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Abstract

Estimating homography from an image pair is a funda-
mental problem in image alignment. Unsupervised learn-
ing methods have received increasing attention in this field
due to their promising performance and label-free train-
ing. However, existing methods do not explicitly consider
the problem of plane-induced parallax, which will make
the predicted homography compromised on multiple planes.
In this work, we propose a novel method HomoGAN to
guide unsupervised homography estimation to focus on the
dominant plane. First, a multi-scale transformer network
is designed to predict homography from the feature pyra-
mids of input images in a coarse-to-fine fashion. More-
over, we propose an unsupervised GAN to impose copla-
narity constraint on the predicted homography, which is re-
alized by using a generator to predict a mask of aligned
regions, and then a discriminator to check if two masked
feature maps are induced by a single homography. To val-
idate the effectiveness of HomoGAN and its components,
we conduct extensive experiments on a large-scale dataset,
and results show that our matching error is 22% lower than
the previous SOTA method. Code is available at https:
//github.com/megvii-research/HomoGAN

1. Introduction

Homography estimation is a fundamental computer vi-
sion problem that plays an important role in a wide range of
applications, such as image/video stitching [14,37], camera
calibration [40], HDR imaging [12] and SLAM [24, 41]. It
is defined as the estimation of the projective transformation
between two views on the same plane in 3D space [28]. Tra-
ditional methods typically address this problem by follow-
ing a pipeline of feature extraction [2, 22, 26], correspon-
dence matching, and solving direct linear transform [15]
with outlier rejection [10]. But these methods often suf-
fer from the lack of discriminative keypoints when dealing
with textureless or blurry images.

Recently, unsupervised learning methods have gained

*Equal contribution. †Corresponding authors.

(a) Input image pair (b) Predicted plane mask

(c) Result w/o mask (error=0.577) (d) Result w/ mask (error=0.353)

Figure 1. Predicting homography for images with a multi-plane
scene will lead to virtual parallax. We propose an unsupervised
homography estimation method that enforces the model to focus
on the dominant plane by leveraging coplanarity constraint, thus
significantly reducing the matching error. (c) and (d) are generated
by superimposing the warped source image on the target image.

popularity in homography estimation [8, 25, 28, 35, 39].
These methods directly predict the homography from a pair
of source and target images using a neural network, of
which an important optimization objective is to minimize
the distance from the warped source image to the target im-
age. They do not rely on keypoints, and could perform bet-
ter than traditional methods in textureless scenarios. How-
ever, when there exist multiple planes in the scene, optimiz-
ing over the entire image will lead to a compromised result,
i.e., the predicted homography is averaged on all planes and
not accurate on the dominant plane, as shown in Fig. 1. Note
that the planes of interest are not limited to rigid planes such
as grounds, buildings, and walls, but also include planes that
can be approximately induced by a homography, such as
mountains in the distance. Some existing methods propose
to remove large foregrounds or moving objects from the in-
put images by predicting a mask [18, 39]. But their masks
are implicitly optimized as a side product of homography
estimation and lack explicit guidance, thus cannot address
the plane-induced parallax.

In this work, we introduce an unsupervised approach to
empower homography estimators to focus on a dominant
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plane instead of the entire image. Assume a scene with
multiple planes, we cannot align the entire image with one
homography unless two images are related by a conjugate
rotation [15]. Instead, we can obtain a mask to indicate if
each pixel is well aligned by the predicted homography. If
the homography is induced by the dominant plane, then the
aligned regions should be on the same plane and occupy
a significantly large area. With this knowledge, our main
idea is to impose additional coplanarity constraint and area
penalty on the aligned regions of the mask.

To achieve this goal, we propose a new method Homo-
GAN with two unique designs. First, to guide the model to
focus on the dominant plane, we introduce an unsupervised
GAN to impose coplanarity constraint, in which the gener-
ator predicts soft masks of aligned regions from a pair of
feature maps, while the discriminator checks if the masked
features is coplanar. Together with the foreground area con-
straint, the generated masks are expected to highlight the
dominant plane, which can in turn guide the training of ho-
mography estimator. Second, a multi-scale transformer net-
work is designed to predict the homography from a pair of
feature pyramids in a coarse-to-fine fashion. Compared to
CNN-based alternatives, the query-key correlation of trans-
formers is more natural to establish local correspondence
for homography estimation. In sum, this work makes the
following contributions:

• We propose a coplanarity-aware GAN to address the
problem of plane-induced parallax for homography es-
timation without ground truth.

