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Figure 1. Our global appearance flow based try-on model has a clear advantage over existing local flow based SOTA methods such as
Cloth-flow [13] and PF-AFN [10], especially when there are large mis-alignment between reference and garment images (top row), and
difficult poses/occlusions (bottom row).

Abstract

Image-based virtual try-on aims to fit an in-shop gar-
ment into a clothed person image. To achieve this, a key step
is garment warping which spatially aligns the target gar-
ment with the corresponding body parts in the person im-
age. Prior methods typically adopt a local appearance flow
estimation model. They are thus intrinsically susceptible
to difficult body poses/occlusions and large mis-alignments
between person and garment images (see Fig. 1). To over-
come this limitation, a novel global appearance flow esti-
mation model is proposed in this work. For the first time,
a StyleGAN based architecture is adopted for appearance
flow estimation. This enables us to take advantage of a
global style vector to encode a whole-image context to cope
with the aforementioned challenges. To guide the StyleGAN
flow generator to pay more attention to local garment de-
formation, a flow refinement module is introduced to add
local context. Experiment results on a popular virtual try-
on benchmark show that our method achieves new state-
of-the-art performance. It is particularly effective in a ‘in-
the-wild’ application scenario where the reference image is
full-body resulting in a large mis-alignment with the gar-
ment image (Fig. 1 Top). Code is available at: https:
//github.com/SenHe/Flow-Style-VTON .

1. Introduction

The transition from offline in-shop retail to e-commerce
has been accelerated by the recent pandemic caused lock
downs. In 2020, retail e-commerce sales worldwide
amounted to 4.28 trillion US dollars and e-retail revenues
are projected to grow to 5.4 trillion US dollars in 2022.
However, when it comes to fashion, one of key offline
experiences missed by the on-line shoppers is the chang-
ing room where a garment item can be tried-on. To re-
duce the return cost for the online retailers and give shop-
pers the same offline experience online, image-based vir-
tual try-on (VTON) has been studied intensively recently
[9, 10, 13, 14, 19, 24, 38, 39, 42, 43].

A VTON model aims to fit an in-shop garment into a per-
son image. A key objective of a VTON model is to align the
in-shop garment with the corresponding body parts in the
person image. This is due to the fact that the in-shop gar-
ment is usually not spatially aligned with the person image
(see Fig. 1). Without the spatial alignment, directly apply-
ing advanced detail-preserving image to image translation
models [18,30] to fuse the texture in person image and gar-
ment image will result in unrealistic effect in the generated
try-on image, especially in the occluded and misaligned re-
gions.
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Previous methods address this alignment problem
through garment warping, i.e., they first warp the in-shop
garment, which is then concatenated with the person image
and fed into an image to image translation model for the fi-
nal try-on image generation. Many of them [9,14,19,38,42,
43] adopt a Thin Plate Spline (TPS) [7] based on the warp-
ing method, exploiting the correlation between features ex-
tracted from the person and garment images. However, as
analyzed in previous works [5, 13, 42], TPS has limitations
in handling complex warping, e.g., when different regions
in the garment require different deformations. As a result,
recent SOTA methods [10, 13] estimate dense appearance
flow [45] to warp the garment. This involves training a net-
work to predict the dense appearance flow field representing
the deformation required to align the garment with the cor-
responding body parts.

However, existing appearance flow estimation methods
are limited in accurate garment warping due to the lack of
global context. More specifically, all existing methods are
based on local feature’s correspondence, e.g., local feature
concatenation or correlation1, developed for optical flow
estimation [6, 17]. To estimate the appearance flow, they
make the unrealistic assumption that the corresponding re-
gions from the person image and the in-shop garment are
located in the same local receptive filed of the feature ex-
tractor. When there is a large mis-alignment between the
garment and corresponding body parts (Fig. 1 Top), cur-
rent appearance flow based methods will deteriorate drasti-
cally and generate unsatisfactory results. Lacking a global
context also make existing flow-based VTON methods vul-
nerable to difficult poses/occlusions (Fig. 1 Bottom) when
correspondences have to be searched beyond a local neigh-
borhood. This severely limits the use of these methods ‘in-
the-wild’, whereby a user may have a full-body picture of
herself/himself as the person image to try-on multiple gar-
ment items (e.g., top, bottom, and shoes).

