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Abstract

6D object pose estimation networks are limited in their
capability to scale to large numbers of object instances
due to the close-set assumption and their reliance on high-
fidelity object CAD models. In this work, we study a new
open set problem; the few-shot 6D object poses estimation:
estimating the 6D pose of an unknown object by a few sup-
port views without extra training. To tackle the problem,
we point out the importance of fully exploring the appear-
ance and geometric relationship between the given support
views and query scene patches and propose a dense pro-
totypes matching framework by extracting and matching
dense RGBD prototypes with transformers. Moreover, we
show that the priors from diverse appearances and shapes
are crucial to the generalization capability under the prob-
lem setting and thus propose a large-scale RGBD photore-
alistic dataset (ShapeNet6D) for network pre-training. A
simple and effective online texture blending approach is
also introduced to eliminate the domain gap from the syn-
thesis dataset, which enriches appearance diversity at a low
cost. Finally, we discuss possible solutions to this problem
and establish benchmarks on popular datasets to facilitate
future research. [project page]

1. Introduction

6D object pose estimation aims to predict a rigid trans-
formation from the object coordinate system to the cam-
era coordinate system, which benefits various applica-
tions, including robotic manipulation, augmented reality,
autonomous driving, etc. The explosive development of
deep learning has brought significant improvement to this
problem. With recent works [15, 16] reaching nearly 99%
recall accuracy on existing benchmarks [18, 22, 58], one
may get the impression that the 6D object pose problem
has been solved, which is not the case. We argue that the
current problem has been simplified with strict restrictions.
They are under the close-set assumption that the training
and testing data are drawn from the same object space,
which, however, does not adhere to the real dynamic worlds.
Moreover, extravagant high-fidelity CAD models and large-
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Figure 1. The few-shot 6D pose estimation problem. Given a
few RGBD views of a novel objects with pose labels. The few-shot
pose estimation network aims to estimate 6D pose of that object
in a novel query scene without extra training. No precise CAD
models are required as well.

scale datasets are required for training to obtain good per-
formance on new objects under the current instance-level
pose estimation setting.

The recently proposed category-level pose estimation
task [55] loosens the restriction with generalizability to
novel objects within the same categories. However, it is still
limited in the close-set assumption of predefined categories.
Instead, in this work, we study a new open-set problem, the
few-shot 6D object pose estimation: estimating 6D pose of
unknown objects by only a few views of the objects without
extra training. As shown in Figure 1, in our setting, only
a few labeled RGBD images of novel objects are provided,
and no high-fidelity CAD models are required. The goal of
the problem is to bridge the capability gap between machine
learning algorithms and flexible human visual systems that
can locate and estimate the pose of a novel object given
only several views of it. Besides, it has a wide range of
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real-world applications in robotic vision systems, i.e., fast
registration of novel objects for robotic manipulation and
home robots.

Under the observation that human beings utilize both ap-
pearance and geometric information to match and locate a
new object, we propose a dense RGBD prototypes match-
ing framework to tackle the problem. Specifically, trans-
formers are utilized to fully explore the semantic and geo-
metric relationship between the query scene patch and the
support views of novel objects. Moreover, we point out that
large-scale datasets’ diverse shape and appearance priors
are essential to empower networks to generalize on novel
objects. Therefore, we introduce a large-scale photorealistic
dataset (ShapeNet6D) with diverse shapes and appearances
for prior learning. To our knowledge, ours (800K images of
12K objects) is the largest and most diverse dataset for 6D
pose algorithms. To bridge the domain gap between ren-
dered RGB images and real-world scenes, we introduce a
simple and effective online texture blending augmentation,
which further enriches the appearance diversity and facili-
tates network performance at a low cost.

To summarize, the contributions of this work are:

• We introduce a challenging open-set problem, the few-
shot 6D object pose estimation, and establish a bench-
mark to study it.

• We formulate the problem by dense RGBD proto-
types matching and introduce FS6D-DPM, which fully
leverage appearance and geometric information to
tackle the problem.

• Datasets: We introduce ShapeNet6D, a large-scale
photorealistic dataset with diverse shapes and appear-
ances for prior learning of few-shot 6D pose estima-
tion algorithms. We also introduce an online texture
blending augmentation to obtain scenes of texture-rich
objects without domain gaps at a low cost.