• We design a coarse-to-fine homography estimation
transformer with self-attention encoders for capturing
local correspondences and class-attention decoders for
summarizing global information.

• Our method achieves the state-of-the-art performance
on unsupervised homography estimation, and outper-
forms previous methods by 22% on matching error.

2. Related Work
Traditional Homography Estimation A traditional
pipeline of homography estimation usually involves steps
of feature extraction [2, 22, 26], feature matching, and
solving direct linear transform [15] with outlier rejec-
tion [10]. Classic feature extraction methods include
SIFT [22], SURF [2, 3], ORB [26], LPM [23], GMS [4],
BEBLID [29] etc. Recently, a number of learning-based
features are proposed, such as LIFT [36], SuperPoint [9],
SOSNet [32] and OAN [38]. There are also deep learning
approaches for feature matching, including SuperGlue [27],
LoFTR [30], etc. Finally, outliers should be rejected for
robust estimation, where RANSAC [10], MAGSAC [1] and
IRLS [16] are widely used.
Deep Homography Estimation Deep homography esti-
mation can be categorized into supervised and unsupervised

methods. Supervised methods [8, 18, 28] learn from image
pairs with ground truth homographies, which are difficult
to obtain for natural images in the wild. If learning from
synthetic images, the lack of realistic transformation will
degrade their generalization ability. Unsupervised meth-
ods [25, 35, 39] typically optimize their model by minimiz-
ing a distance from the source image warped by the pre-
dicted homography to the target image. [39] and [18] in-
troduced mask prediction into homography estimation, but
their goal is to remove large foregrounds or moving objects,
while our goal is to preserve a single dominant plane with
explicit constraint. Recently, Shao et al. [28] proposed a su-
pervised transformer for cross-resolution homography esti-
mation. However, aiming at different tasks, our architecture
designs are also different, where they propose a transformer
with local attention, while ours contains a self-attention en-
coder and class-attention decoder.

Dominant Plane Detection Detecting dominant planes in
images has been studied in past literature. For example,
Conrad et al. [6] proposed a homography-based method
to detect the ground plane for robot navigation. In [7], a
learning-based method was proposed to recognize dominant
planes in indoor scenes. More recently, [19, 20, 31, 34] pro-
posed to detect and recover 3D planes from a single image
using various neural networks. However, these methods are
not applicable to our problem because they either work only
on rigid physical planes or require a large number of ground
truth masks for training. In contrast, our plane detection
GAN could help homography estimators to concentrate on
the dominant plane without direct supervision.

3. Method
3.1. Overview

In this section, we introduce a new method HomoGAN
for unsupervised homography estimation with small base-
line. Given a pair of gray-scale image patches Ia and Ib
of size H ×W , we predict the homography transformation
from Ia to Ib, denoted as Hab. Following [35], we decom-
pose a homography matrix into 8 orthogonal flow bases,
and predict the weights of 8 bases instead of regressing the
homography matrix or the corner offsets [8, 25, 39]. The
pipeline of our method is illustrated in Fig. 2.

We first employ a feature projector F(·) to convert the
input images Ia and Ib to feature maps Fa and Fb, where
F is a lightweight CNN module with three basic convolu-
tional blocks. This module does not change the input di-
mension, i.e., F∗ ∈ R1×H×W . The intention is to project
images to a shallow feature space that is robust to luminance
variations [39], such that the following steps could focus
on geometric transformations. Subsequently, a multi-scale
CNN encoder is employed to prepare feature pyramids for
coarse-to-fine homography estimation. The encoder is com-
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Figure 2. The overall pipeline of HomoGAN. Our network architecture consists of four modules: 1) Feature projector. A CNN module
that projects the input images to a shallow feature space. 2) Multi-scale CNN encoder. A CNN module that generates a feature pyramid for
each image. 3) Homography Estimation Transformer. A transformer with cascaded encoder-decoder blocks that predicts the homography
from coarse to fine. 4) Coplanarity-Aware GAN. An adversarial network that imposes coplanarity constraint on the model by predicting
soft masks of the dominant plane. Red arrows indicate the inference pipeline.