To overcome this limitation, a novel global appearance
flow estimation model is proposed in this work. Specifi-
cally, for the first time, a StyleGAN [21, 22] architecture
for dense appearance flow estimation. This differs funda-
mentally from existing methods [6, 10, 13, 17] which em-
ploy a U-Net [30] architecture to preserve local spatial con-
text. Using a global style vector extracted from the whole
reference and garment images makes it easy for our model
to capture global context. However, it also raises an im-
portant question: can it capture local spatial context cru-
cial for local alignments? After all, a single style vector
seemingly has lost local spatial context. To answer this
question, we first note that StyleGAN has been successfully

1It is worth noting that the tensor correlation methods [6, 10, 17] have
the potential to reach global receptive field. However, its computation
grows quadratically with respect to the input size. To make it tractable,
its actual implementation is still based on limited local neighborhoods.

applied to local face image manipulation tasks, where dif-
ferent style vectors can generate the same face at different
viewpoints [34] and different shapes [15,28]. This suggests
that a global style vector does have local spatial context en-
coded. However, we also note that the vanilla StyleGAN ar-
chitecture [21, 22], though much more robust against large
mis-alignment and difficult poses/occlusions compared to
U-Net, is weaker when it comes to local deformation mod-
eling. We therefore introduce a local flow refinement mod-
ule in the existing StyleGAN generator to have the better of
both worlds.

Concretely, our StyleGAN-based warping module (W in
Fig. 2) consists of stacked warping blocks that takes as in-
puts a global style vector, garment features and person fea-
tures. The global style vector is computed from the lowest
resolution feature maps of the person image and the in-shop
garment for global context modeling. In each warping block
in the generator, the global style vector is used to modu-
late the feature channels which takes in the corresponding
garment feature map to estimate the appearance flow. To
enable our flow-estimator to model the fine-grained local
appearance flow, e.g., the arm and hand regions in Fig. 5,
in each warping block on top of the style based appearance
flow estimation part, we introduce a refinement layer. This
refinement layer first warps the garment feature map, which
is subsequently concatenated with the person feature map
at the same resolution and then used to predict the local de-
tailed appearance flow.

The contributions of this work are as follow: (1) We
propose a novel style-based appearance flow method to
warp the garment in virtual try-on. This global flow estima-
tion approach makes our VTON model much robust against
large mis-alignments between person and garment images.
This makes our method more applicable to ‘in-the-wild’ ap-
plication where a full-body person image with natural poses
is used (see in Fig. 1). (2) We conduct extensive experi-
ments to validate our method, demonstrating clearly that it
is superior to existing state-of-the-art alternatives.

2. Related Work

Image based virtual try-on Image based (2D) VTON
can be categorized into parser-based methods and parser-
free methods. Their main difference is whether an off-the-
shelf human parser2 is required in the inference stage.

Parser-based methods apply a human segmentation map
to mask the garment region in the input person image for
warping parameter estimation. The masked person image is
concatenated with the warped garment and then fed into a
generator for target try-on image generation. Most methods
[9, 13, 14, 38, 42, 43] apply a pre-trained human parser [11]

2Sometimes, pre-trained pose [3] and densePose [12] detection models
are also used in a parser based model.
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to parse the person image into several pre-defined semantic
regions, e.g., head, top, and pants. For better try-on im-
age generation, [42] also transforms the segmentation map
to match the target garment. The transformed parsing re-
sult, together with the warped garment and the masked per-
son image are used for final try-on image generation. The
reliance on a parser make these methods sensitive to bad
human parsing results [10, 19] which inevitably lead to in-
accurate warping and try-on results.

