluded
facial region.

MegaFace. The probe set of the MegaFace [ 4] dataset
contains 106.8K face images from 530 subjects. Since it
has a huge gallery set with more than 1 million face im-
ages from 690K individuals, the MegaFace dataset can eval-
uate whether the face recognition model can handle million-
scale distractors. The standard MegaFace challenge 1 (M-
F1) protocol is employed in our experiments.

CelebA. The CelebA [18] is a large-scale facial attribute
dataset, which contains more than 202K face images with
annotations of 40 attributes.

LFWA. The LFWA [18] is another widely-used facial
attribute dataset. It contains 13.2K face images and the 40
facial attributes are annotated in an identical way with the
CelebA dataset.

4.2. Implementation Details

In the experiments, the face images are aligned to the
size of 112x112 with five detected facial landmarks, i.e.,
eyes, mouth corners and nose. We adopt the ResNet-100
in [5] as our backbone which is trained with the Curricular-
Face loss [12]. The backbone is trained by SGD optimiz-
er with momentum of 0.9. The two auxiliary networks is
trained by Adam optimizer with $; = 0.9 and 32 = 0.999.
The loss weights of the supervised face recognition loss and
the self-supervised 3D reconstruction loss are identically set
to 1. The batch size is set to 200 and the weight decay is set
to Se-4. Our 3D-BERL framework is implemented in Py-
torch [24] and all the models are trained on four NVIDIA
TITAN XP GPUs. To speed up the training, the size of the
reconstruction image I; and other auxiliary variables (d, a,
n, s) is set to 64x64. The I; in Eq 6 is also the 64x64
resized version of the input image. The overall training
procedure contains three stages. Firstly, we train the FR
backbone only using the FR loss function. Then, we train
the proposed ITA and IRA networks with the FR backbone
frozen. Finally, in the third stage, both the FR backbone
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Table 1. Ablation studies: after transferring from each pretex-
t tasks, the recognition accuracy (%) with different proportions
of labeled LFWA training samples. Base: the baseline. 3D: the
self-supervised 3D reconstruction. FR: the supervised face recog-
nition.

Proportion of training samples
Base 3D FR 5% 10% 20% 50% 100%

v 77.82 80.24 78.82 81.47 86.43
v v 79.96 83.15 84.16 8545 86.85
v v 8339 84.62 85.11 85.74 86.34

v v v 84.08 8533 8596 86.13 86.39

and the two auxiliary networks are jointly optimized with
the loss defined in Eq 7.

For the downstream facial attribute recognition task, we
discard the layers in the stage 4 of ResNet-100 and add t-
wo FC layers as an attribute classification head on the top
of the stage 3 which is previously regularized by the self-
supervised 3D reconstruction. To evaluate the performance
of the facial attribute recognition with limited training data,
we choose a small proportion of the training set for train-
ing. The batch size is set to 40 and the whole network is
finetuned for 60 epochs.

4.3. Ablation Study

In our framework, both the supervised face recognition
task and the self-supervised 3D reconstruction task can be
treated as pretext tasks for the downstream facial attribute
recognition. To investigate the effectiveness of these two
pretext tasks, we perform an ablation study on the LFWA
dataset by evaluating three variants of the proposed method.
The first one is the fully self-supervised setting that only
the 3D reconstruction task is used for feature learning. Sec-
ondly, only the face recognition task is employed. Finally,
these two tasks are combined together to learn face repre-
sentations. These three variants are all pre-trained on M-
S1MV?2 and then finetuned with different proportions of la-
beled LFWA training data. Moreover, training from scratch
on the same LFWA data is conducted as the baseline.

The results are shown in Table 1. As seen, when only a
small proportion of labeled training data is available, initial-
ization with the self-supervised 3D reconstruction task and
the supervised face recognition task both outperforms the
baseline. Specifically, when using 10% of the training da-
ta, the 3D task and the FR task achieve improvements up to
2.91% and 4.38%, respectively. These results illustrate that
both the two tasks are beneficial to the downstream facial
attribute recognition task. When the two kinds of tasks are
jointly used for pre-training, the attribute recognition accu-
racy can be further improved, which demonstrates that the
self-supervised 3D reconstruction task and the supervised
face recognition task benefit from each other to achieve bet-
ter face representations for downstream tasks.

Table 2. Performance on IJB-B dataset.

IJB-B (TAR@FAR)

Methods le-6 le-5 le-4
SphereFace [17] 39.40 73.58 89.19
CosFace [31] 40.41 89.25 94.01
ArcFace [5] - - 94.20
NPCFace [37] - 85.59 92.02
MagFace [20] 40.91 89.88 94.33
CurricularFace [12]  42.26 89.02 94.83
3D-BERL 45.77 90.60 94.98

4.4. Results on I1JB-B and 1JB-C

For fair comparisons with state-of-the-art methods, we
follow the same testing protocol in [5, 1 2] to conduct evalu-
ations on two template-based face recognition benchmarks,
i.e., IIB-B and IJB-C. The average feature of all images in
one template is utilized as the final feature embedding of
the template. The true accept rate (TAR) and the false ac-
cept rate (FAR) are employed as the evaluation metrics for
the 1:1 verification task. Here, we mainly report the TARs
when FAR is le-6, le-5 and le-4, respectively.