posed of k cascaded convolutional blocks, where each block
downsamples the input by a scale of 2 and outputs one level
of the feature pyramid. We denote the feature pyramids as
Pa and Pb, and the i-th level of P∗ as P

(i)
∗ , of which the

feature size is H
2k−i+1 × W

2k−i+1 .
At the core of our method are the newly-proposed Ho-

mography Estimation Transformer and Coplanarity-
Aware GAN. The former is a transformer network that
is specifically designed for homography estimation, which
consumes the extracted feature pyramids Pa and Pb, and
predicts the homography from coarse to fine. The latter
is an plug-in module that can be applied to any homogra-
phy estimation networks to impose coplanarity constraint.
It could guide the model to focus on the dominant plane in
Ia and Ib by predicting soft plane masks via unsupervised
adversarial learning. Finally, the entire model is optimized
by minimizing a hybrid unsupervised objective function.

3.2. Homography Estimation Transformer

Given a pair of feature pyramids Pa and Pb, we propose
a transformer network to estimate the underlying homogra-
phy transformation. The design of the transformer adopts a
coarse-to-fine strategy. We start from the top-level feature

P
(1)
∗ , and progressively estimate the homography at a finer

scale until P (k)
∗ , as shown in Fig. 2.

The homography refinement is realized by k cascaded
transformer modules with independent weights, denoted as
T1, T2, · · · , Tk, respectively. In the i-th transformer mod-
ule, we first warp the feature map P

(i)
a using the previous

H
(i−1)
ab , and then Ti takes P

(i)
b and the warped P

(i)
a as in-

puts, and predicts their homography transformation. Fi-
nally, Hab is updated by accumulating the output of Ti to
the previous result with a weight of the current scale. This
process can be formulated as:

H
(i)
ab = H

(i−1)
ab +2k−i+1 ·Ti(W(H

(i−1)
ab , P (i)

a ), P
(i)
b ), (1)

where i ∈ [1, k], W is the warping operation, and H
(0)
ab is

an identical transformation. We add Hab together as they
are in the form of flow bases. Similarly, we can compute
the homography Hba from Ib to Ia by swapping Pa and Pb.

Within each transformer module, we use an encoder-
decoder architecture to compute the homography at a spe-
cific scale level, which consists of a self-attention encoder,
a class-attention decoder, and an MLP head.
Self-attention encoder The role of the encoder is to en-
code the feature correspondences into an intermediate em-
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bedding. We first concatenate the warped P
(i)
a and P

(i)
b to

obtain a new feature of size R2Ci×(HiWi). Swin Trans-
former [21] is employed as the backbone of our encoder
because it computes window-based self-attention instead of
global attention, which is computationally efficient and suit-
able for capturing local feature correspondences. As op-
posed to its original design, we use it for global-to-local
refinement instead of local-to-global abstraction. In the i-
th module, we use (i − 1) patch merging layers to down-
sample the input feature to keep the dimension of output
self-attention feature to be 2C1 × (H1W1) for all modules,
which will facilitate the following decoding. We also re-
place the pixel shuffle operation in patch merging with a
convolutional block to enhance local information exchange.

Class-attention decoder In the decoding stage, we sum-
marize task-specified information from the general-purpose
self-attention features. Inspired by the intermediate class to-
ken [33], we introduce a weight token into the model, which
is a learnable tensor of size 2Ci × 8. It is concatenated
with the self-attention feature to construct a feature of size
2C1 × (H1W1 + 8), and then fed into class-attention sub-
blocks to compute the attention between the weight token
and the self-attention feature, such that the weight token
collects information of all patches to predict homography
flow weights. Since all self-attention feature have the same
size, we maintain a single weight token throughout the net-
work, but do not need to reinitialize it in every module.

Finally, we fetch the processed weight token and use an
MLP head with two linear layers to project it to a weight
vector of length 8, which is the result of of the i-th module
Ti(·), and it is used to update the homography in Eq. (1).

3.3. Coplanarity-Aware GAN

If without any constraint, the aforementioned trans-
former will consider all regions in Ia and Ib when comput-
ing Hab and Hba, which might not be desired for homogra-
phy estimation when there exist multiple planes. To let the
transformer focus on the dominant plane, we propose an un-
supervised GAN to detect the dominant plane by leveraging
coplanarity constraint, as illustrated in Fig. 2.