2. Related Work
2.1. 6D Object Pose Estimation in Close-Set Setting

Instance-level pose estimation retrieves pose parameters
of known object instances. Matching based approaches
[13, 17, 24, 47, 59] requires precise CAD models to render
thousands of templates and establish hand-craft or learned
codebook for matching. Learning-based approaches in-
cludes direct pose regression [53,58], dense correspondence
exploration [29] and recent keypoint-based approaches [15,
16, 38], which improve the performance by large margins.
Despite compelling results, these approaches can only deal
with scenarios of known objects with high-fidelity CAD
models. Instead, the recent category-level pose estimation
[55] improves the generalizability by estimating unseen ob-

ject instances within the known categories. Normalized Ob-
ject Coordinate Space (NOCS) [55] or shape deformation
based [14,48] approaches are proposed. However, both tra-
ditional instance- and category-level pose estimation prob-
lems are under the close-set setting, assuming that the train-
ing and testing data are within the same predefined instance
or category spaces. While such close-set setting does not
adhere to the real dynamic world, we instead define a new
open-set problem, the few-shot 6D pose estimation. Algo-
rithms developed in our open-set setting can be flexibly ap-
plied to unknown objects without extra training with only
a few labeled RGBD images, no matter they are within the
trained categories or not.

2.2. Possible Few-Shot Pose Estimation Solutions

Local Image Feature Matching. Local feature match-
ing can establish the correspondence between two images
for the few-shot pose estimation problem. Existing meth-
ods can be categorized into detector-based [33–35, 42, 43]
and detector-free [28, 31, 41, 46]. While these algorithms
only leverage the grey-scale images, the performance drops
on texture-less objects. Instead, we fully leverage both the
appearance and the geometric information and generalize
well in more scenarios.

Point Cloud Registration. One line of point cloud reg-
istration algorithms solve the problem by detecting 3D key-
points [1, 27], extracting feature descriptors [7, 8, 12, 20, 40,
40] and estimating the relative transformation. Several end-
to-end approaches [57] are also proposed. However, these
algorithms heavily rely on fine point clouds and fail on ob-
jects that are not captured by depth sensors, i.e., reflective
ones. Instead, we fully leverage the complementary infor-
mation in RGBD images for dense prototypes extraction
and matching to retrieve better object pose parameters.

2.3. Metric learning on few-shot learning problems

Metric learning techniques have been applied to sev-
eral few-shot learning problems, including classification
[11,44,52] and segmentation [10,32,49,61]. The represen-
tative prototypical network [44] for classification map the
support and query images into a global embedding space
and then retrieve the class label of query image based on
the support embedding, named prototype. The recent metric
learning-based approaches in more challenging segmenta-
tion areas utilize similar technique but output per-pixel pre-
diction on the query images by matching per-pixel query
features with global average prototypes [10, 49, 64] or part-
level prototypes [32, 61]. While sparse support prototypes
are enough to solve the above problems, few-shot pose esti-
mation requires more dense correspondence exploration on
pixel-level support prototypes and query features, which is
more challenging.
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3. Proposed Method
3.1. Problem Formulation

We introduce the problem setting of the few-shot 6D ob-
ject pose estimation and the derived domain generalization
problem.

The few-shot 6D object pose estimation. We formu-
late the new open-set task, the few-shot 6D pose estima-
tion as follows. Given k support RGBD patches P =
{p1, p2, ..., pk} of a novel object with pose parameters as
support frames, the inference task is to retrieve the 6D pose
parameters of that novel object in the query novel scene im-
age I . Compared to current close-set setting, the proposed
open-set one eliminates the reliance on precise CAD mod-
els and focuses on the generalizability of trained models on
unseen objects. Specifically, once the model is trained, we
expect to apply it on novel scenes of novel objects by a few
views without extra training. It bridges the gap between
machine learning algorithms and flexible human visual sys-
tems. Moreover, it enables real-world applications, i.e., fast
registration of new objects for robotic manipulation and ser-
vice home robots.