In contrast, parser-free methods [10,19], in the inference
stage, only takes as inputs the person image the garment im-
age. They are designed specifically to eliminate the nega-
tive effects induced by the bad parsing results. Those meth-
ods usually first train a parser-based teacher model and then
distill a parser-free student model. [19] proposed a pipeline
which distills the garment warping module and try-on gen-
eration network using paired triplets. [10] further improved
[19] by introducing cycle-consistency for better distillation.

Our method is also a parser free method. However, our
method focuses on the design of the garment warping part,
where we propose a novel global appearance flow based
garment warping module.
3D virtual try-on Compared to image based VTON, 3D
VTON provides better try-on experience (e.g., allowing be-
ing viewed with arbitrary views and poses), yet is also more
challenging. Most 3D VTON works [2, 27] rely on 3D
parametric human body models [25] and need scanned 3D
datasets for training. Collecting large scale 3D datasets is
expensive and laborious, thus posing a constraint on the
scalability of a 3D VTON model. To overcome this prob-
lem, recently [44] applied non-parametric dual human depth
model [8] for monocular to 3D VTON. However, existing
3D VTON still generate inferior texture details compared
to the 2D methods.
StyleGAN for image manipulation StyleGAN [21, 22]
has revolutionized the research on image manipulation
[28, 33, 41] lately. Its successful application on the image
manipulation tasks often thanks to its suitability in learn-
ing a highly disentangled latent space. Recent efforts have
been focused on unsupervised latent semantics discovery
[4,34,37]. [24] applied pose conditioned StyleGAN for vir-
tual try-on. However, their model cannot preserve garment
details and is slow during inference.

The design of our garment warping network is inspired
from StyleGAN in image manipulation, especially its super
performance in shape deformation [28, 34]. Instead of us-
ing style modulation to generate the warped garment, we
use style modulation to predict the implicit appearance flow
which is then used to warp the garment via sampling. This
design is much more suited to garment detail-preserving
compared to [24].
Appearance flow In the context of VTON, appearance
flow was first introduced by [13]. Since then, it has gained

more attention and adopted by recent state-of-the-art VTON
models [5, 10]. Fundamentally, appearance flow is used as
a sampling grid for garment warping, it is thus information
lossless and superior in detail preserving. Beyond VTON,
appearance flow is also popular in other tasks. [45] applied
it for novel view synthesis. [1, 29] also applied the idea of
appearance flow to warp the feature map for person pose
transfer. Different from all these existing appearance flow
estimation methods, our method, via style modulation, ap-
plies a global style vector to estimate the appearance flow.
Our method is thus intrinsically superior in its ability to cop-
ing with large mis-alignments.

3. Methodology

3.1. Problem definition

Given a person image (p ∈ R3×H×W ) and an in-shop
garment image (g ∈ R3×H×W ), the goal of virtual try-on is
to generate a try-on image (t ∈ R3×H×W ) where the gar-
ment in g fits to the corresponding parts in p. In addition,
in the generated t, both details from g and non-garment re-
gions in p should be preserved. In other words, the same
person in p should appear unchanged in t except now wear-
ing g.

To eliminate the negative effect of inaccurate human
parsing, our proposed model (F in Fig. 2) is designed to be
a parser-free model. Following the strategy adopted by ex-
isting parser-free models [10,19], we first pre-train a parser-
based model (FPB). It is then used as a teacher for knowl-
edge distillation to help train the final parser-free model F .
Both F and FPB consist of three parts, i.e., two feature
extractors (EPB

p , EPB
g in FPB and Ep, Eg in F), warping

module (WPB in FPB and W in F), and a generator (GPB

in FPB and G in F). Each of them will be detailed in the
following sections.

3.2. Pre-training a parser-based model

As per standard in existing parser-free models [10,19], a
parser-based model FPB is first trained. It is used in two
ways in the subsequent training of the proposed parser-free
model F : (a) to generate person image (p) to be used by F
as input and (b) to supervise the training of F via knowledge
distillation.