We Firstly conduct a comparison with state-of-the-art
methods on IJB-B dataset. As shown in Table 2, 3D-
BERL outperforms the strong baseline CurricularFace [12]
with a large improvement up to 3.51% in terms of TAR
when FAR=1e-6. Attributed to the enhanced face repre-
sentations by the 3D reconstruction, 3D-BERL also shows
superior performance than other FR methods including
SphereFace [17], CosFace [31], ArcFace [5] and NPC-
Face [37]. Moreover, the proposed method also surpass-
es the more recent method MagFace [20] which propos-
es a quality assessment method to improve the margin-
based loss function. An improvement up to 4.86% is wit-
nessed, which demonstrates the effectiveness of integrating
self-supervised 3D face reconstruction into face recognition
learning.

Since only the TAR at FAR=1e-4 on IJB-C dataset is re-
ported in [12], to get a detailed comparison with Curricu-
larFace, we re-implement it and get a result which is on par
with the original paper. Table 3 summarizes the result on
IJB-C dataset. Similar conclusions can be obtained that our
3D-BERL outperforms state-of-the-art methods. Compared
to this strong baseline [12], the proposed method achieves
improvements of 0.99% and 0.45% on the TAR at FAR=1e-
6 and le-5, respectively. It is worth mentioning that 3D-
BERL uses exactly the same FR backbone as Curricular-
Face, thus their comparison also takes the role of the ab-
lation study on FR task. The abovementioned results have
demonstrated that it is the proposed 3D reconstruction by-
pass that helps to improve the discriminant ability of the
backbone.

We then evaluate 3D-BERL on the more challenging
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Table 3. Performance on IJB-C dataset.

IJB-C (TAR@FAR)

Methods le-6 le-5 le-4
CenterFace [33] - 78.10 85.30
SphereFace [17] 68.86 83.33 91.77
AdaCos [39] 83.28 88.03 92.40
DDL [11] - 88.40 93.10
PFE [26] - 89.64 93.25
CosFace [31] 87.96 92.68 95.56
ArcFace [5] - - 95.60
DUL [4] - 90.23 94.21
NPCFace [37] - 88.08 92.90
DiscFace [15] - 92.42 94.82
CircleLoss [29] - 89.10 93.25
MagFace [20] 89.26 93.67 95.81
CurricularFace [12]  87.46 93.85 96.20
3D-BERL 88.45 94.30 96.20

Table 4. Performance on IJB-C occlusion subset.

IJB-C occlusion (TAR @FAR)

Methods le-6 le-5 le-4 le-3
InterpretFR [36] - - - 89.80
CurricularFace [12] 70.23  89.23 9341 95.33
3D-BERL 75.09 9024 9341 9544

IJB-C occlusion subset, in which each face contains at least
one occluded facial region. As illustrated in Table 4, 3D-
BERL significantly outperforms the CurricularFace [12].
The TAR at FAR=1e-6 is improved by 4.86%, demonstrat-
ing that the feature learnt by 3D-BERL is more robust to
occlusion. The reason is that the depth branch regularizes
face recognition features to encode more information of 3D
shape which is more robust to occlusion. To verify this, we
visualize the depth extracted by 3D-BERL in Fig 3. The
results of two occluded faces of IJB-C dataset are shown
in the last two rows of Fig 3. As seen, although the occlu-
sion has damaged the facial texture, 3D-BERL still obtained
reasonable depth map. In this way, 3D-BERL improves the
face recognition performance under occluded scenarios.

4.5. Results on MegaFace

Table 5 summarizes the rank-1 accuracies of state-of-
the-art methods on large-scale MegaFace [14] benchmark.
Compared with the recent strong competitors, 3D-BERL
achieves a state-of-the-art result of 98.63%, demonstrating
the superiority of the proposed method again.

4.6. Results on CelebA and LFWA

We believe the shallow stages jointly trained by both the
FR loss and the self-supervised 3D reconstruction loss can
provide robust face representations to various face analy-

Table 5. Rank-1 identification accuracy (%) on MegaFace Chal-
lenge 1.

Methods MF1 Rankl
AdaptiveFace [16] 95.02
AdaCos [39] 97.41
CosFace [31] 97.91
MV-Arc-Softmax [32] 97.74
ArcFace [5] 98.35
CircleLoss [29] 98.50
3D-BERL 98.63

Table 6. Recognition accuracy (%) on CelebA dataset.