The generalization requirement of the open-set problem
also derive another interesting research question to study:

Domain generalization. The domain generalization tar-
gets to reduce the domain gaps between models trained on
the synthesis and real-world data. It has been introduced to
the 6D pose estimation field to deal with the lack of data
[26,36,45,54]. However, this field is less explored as exist-
ing real-world benchmarking datasets [21,22] for the close-
set problem has been well established: real-world training
data for the object to be estimated is available. While exist-
ing datasets are small with limited objects, in our few-shot
open-set setting, diversity of shape and appearance are cru-
cial to the generalizability of few-shot 6D object pose esti-
mation algorithms. However, capturing and labeling such a
large-scale real-world dataset is not practical due to the high
cost (money and time). It is crucial to fully leverage the ge-
ometry and appearance diversity in our large-scale photo-
realistic datasets and generalize to the real world. The do-
main generalization problem is thus an important problem
to study for the few-shot 6D pose estimation.

3.2. Datasets

The prior learned from large-scale datasets is crucial to
the performance and generalizability of few-shot learning
algorithms. ImageNet [9], for example, has been widely
used for network pre-training in several few-shot learning
tasks, i.e., object detection and segmentation. While 2D vi-
sion tasks rely more on the semantic prior in RGB images,
for the few-shot 6D object pose estimation, both shape and
semantic prior are crucial for the generalizability of the net-
work. However, existing datasets [21, 22, 58] for 6D ob-

Dataset Modality Ncat Nobj Nimg

LineMOD [18] RGBD - 15 18,273
YCB-V [4] RGBD - 21 133,936
TLESS [21] RGBD - 30 47,664
NOCS-REAL [55] RGBD 6 42 80,000
NOCS-CAMERA [55] RGBD 6 1,085 300,000
ShapeNet6D RGBD 51 12,490 800,000

Table 1. Statistics of Different Datasets. ShapeNet6D is diverse
in shape and appearance, which is crucial to the generalizability
of few-shot 6D pose algorithms. Ncat: number of category; Nobj :
number of object instance. Nimg: number of images.

ject pose estimation are small and lack diversity in shape
and appearance to provide enough prior for the generaliza-
tion capability. Therefore, we keep their role as real-world
benchmark datasets and propose a new large-scale dataset,
ShapeNet6D, with diverse shapes and appearances for prior
learning.

3.2.1 ShapeNet6D

The proposed ShapeNet6D is a large-scale photorealistic
dataset containing RGBD scene images of more than 12K
object instances from the ShapeNet [5] repository. Each
scene image is labeled with ground truth information for
the 6D pose estimation problem, including instance seman-
tic segmentation and pose parameters of each object. As
we demonstrate empirically, the diversity of shape and ap-
pearance is crucial for the network to generalize. While it
is not practical to collect and label such a large-scale, di-
verse dataset in the real world due to the high cost (time
and money), we instead generate photorealistic images
by physically-based rendering. Our approach is inspired
by the successful application of photorealistic datasets in
[22, 62, 63] while improving the diversity of object shape
and appearance. Specifically, we utilize the physically-
based rendering engine, Blender1 that simulates the flow
of light energy by ray tracing to render realistic scene im-
ages. To arrange a scene to render, we first randomly select
several objects from ShapeNet, apply random material and
texture, and drop them into a box with the PyBullet physics
engine integrated into Blender. To enrich the variety of the
background, we randomly selected physically-based ren-
dering material from the HDRI Haven2 and applied them
to the wall of the box. Random environment lights are
also added to generate diverse lighting conditions. Finally,
the RGBD scene image is rendered from a random camera
pose, and the ground truth instance semantic segmentation
labels and pose parameters of each object are also obtained.
Statistics about ShapeNet6D compared to existing 6D pose
benchmark datasets are shown in Table 1. ShapeNet6D is

1https://www.blender.org
2https://hdrihaven.com/hdris
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Figure 2. Online data augmentation. The online texture blending augmentation generates texture by directly blending the real-world
image to the object mesh model. No extra artificial simulation is applied, i.e., simulated lighting and the domain of real-world RGB images
is preserved. Along with the online deformation augmentation [6], we can obtain data with diverse appearances and shapes at a low cost.

on a larger scale and is more diverse in shape and appear-
ance, which provides better prior to the few-shot pose esti-
mation problem as we showed empirically.