Concretely, FPB takes as inputs the semantic represen-
tation (segmentation map3, keypoint pose and dense pose)
of a real person image (pgt ∈ R3×H×W ) in the training set
and an unpaired garment (gun ∈ R3×H×W ). The output of
FPB is the image p where the original person is wearing
gun. p will serve as the input for F during training. This
design, according to [10], benefits from the fact that we now

3The garment region in the segmentation map is flipped as background
region
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Figure 2. A schematic of our framework. The pre-trained parser based model FPB generates an output image as the input of parser free
model F . The two feature extractors in F extract the feature of person image and garment image, respectively. A style vector is extracted
from the lowest resolution feature maps from person image and the garment image. The warping module takes in the style vector and
feature maps from the person image and garment image, and output an appearance flow map. The appearance flow is then used to warp
the garment. Finally, the warped garment is concatenated with person image and fed into the generator to generate the target try-on image.
Note that FPB is only used during training.

have paired person image pgt and garment image g in pgt to
train the parser-free model F , that is:

F∗ = arg min
F

∥t− pgt∥, (1)

where t = F(p, g) is the generated try-on image from F .
Note that FPB is only used during the training of F .

3.3. Feature extraction

We apply two convolutional encoders (Ep and Eg) to ex-
tract the features of p and g. Both Ep and Eg share the
same architecture, composed of stacked residual blocks.
The extracted features from Ep and Eg can be represented as
{pi}N1 and {gi}N1 (N = 4 in Fig. 2 for simplicity), where
pi ∈ Rci×hi×wi and gi ∈ Rci×hi×wi are the feature maps
extracted from the corresponding residual block in Ep and
Eg , respectively. The extracted feature maps will be used in
W to predict the appearance flow.

3.4. Style based appearance flow estimation

The main novel component of the proposed model is a
style-based global appearance flow estimation module. Dif-
ferent from previous methods that estimate appearance flow

based on local feature correspondence [10, 13], originally
proposed in optical flow estimation [6, 17], our method,
based on a global style vector, first estimates a coarse ap-
pearance flow via style modulation and then refine the pre-
dicted coarse appearance flow based on local feature corre-
spondence.

As illustrated in Fig. 2, our warping module (W) consists
of N stacked warping blocks ({Wi}N1 ), each block is com-
posed of a style-based appearance flow prediction layer (or-
ange rectangle) and a local correspondence based appear-
ance flow refinement layer (blue rectangle). Concretely, we
first extract a global style vector (s ∈ Rc) using the features
output from the N th (final) blocks of Ep and Eg , denoted as
pN and gN , as:

s = [fp(pN ), fg(gN )], (2)

where fp and fg are fully connected layers, and [·, ·] de-
notes concatenation. Intrinsically, the extracted global style
vector s4 contains the global information of the person and
garment, e.g., position, structure, etc. Similar to style based
image manipulation [15, 28, 33, 34], we expect the global

4Intuitively, s = fp(pN ) is enough to generate the appearance flow.
But we empirically found that s = [fp(pN ), fg(gN )] yields better results.
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style vector s capture the required deformation for warping
g into p. It is thus used for style modulation in a StyleGAN
style generator for estimating a appearance flow field.

More specifically, in the style-based appearance flow
prediction layer of each block Wi, we apply style modu-
lation to predict a coarse flow:

fci = convm(S(gN+1−i,U(fi−1)), s), (3)

where convm denotes modulated convolution [21], S(·, ·)
is the sampling operator, U is the upsampling operator, and
fi−1 ∈ R2×hi−1×wi−1 is the predicted flow from last warp-
ing block. Note that the first block W1 in W only takes in
the lowest resolution garment feature map and the style vec-
tor, i.e., fc1 = convm(gN , s). As can be seen from Equa-
tion 3, the predicted fci depends on the garment feature map
and the global style vector. It thus has a global receptive
field and is capable to cope with large mis-alignments be-
tween the garment and person images. However, as the style
vector s is a global representation, as a trade-off, it has a
limited ability to accurately estimate the local fine-grained
appearance flow (as shown in Fig. 5). The coarse flow is
thus in need of a local refinement.