Proportion of training samples
Methods 02% 05% 1% 2% 100%
SIEmCNN [25] 79.90 80.20 80.96 82.32 91.24
DeepCluster [3]  83.21 86.13 87.46 88.86 91.68
JigsawPuzzle [22] 82.88 84.71 86.25 87.77 91.57

Rot [7] 83.25 86.51 87.67 88.82 91.69
FixMatch [28] 80.22 84.19 85.77 86.14 89.78
VAT [21] 81.44 84.02 86.30 87.28 91.44
Unsup3D [35] 83.36 84.61 86.04 86.88 90.31
SSPL [27] 86.67 88.05 88.84 89.58 91.77
Baseline 80.53 82.25 83.06 83.89 89.48
3D-BERL 87.34 88.02 88.95 89.42 90.23

sis tasks. In this section, we conduct experiments on a
challenging task of facial attribute prediction with limited
labeled data. We utilize CelebA and LFWA datasets for
experiments and take five different proportions of training
data to finetune the downstream facial attribute recognition
task. As seen in Table 6, 3D-BERL achieves comparable or
even superior performance than state-of-the-art methods on
CelebA dataset. Comparing to the self-supervised meth-
ods [3,7,22] designed for general objects, the proposed
method achieves significant improvements, especially when
less training data (such as 0.2%) is used. This is because the
proposed auxiliary bypass exploits the 3D information of
face structure, which is more favorable for backbone to cap-
ture facial attributes. Moreover, the proposed method also
achieves higher accuracy than the semi-supervised methods
FixMatch [28] and VAT [21].

Recently, attributed to the pretext task of face paring,
SSPL [27] outperforms all previous methods for facial at-
tribute prediction with limited training data. Different-
ly, 3D-BERL focuses on learning 3D face structure and
achieves an improvement of 0.67% when 0.2% of train-
ing data is used. It is worth noting that SSPL uses larg-
er image size of 224 x224, while 3D-BERL only requires
112x112 images. Even with a lower resolution, our method
still achieves comparable results with SSPL.

Here, we also compare 3D-BERL with Unsup3D [35],
which is most related to our work. We concatenate the out-
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Table 7. Recognition accuracy (%) on LFWA dataset.

Proportion of training samples
Methods 5% 10% 20% 50% 100%
SIimCNN [25] 7090 7149 7212 73.45 76.02
DeepCluster [3]  74.21 77.42 80.77 84.27 85.90
JigsawPuzzle [22] 73.90 77.01 79.56 83.29 84.86

Rot [7] 7440 76.67 81.52 84.90 85.72
FixMatch [28] 7142 7278 75.10 80.87 83.84
VAT [21] 72.19 7442 76.26 80.55 84.68
SSPL [27] 78.68 81.65 83.45 8543 86.53
Baseline 77.82 80.24 78.82 81.47 86.43
3D-BERL 84.08 85.33 8596 86.13 86.39

put of the albedo network and the depth network in Un-
sup3D and finetune it on the downstream facial attribute
recognition task. As shown in Table 6, benefited from
the initialization with the self-supervised 3D reconstruction,
Unsup3D achieves better results than the baseline. More-
over, our 3D-BERL significantly outperforms Unsup3D
with an improvement up to 3.98% when 0.2% of training
data is used. The possible reason is that our self-supervised
3D reconstruction bypass enforces the features learnt by
face recognition task to focus on the pose and illumination
irrelevant features while face recognition pathway assists
the features learnt by 3D reconstruction bypass to be more
specific to face perceptron tasks. In other words, they bene-
fit from each other.

Tabel 7 summarizes the results on LFWA dataset. As
seen, 3D-BERL significantly outperforms previous meth-
ods by a large margin when only 5%, 10% or 20% of train-
ing data is used. When only 5% training data is used, 3D-
BERL outperforms SSPL with an improvement up to 5.4%,
which further demonstrates the effectiveness of 3D-BERL
for learning robust face representations.

4.7. Visualization Results

In Fig 3, we shows the visualization results of our 3D
reconstruction auxiliary bypass. As seen, both the albedo
and depth are recovered in the natural canonical view and
with high fidelity, meaning that the FR backbone has en-
coded sufficient information of canonical facial depth and
albedo, which is more intrinsic and beneficial to face recog-
nition. As shown in the last two rows of Fig 3, even in the
presence of uncontrolled pose and occlusion, the proposed
auxiliary bypass still decodes high fidelity canonical depth
from the intermediate features of FR backbone, and this has
explained why our method significantly improves the oc-
cluded face recognition in Table 4.

4.8. Limitations

While 3D-BERL has achieved promising results even
with partial occlusion and medium pose, the 3D reconstruc-

Input Albedo Depth

Figure 3. The visualization results of the 3D reconstruction auxil-
iary bypass.

tion fails in case of extreme poses, partially due to the se-
vere self-occlusion not considered in the imaging model.
This may be improved by imposing more complex imaging
model and complicated reconstruction networks.

5. Conclusion

To learn more robust face embedding under uncon-
strained scenarios, we propose to incorporate a self-
supervised 3D reconstruction bypass into traditional 2D
face recognition pathway. Inspired by the physical model
of image formation, the 3D reconstruction bypass consists
of two auxiliary networks: one for pose and lighting and the
other for canonical depth and albedo. Then, we reconstruct
the face image via image formation model and the recon-
struction loss is exploited to enforce the FR backbone to en-
code more information of canonical facial depth and albedo.
In other words, it enables the FR backbone to understand
faces in 3D view which is intrinsic and beneficial to face
recognition. Extensive experimental results show that the
proposed method not only significantly improves the face
recognition accuracy, but also provides a good foundation
model for downstream tasks such as facial attribute recog-
nition task with only limited labeled data.
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