3.2.2 Online texture blending

As one of the crucial clues to solve the few-shot 6D pose
estimation problem, the texture field is also essential to
the performance of the few-shot 6D object pose estimation.
However, it is labor-intensive and time-consuming to gen-
erate textures and materials for objects that can be rendered
to be photorealistic. The rendered RGB images tend to
have more significant domain gaps between the real world
as well. Moreover, to produce photorealistic images, time-
and computation-consuming techniques like ray tracing are
required. Therefore, the images should be pre-processed of-
fline and stored before network training, which costs a lot of
storage space for a large-scale dataset. On the other hand,
real-world RGB images captured from various cameras are
easy to access, i.e., ImageNet [9], and MS-COCO [30]. It
motivates us to leverage efficient texture wrapping tech-
niques to generate scenes of objects with rich real-world
texture to serve as online data argumentation. Specifically,
the mesh is first unwrapped to obtain a UV map. For each
triangle, we get the UV coordinate of each vertex and then
utilize it to determine the UV coordinate of each pixel by
linear interpolation during rasterization. The UV coordi-
nate is then applied to lookup the color value from a texture
map randomly sampled from the real-world ImageNet [9],
and MS-COCO [30]. Previous works [22,37] render images
with artificial simulations, i.e., Beckmann model [2] , which
change the domain and cause domain gaps. Instead, we ap-
plied no simulation, so the composite images are kept in the
real domain, i.e., the lighting condition, sensors noise of the
real-world images are preserved. Moreover, such a simple
blending strategy can be implemented fast to serve online.
Moreover, we can combine it with online shape deforma-
tion [6] to produce data with rich appearance and shape di-

versity for training, as shown in Figure 2.

3.3. FS6D-DPM

3.3.1 Preliminaries

Prototypes-based few-shot learning. We first briefly in-
troduce the prototypes-based algorithms for few-shot learn-
ing. It has been successfully applied to various few-shot 2D
vision tasks, i.e., classification and semantic segmentation.
Specifically, a pre-trained Siamese backbone is utilized for
feature extraction from the support and the query images.
Then, global average pooling is applied on the extracted
support feature maps to obtain the support prototypes. This
global average prototype is then applied to calculate the
similarity between the global features (in classification) or
dense pixel-wise features (in semantic segmentation) ex-
tracted from the query image for prediction. However, these
tasks’ global-to-global or global-to-local correspondence is
not enough to recover 6D object pose parameters. This
work, instead, proposes a dense prototypes extraction mod-
ule to establish the local-to-local correspondence between
the support RGBD images and the query scene patch for
pose estimation.

Transformer [51]. Transformers networks are first in-
troduced in Natural Language Processing and are brought
into many vision tasks. The multi-head attention mecha-
nism enables it to capture the long-term dependency even
on an unordered set. Specifically, given three vectors as in-
puts, namely query Q, key K, and value V . The attention
mechanism is to retrieve information I from the value s.t.
the similarity between Q and K, denoted as:

Iretrieved = softmax(QKT )V. (1)

Gifted with the capability of capturing long-term depen-
dency, the Transformer networks [51, 56] have been suc-
cessfully applied to aggregate contextual information in the
local feature matching [43, 46] and point cloud registra-
tion [23] field. In this work, we further extend it to dense
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Figure 3. Overview of our pipeline. A Siamese full flow bidirectional fusion network [15] is utilized to extract rich appearance and
geometric features from the support view and the query scene patch, respectively. The extracted features are then fed into self- and
cross-attention modules to obtain dense support prototypes and query features for correspondence reasoning. Finally, the Umeyama
algorithm [50] is applied to recover the pose parameters of novel objects in the query scene patch.

（2）

（1）

Figure 4. Complementary information in RGBD images for
few-shot 6D pose estimation. (1) Texture information in RGB
images is crucial cue for objects with smooth surface. (2) Geo-
metric information in depth images is important cue for texture-
less objects.

RGBD prototypes matching for few-shot 6D pose estima-
tion.

3.3.2 Overview

To build a few-shot pose estimation algorithm that can gen-
eralize well to novel objects, it is crucial to fully explore
the semantic and geometric relationship between the given
support views and the query scene patch, as shown in Fig-
ure 4. In this section, we introduce our dense prototypes
matching framework to tackle this challenging problem. As
shown in Figure 3, our framework consists of three main
parts. Firstly, a Siamese RGBD feature extraction backbone
is utilized to extract rich semantic and geometric features
for each pixel/point. Then, a dense prototypes extraction
network based on transformers is applied to extract dense

RGBD prototypes from the support view and point-wise lo-
cal features from the query scene patch for similarity cal-
culation. Finally, after the correspondence between dense
prototypes and scene features is established, the Umeyama
algorithm [50] is leveraged to estimate the 6D pose param-
eters.