To refine fci, we introduce a local correspondence based
appearance flow refinement layer in each block Wi. It aims
to estimate a local fine-grained appearance flow:

fri = conv([S(gN+1−i, fci), pN+1−i]), (4)

where fri is the predicted refinement flow, and conv denotes
convolution. Fundamentally, the refinement layer estimates
the refinement flow through the local correspondence, i.e.,
the correspondence between warped person features and
garment feature in the same receptive field. Note that after
the warping by fci, we can assume that the corresponding
regions/features in gN+1−i and pN+1−i are now located in
the same receptive field. Therefore, we can apply the local
correspondence used in previous works [10, 13] to predict
the local fine-grained appearance flow.

Finally, we add the coarse flow and the local fine-grained
appearance flow together as the output of each warping
block:

fi = fci + fri. (5)

The predicted appearance flow fN from the last block in
W is used to warp the garment:

ĝ = S(g, fN). (6)

And the warped garment ĝ is then concatenated with the
person image and fed into a generator for target try-on im-
age generation:

t = G([ĝ, p]). (7)

The generator G has an encoder-decoder architecture with
skip connections in between. We follow the designs in [18,

46] that have been proven to be effective in texture detail
preservation.

3.5. Learning objectives

To train our model, we first apply a perceptual loss [20]
between the output of F and the ground truth person image
pgt:

Lp =
∑
i

∥ϕi(t)− ϕi(pgt)∥, (8)

where ϕi is the ith block of the pre-trained VGG network
[35].

To supervise the training of the warping model W , we
apply a loss on the warped garment:

Lg = ∥ĝ −mg · pgt∥, (9)

where mg is the garment mask of pgt predicted by an off-
the-shelf human parsing model.

As per standard in previous appearance flow methods
[10, 13], we also apply a smoothness regularization on the
predicted flow from each block in W:

LR =
∑
i

∥∇fi∥, (10)

where ∥∇fi∥ is the generalized charbonnier loss function
[36].

As the inputs (segmentation map, keypoint pose and
dense pose) to the parser-based person encoder (EPB) con-
tain more semantic information than those of the parser-
free model F (person image), we apply a distillation loss
to guide the learning of person encoder Ep in F :

LD =
∑
i

∥pPB
i − pi∥, (11)

where pPB
i is the output feature map from ith block in the

person encoder EPB
p in the pre-trained parser based model

FPB .
The overall learning objective is:

L = λpLp + λgLg + λRLR + λDLD, (12)

where λp, λg ,λR and λD denote the hyperparameters for
balancing the four objectives.

4. Experiments
Datasets We experiment our model on the VITON
dataset5 [14]. It is the most popular dataset used in pre-
vious VTON works. VITON contains a training set con-
taining 14, 221 image pairs6 and a testing dataset of 2, 032

5The usage of the dataset has been permitted by the author in [14].
6Each pair means a person image and the image of garment on the

person.
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pairs. Both person and garment images are of the resolution
256× 192.

We also create a testing dataset, denoted by augmented
VITON, to evaluate model’s robustness to the random posi-
tioned person image (see example in Fig. 4) with larger mis-
alignments with the garment images in the original dataset.
As most testing person images in VITON are well posi-
tioned such that the person image and the garment are well
pre-aligned (e.g., most corresponding regions in the person
image and garment image are roughly located in the same
receptive field), it is not suited for this evaluation. Con-
cretely, the augmented VITON dataset is created by ran-
domly augmenting the testing person image in VITON via
shifting and zooming in/out. In particular, we randomly
augment 1/3 testing person images in VITON by shifting
the person’s position in the image and randomly augment
another 1/3 test images in VITON by zooming in/out the
person in the image and keep another 1/3 testing images
unchanged. When evaluated on this dataset, all compared
models are trained with person image augmentation.