3.3.3 Feature Extraction Backbone

The first step is to extract rich semantic and geometric fea-
tures from the given RGBD images. As a fundamental prob-
lem, many works [15, 53, 60] have studied this representa-
tion learning task. Recently, FFB6D [15] introduce a full
flow bidirectional fusion network for 6D pose estimation
and significantly improve the performance of close-set pose
estimation. Specifically, bidirectional local feature fusion
blocks are added into each encoding and decoding layer to
bridge the information gap and improve the quality of ex-
tracted semantic and geometric features (see [15] for de-
tails). In this work, we leverage FFB6D to build a Siamese
network for feature extraction from the support images and
the query scenes.

3.3.4 Dense Prototypes Extraction and Matching

Now we have obtained dense features from the Siamese
feature extraction backbone. We then extract dense sup-
port prototypes and query features to calculate the similar-
ity and establish the correspondence. To extract descriptive
and representative dense RGBD prototypes from the sup-
port views and dense query features from query scenes, it
is crucial to fully leverage the structural geometric infor-
mation residing in point clouds and semantic information
abiding in RGB images. Besides, contextual information
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between the support shot and the query patch is also essen-
tial to improve the precision of similarity calculation and
correspondence exploration.

Considering the power of transformers on long-term de-
pendency capturing, we utilize the optimized Linear Trans-
formers [56] to serve the above two purposes. As shown in
the middle part of Figure 3, we first establish self-attention
on the extracted feature maps to strengthen the geometric
and semantic information residing in the extracted dense
prototypes and dense query features. We regard the ex-
tracted features as query, key, and value and fed them into
the Linear Transformer networks to enhance the seman-
tic and geometric features. Meanwhile, a cross-attention
module is also applied to explore the contextual informa-
tion between the support prototypes and the query scene
features. Precisely, to extract contextual information from
the support prototypes to the query scene features, we took
each scene feature as a query and the dense prototypes as
keys and values to the Linear Transformers. Contextual
information from query scene features to support proto-
types is enhanced similarly. With extracted contextual in-
formation, another self-attention modules are applied to en-
hance the geometric and semantic features further. In this
way, we obtain dense support prototypes and query fea-
tures with rich semantic, geometric and contextual infor-
mation. Unlike prototype-based few-shot classification and
segmentation algorithms that calculate the similarity by co-
sine distance, we follow local feature matching pipelines
[43] to establish the dense correspondence by calculating
C(i, j) = ⟨P (i), Q(j)⟩ with P (i) the ith prototype, Q(j)
the jth query feature and ⟨·, ·⟩ the inner product. The
Sinkhorn Algorithm [39] is applied for differentiable op-
timization as well.

3.3.5 Pose Parameters Estimation

After the correspondence between the dense prototypes
and the query scene features is established, we utilize the
Umeyama [50] algorithms to recover the pose parame-
ters. Specifically, given a set of matched pairs M =
{(pi, qi), 1 ≤ i ≤ N} with pi, qi the 3D coordinate of
matched prototypes and queries, the Umeyama algorithms
estimate the rotation R and translation T by minimizing:

Llsq =

N∑
i=1

||qi − (Rpi + T )||22. (2)

To eliminate the influence of outliers. The RANSAC algo-
rithms are also applied.

Given K support views of a novel object, we can obtain
K predicted pose parameters along with their losses. We
select the one with minimum loss as our final prediction.

4. Experiments
4.1. Benchmark Datasets

The LineMOD [18] and the YCB-Video [4] are two pop-
ular datasets for 6D object pose estimation. The LineMOD
dataset contains 13 videos of 13 low-textured objects, while
the YCB-Video dataset consists of 92 RGBD videos of 21
YCB objects. For the few-shot pose estimation problem, we
select 16 shots for each object for pose estimation. We also
follow the strategy of other well-established few-shot prob-
lems, i.e., segmentation, and split the dataset into different
groups. Specifically, we split the objects into three groups
for each dataset and select one for testing and the remaining
two for training each time (see the supplementary material
for details).