Implementation details Our model is implemented in
PyTorch. We train our model with a single Nvidia RTX
2080-Ti GPU. We set the batch size as 4 and train the model
with 100 epochs. We train the model with Adam opti-
mizer [23]. The initial learning rate is set to 5e− 4 which is
linearly decayed after 50 epochs. Each residual block in Ep
and Eg is followed by a pooling layer to reduce the spatial
dimension. We set N = 5 and c = 256 in the implementa-
tion. We will release the code upon the acceptance of this
work.

Evaluation metrics and baselines We evaluate our
model both automatically and manually. In the auto-
matic evaluation, as per standard in VTON, we evaluate
model performance using structure similarity (SSIM) [40]
and Fréchet Inception Distance (FID) [16]. According to
[10, 31], inception score (IS) [32] is not suitable to evaluate
VTON images, we thus do not adopt it in the evaluation. In
the manual (subjective) evaluation, we run perceptual study
on Amazon Mechanical Turk (AMT) to compare the qual-
ity of the generated try-on images from different models.
Given an input person image, a garment image and the gen-
erated try-on image from two models, the AMT workers
were asked to vote which generated try-on image is better.
Each AMT worker was randomly allocated 100 images to
compare two models. 15 AMT workers participated in the
evaluation for all models comparison.

We compare our methods with other parser-based meth-
ods VTON [14], CP-VTON [38], Cloth-flow [13], CP-
VTON++ [26], ACGPN [42], DCTON [9] and ZFlow [5].
We also compare with the SOTA parser-free method PF-
AFN [10].

Methods Warping Parser SSIM ↑ FID↓

VTON [14] TPS Y 0.74 55.71
CP-VTON [38] TPS Y 0.72 24.45

CP-VTON++ [26] TPS Y 0.75 21.04
Cloth-flow [13] AF Y 0.84 14.43
ACGPN [42] TPS Y 0.84 16.64
DCTON [9] TPS Y 0.83 14.82

PF-AFN [10] AF N 0.89 10.09
Zflow [5] AF Y 0.88 15.17

Cloth-flow⋆ [13] AF N 0.89 10.73

Ours AF N 0.91 8.89

Table 1. Quantitative results of different models on VITON.
Warping represents the warping methods used in different mod-
els. Parser indicates whether human parser is used in the model
during inference. TPS: Thin Plate Spline. AF: Appearance Flow.
⋆: re-trained with parser free training paradigm.

Main results The quantitative results on VITON testing
dataset are shown in Table 1. It can be seen that our model
achieves new state-of-the-art performance. Importantly,
given the already low FID score (10.09) achieved by prior
SOTA method PF-AFN, our method can further decrease it
by 11.9%. In the meanwhile, the following observations can
be made from Table 1. (1) Appearance flow based warping
methods generally perform better than TPS based warping
methods. (2) Although it takes more training time, parser-
free methods are much better than parser-based methods.
Our model, benefiting from the proposed novel global ap-
pearance flow estimation method, outperforms the previ-
ous SOTA parser-free methods (PF-AFN [10] and Cloth-
flow [13]) on all evaluation metrics. The human evaluation
results are shown in Table 2. The result is consistent with
that in Table 1. Our model outperforms all compared mod-
els with more than 10% preference rate. The qualitative re-
sults from different models are illustrated in Fig. 3. Overall,
our method generates better try-on images. For example,
the hard pose and occlusion in second and third rows.

The quantitative results on augmented testing dataset are
shown in Table 3. As can be seen that our model again
performs best on the augmented VITON testing dataset.
Importantly, all other models’ performance drops dramat-
ically. And our model can still maintain the performance
(SSIM score) compared to that on the original VITON test-
ing dataset. The qualitative examples are illustrated in
Fig. 4. Only our model can generate consistent (e.g., the
garment’s left sleeve) and high quality try-on images given
the large mis-alignments.