4.2. Evaluation Metrics

The average distance metrics ADD and ADDS are
widely used for performance evaluation of 6D pose esti-
mation. For an object O consists of vertexes v, the ADD
of asymmetric objects with the predicted pose R, T and
ground truth pose R∗, T ∗ is calculated by:

ADD =
1

m

∑
v∈O

||(Rv + T )− (R∗v + T ∗)||. (3)

For symmetric objects, the ADDS based on the closest point
distance is defined as:

ADDS =
1

m

∑
v1∈O

min
v2∈O

||(Rv1 + T )− (R∗v2 + T ∗)||.

(4)
In the YCB-Video dataset, the area under the accuracy-
threshold curve obtained by varying the distance threshold
(ADDS and ADD AUC) is reported following [15, 16, 58].
In the LineMOD datasets, we report the distance less than
10% objects diameter recall (ADD-0.1d) as in [19, 38].

4.3. Baselines

Possible solutions to the few-shot 6D object pose estima-
tion problem include local image feature matching, point
cloud registration, and template matching. We select the
state-of-the-art solution in each direction as our baseline.

LoFTR [46] is a detector-free deep learning architec-
ture for local image feature matching. It uses the self- and
cross-attention layers in Transformers to obtain high-quality
matches.

PREDATOR [23] is a neural architecture for pairwise
3D point cloud registration with deep attention to the over-
lap region. It learns to detect the overlap region between
two unregistered scans and focus on that region when sam-
pling feature points.

Template Matching. Template matching approaches
[13, 17, 24] discrete pose estimation problem into classifi-
cation problem. These approaches rely on CAD models to
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Figure 5. Qualitative results on the YCB-Video (left) and the LineMOD (right) datasets. We visualize the results of PREDATOR [23],
LoFTR [46] and the proposed FS6D-DPM. The ground truths are also visualized in the first row.

Group Object PREDATOR [23] LoFTR [46] TP-UB FS6D-DPM
ADDS ADD ADDS ADD ADDS ADD ADDS ADD

0

002 master chef can 73.0 17.4 87.2 50.6 62.2 21.4 92.6 36.8
003 cracker box 41.7 8.3 71.8 25.5 65.6 5.0 83.9 24.5
004 sugar box 53.7 15.3 63.9 13.4 66.7 21.5 95.1 43.9

005 tomato soup can 81.2 44.4 77.1 52.9 75.2 43.1 93.0 54.2
006 mustard bottle 35.5 5.0 84.5 59.0 47.1 4.0 97.0 71.1
007 tuna fish can 78.2 34.2 72.6 55.7 72.8 38.4 94.5 53.9
008 pudding box 73.5 24.2 86.5 68.1 86.3 18.4 94.9 79.6

1

009 gelatin box 81.4 37.5 71.6 45.2 90.9 43.2 98.3 32.1
010 potted meat can 62.0 20.9 67.4 45.1 59.8 28.9 87.6 54.9

011 banana 57.7 9.9 24.2 1.6 79.2 54.5 94.0 69.1
019 pitcher base 83.7 18.1 58.7 22.3 17.5 0.7 91.1 40.4

021 bleach cleanser 88.3 48.1 36.9 16.7 20.3 0.6 89.4 44.1
024 bowl 73.2 17.4 32.7 1.4 30.7 0.0 74.7 0.9
025 mug 84.8 29.5 47.3 23.6 46.0 13.9 86.5 39.2

2

035 power drill 60.6 12.3 18.8 1.3 42.3 0.7 73.0 19.8
036 wood block 70.5 10.0 49.9 1.4 13.5 1.3 94.7 27.9

037 scissors 75.5 25.0 32.3 14.6 89.5 71.8 74.2 27.7
040 large marker 81.8 38.9 20.7 8.4 82.5 51.9 97.4 74.2
051 large clamp 83.0 34.4 24.1 11.2 49.0 20.0 82.7 34.7

052 extra large clamp 72.9 24.1 15.0 1.8 50.2 9.4 65.7 10.1
061 foam brick 79.2 35.5 59.4 31.4 91.8 60.5 95.7 45.8

MEAN 71.0 24.3 52.5 26.2 59.0 24.2 88.4 42.1

Table 2. Quantitative evaluation of different few-shot 6D pose baselines on the YCB-Video dataset. Among them, the proposed FS6D-DPM
fully leverages the appearance and geometric information achieves the best performance. TP-UB: upper bound of template approaches.

Group PREDATOR [23] LoFTR [46] TP-UB FS6D-DPM
ADD-0.1d ADD-0.1d ADD-0.1d ADD-0.1d

0 55.1 38.0 8.1 70.0
1 40.4 30.4 10.0 86.8
2 46.8 30.3 13.2 93.4

Mean 48.0 33.4 10.1 83.4

Table 3. Quantitative evaluation of different few-shot 6D pose baselines on the LineMOD dataset. The proposed FS6D-DPM that fully
leverages the appearance and geometric information achieves the best performance. TP-UB: upper bound of template-based approach.
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Object w/o OTB w/ OTB
ADD ADD

002 master chef can 23.4 50.0
003 cracker box 15.1 42.0
004 sugar box 12.3 52.5
005 tomato soup can 52.8 74.7
006 mustard bottle 55.4 75.4
007 tuna fish can 54.5 56.5
008 pudding box 34.4 42.2
009 gelatin box 50.7 94.2
010 potted meat can 38.7 54.8
Mean 37.5 60.3

Table 4. Effect of online texture blending. w/o OTB: without on-
line texture blending; w/ OTB: with online texture blending.

Group from scratch pretrained pretrained +
finetuned

0 62.8 73.9 70.0
1 57.7 77.9 86.8
2 75 86.1 93.4

Mean 65.2 79.3 83.4

Table 5. Effect of ShapeNet6D for pre-training on the LineMOD
dataset. The variety of shape and appearance priors improves gen-
eralizability by large margins.

generate thousands of templates and retrieve the closest one
to the scene. However, we eliminate the dependency of pre-
cise object CAD models in our problem. Besides, capturing,
labeling, and storing thousands of support shots are time-
and storage-consuming. We assign the view with rotation
closest to the ground truth and the center shift as translation
to reveal the upper bound of these approaches.

For a fair comparison, all baselines and the proposed one
are not equipped with iterative refinement, e.g., ICP [3].

4.4. Training and Implementation

We crop object patches with ground-truth bounding
boxes for our model and resize them to 255× 255 as input.
The correspondence is optimized by negative log-likelihood
loss [43]. For a fair comparison, we pretrained all models on
ShapeNet6D with online data augmentation for two epochs
and fine-tuned on benchmark datasets for five epochs. We
select 16 different views for each object as support images.

4.5. Benchmark Results

Results on LineMOD and YCB-Video datasets. Quan-
titative results on the YCB-Video and the LineMOD dataset
are shown in Table 2 and Table 3 respectively. Thanks to
the joint reasoning of appearance and geometric relation-
ship between the support and query images, our method
outperforms the state-of-the-art local image feature match-
ing method and point cloud registration algorithms by large
margins. Some qualitative results are shown in Figure 5.

Domain generalization. As is shown in Table 5, our
model trained on ShapeNet6D with online data augmen-
tation is 4.1% behind the fine-tuned one. Considering
the small shape and appearance diversity in the LineMOD
dataset, compared with ShapeNet6D, we think the perfor-
mance drop mainly comes from the domain gap. More
future works are expected to bridge this gap to fully ex-
plore the power of shape and appearance diversity in
ShapeNet6D, e.g., designing domain invariant algorithms.

4.6. Ablation Study

Effect of pre-training on the large-scale ShapeNet6D.
As shown in Table 5, FS6D-DPM trained on ShapeNet6D
outperforms the one trained from scratch on the LineMOD
dataset by a large margin (+11%), proving the efficacy of
the shape and appearance diversity resides in ShapeNet6D.

Effect of online texture blending. As shown in Table 4,
the proposed online texture blending provides diverse tex-
ture prior and improves the performance on texture-rich ob-
jects in the YCB-Video dataset by large margins.

5. Discussion and Limitations

In this work, we study a challenging open-set problem,
the few-shot 6D object pose estimation. We point out the
essence of appearance and geometric information to tackle
the problem and propose FS6D-DPM as a solid baseline
to solve it. Furthermore, we show that prior from diverse
shapes and appearances are crucial to the generalizability
of few-shot 6D pose estimation algorithms and introduce a
large-scale dataset (ShapeNet6D) for network pre-training.
An online texture blending augmentation is proposed to
bridge the domain gap as well.