Ablation Study In this experiment, we validate the de-
sign of our appearance flow estimation blocks (Wi). Specif-
ically, we first experiment our method with only global style
modulation (SM) based appearance flow estimation, that
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person garment CP-VTON++ ACGPN PF-AFN Ours

Figure 3. Qualitative results from different models (CP-VTON++ [26], ACGPN [42], PF-AFN [9] and ours) on VITON testing dataset.

Compared methods preference rate

CP-VTON++ [26] 12.7% / 87.3%
ACGPN [42] 20.2% / 79.8%

Cloth-flow⋆ [13] 38.5% / 61.5%
AF-PFN [10] 43.2% / 56.8%

Table 2. The preference rate comparing other models against our
model (other models/our model) in human evaluation.

is, only using fci in Equation 3 in each Wi. We then ex-
periment our method with only refinement flow (RF) esti-
mation, that is, only using fri in Equation 4 in each Wi.
Finally, we experiment with our combined method (SM +
RF) which first estimates the appearance flow globally via
style modulation and then refines the appearance flow lo-
cally through local correspondence. The quantitative results

Methods SSIM ↑ FID↓ ▽SSIM/▽FID

ACGPN 0.81 20.75 0.003/4.11
Cloth-flow⋆ [13] 0.86 13.05 0.003/2.96

AF-PFN [10] 0.87 12.19 0.002/2.10

Ours 0.91 9.91 0/1.02

Table 3. Quantitative results of different models on augmented VI-
TON and their relative performance drop (▽SSIM/▽FID) compared
to the standard VITON testing dataset.

are shown in Table 4. Our proposed global style modulation
(SM) based appearance flow method outperforms the local
correspondence based method. When they were combined,
the performance is further boosted. As illustrated in Fig. 5,
without local refinement, our method (global style modu-
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person garment ACGPN Cloth-flow PF-AFN Ours

Figure 4. Illustrating different VTON models’ robustness to the randomly positioned person image. First row uses original person image
as input. And second row uses vertically shifted person image as input. ACGPN [42], Cloth-flow [13], PF-AFN [10].

lation only) sometimes cannot accurately predict the local
fine-grained appearance flow, e.g., the sleeve regions, and
thus generates unsatisfactory try-on image. However, with
only local correspondence based appearance flow estima-
tion, e.g., only using fri in Wi, the method suffers when the
corresponding regions are not located in the same receptive
field. As illustrated in Fig. 6, fri cannot accurately estimate
the appearance flow when there exists a large misalignment
between the input person images and garment images. Once
fci was first used to reduce the misalignment, our model can
successfully overcome the problem.

Methods SSIM ↑ FID↓
RF 0.89 10.73
SM 0.89 9.84

SM + RF 0.91 8.89

Table 4. Results on VTON testing dataset when different appear-
ance flow estimation methods were used in Wi. RF: local cor-
respondence based flow estimation. SM: style modulation based
flow estimation.

5. Conclusion

In this paper, we have proposed a style based global ap-
pearance flow estimation method to warp the garment for
virtual try-on. Our method via style modulation first es-
timates the appearance flow globally and then refines the
appearance flow locally. Our method achieves state-of-the-
art performance on the VITON benchmark and it is more
robust against large mis-alignment between person and gar-
ment images, as well as difficult poses/occlusions. We con-
ducted extensive experiments to show the superiority of our
method and validated our architecture design.

person garment 𝐟𝐜𝐢 𝐟𝐜𝐢 + 𝐟𝐫𝐢

Figure 5. Comparing results with only fci used in Wi and fci+ fri
used in Wi.

person garment 𝐟𝐫𝐢 𝐟𝐜𝐢 + 𝐟𝐫𝐢

Figure 6. Comparing results with only fri used in Wi and fci+ fri
used in Wi in the case of large misalignment between the input
person image and garment image.
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