However, there are still some limitations in this work.
Firstly, we focus on the pose estimation problem and rely on
object detection algorithms to crop out the region of inter-
ested objects. Though various off-the-shelf few-shot object
detection algorithms [25] are available, a joint framework is
more practical. Secondly, despite being diverse in shape
and appearance, the proposed large-scale ShapeNet6D is
synthesis, and the domain gaps problem is not tackled yet.
Future directions include domain invariant pose estimation
algorithms or large-scale real-world datasets. Lastly, there
is still a significant performance gap between few-shot al-
gorithms and those trained under the close-set setting. We
expect more future research, e.g., leveraging 3D keypoint-
based techniques [15, 16] to bridge this gap.

Acknowledgements This work is supported by
Guangzhou Okay Information Technology with the
project GZETDZ18EG05.

6821



References
[1] Xuyang Bai, Zixin Luo, Lei Zhou, Hongbo Fu, Long Quan,

and Chiew-Lan Tai. D3feat: Joint learning of dense detec-
tion and description of 3d local features. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6359–6367, 2020. 2

[2] Petr Beckmann and Andre Spizzichino. The scattering of
electromagnetic waves from rough surfaces. Norwood, 1987.
4

[3] Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor fusion IV: control paradigms and data
structures, volume 1611, pages 586–606. International Soci-
ety for Optics and Photonics, 1992. 8

[4] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srini-
vasa, Pieter Abbeel, and Aaron M Dollar. The ycb object
and model set: Towards common benchmarks for manipula-
tion research. In 2015 international conference on advanced
robotics (ICAR), pages 510–517. IEEE, 2015. 3, 6

[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 3

[6] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, Linlin
Shen, and Ales Leonardis. Fs-net: Fast shape-based network
for category-level 6d object pose estimation with decoupled
rotation mechanism. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1581–1590, 2021. 4

[7] Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully
convolutional geometric features. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 8958–8966, 2019. 2

[8] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet:
Global context aware local features for robust 3d point
matching. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 195–205, 2018.
2

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 3, 4

[10] Nanqing Dong and Eric P Xing. Few-shot semantic segmen-
tation with prototype learning. In BMVC, volume 3, 2018.
2

[11] Victor Garcia and Joan Bruna. Few-shot learning with graph
neural networks. arXiv preprint arXiv:1711.04043, 2017. 2

[12] Zan Gojcic, Caifa Zhou, Jan D Wegner, and Andreas Wieser.
The perfect match: 3d point cloud matching with smoothed
densities. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5545–
5554, 2019. 2

[13] Chunhui Gu and Xiaofeng Ren. Discriminative mixture-of-
templates for viewpoint classification. In European Confer-
ence on Computer Vision, pages 408–421. Springer, 2010. 2,
6

[14] Yisheng He, Haoqiang Fan, Haibin Huang, Qifeng Chen, and
Jian Sun. Towards self-supervised category-level object pose
and size estimation. arXiv preprint arXiv:2203.02884, 2022.
2

[15] Yisheng He, Haibin Huang, Haoqiang Fan, Qifeng Chen, and
Jian Sun. Ffb6d: A full flow bidirectional fusion network for
6d pose estimation. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2021. 1, 2, 5,
6, 8

[16] Yisheng He, Wei Sun, Haibin Huang, Jianran Liu, Haoqiang
Fan, and Jian Sun. Pvn3d: A deep point-wise 3d keypoints
voting network for 6dof pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11632–11641, 2020. 1, 2, 6, 8

[17] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter
Sturm, Nassir Navab, Pascal Fua, and Vincent Lepetit. Gra-
dient response maps for real-time detection of textureless ob-
jects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(5):876–888, 2011. 2, 6

[18] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobo-
dan Ilic, Kurt Konolige, Nassir Navab, and Vincent Lepetit.
Multimodal templates for real-time detection of texture-less
objects in heavily cluttered scenes. In 2011 international
conference on computer vision, pages 858–865. IEEE, 2011.
1, 3, 6

[19] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian
conference on computer vision, pages 548–562. Springer,
2012. 6

[20] Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, and
Kurt Konolige. Going further with point pair features. In
European conference on computer vision, pages 834–848.
Springer, 2016. 2
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