First, we apply the predicted Hab and Hba to Fa and Fb,
respectively, and obtain the warped feature maps F

′

a and
F

′

b . By contrasting Fa against F
′

b or Fb against F
′

a, we can
check if a region is well aligned by the predicted homogra-
phies. In the ideal case, the aligned regions are located in
the dominant plane of the scene. To realize this, we em-
ploy a generator network G to check the spatial consistency
between a pair of feature maps. It generates a soft mask
that highlights regions that are well aligned. The architec-
ture of G is composed of three convolutional layers with an
ASPP [5] module inserted. We obtain two masks Ma and
Mb using G, where Ma = G(Fa, F

′

b) and Mb = G(Fb, F
′

a).

For planes in general position, the homography is deter-
mined uniquely by the plane and vice versa [15]. There-
fore, if the foreground of Ma and Mb are in the dominant
plane, the induced homography is unique. Motivated by
this, we design a discriminator network D which is ex-
pected to discriminate if the transformation within the in-
put pair is a single homography. We take (Fa, F

′

a) and
(Fb, F

′

b) as real pairs, of which the unique homographies
are Hab and Hba, respectively. The masked Fa and Fb, i.e.,
(MaFa,MbFb) is taken as the fake pair. The discrimina-
tor D is constructed by 7 convolutional layers and a global
average pooling layer. Through adversarial training, we im-
plicitly impose the coplanarity constraint on Ma and Mb.

Following Wasserstein GAN-GP [13], we utilize the
Wasserstein distance to measure the discrepancy between
real and fake pairs to stabilize the training. We also adopt
the gradient reversal layer [11] for one-stage adversarial
training, and the adversarial loss is written as:

Ladv = D(MaFa,MbFb)−(D(Fa, F
′

a)+D(Fb, F
′

b)), (2)

where the sign of the gradient of D(MaFa,MbFb) is re-
versed in backpropagation.

To stabilize training, a gradient penalty term [13] is ap-
plied to D to enforce the Lipschitz constraint:

Lgp = E((∥▽D∥2 − 1)2), (3)

where E is the mean function and ▽ is the gradient operator.
Furthermore, we compute the cross-entropy loss be-

tween Ma, Mb and a constant mask M̂ as an auxiliary loss:

Laux = CE(Ma, M̂) + CE(Mb, M̂), (4)

which encourages Ma and Mb to have larger foregrounds
while keeping the coplanarity.

Finally, the loss function of the plane detection GAN is:

Lplane = α1Ladv + α2Lgp + α3Laux, (5)

where α1, α2 and α3 are the weights of each term set as
0.01, 10 and 0.1, respectively.

3.4. Network Training

Besides the plane detection loss Lplane, we also min-
imize two other unsupervised losses for network training.
The first one is an alignment loss Lalign to compare feature
maps before and after warping by the predicted homogra-
phies. We first compute the pixel-wise triplet loss [39] to
obtain a distance map Gab by:

Gab = max(||F
′

a − Fb||1 − ||Fa − Fb||1 + 1, 0), (6)

Similarly, a distance map Gba can be obtained by replac-
ing F

′

a − Fb with F
′

b − Fa. We further apply the predicted
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Figure 3. Average mask intensity and adversarial loss in training.

masks to Gab and Gba to emphasize the dominant plane,
and compute Lalign by:

Lalign =

∑
i M

′

aMbGab∑
i M

′
aMb

+

∑
i MaM

′

bGba∑
i M

′
aMb

, (7)

where M
′

∗ are the warped masks and i is the pixel index.
The second term is a feature identity loss LFIL that lets

the feature projector F be warp-equivalent [35], which is
written as:

LFIL = ∥W(Hab,F(Ia))−F(W(Hab, Ia))∥1 +
∥W(Hba,F(Ib))−F(W(Hba, Ib))∥1

(8)

It forces F to filter luminance variations while keeping the
geometric transformation.

Finally, the overall loss function is written as:

Ltotal = Lalign + LFIL + Lplane. (9)

To achieve the best performance, we adopt a two-stage
strategy for network training. We first leave out the GAN
part and only train the remaining parts because we em-
pirically find that abnormal homography predictions in the
early stage may lead to unstable adversarial training. In this
stage, the masks in Eq. (7) and Lplane in Eq. (9) are tem-
porarily disabled. When the first stage converges, we add
the coplanarity-aware GAN back to the model, and enable
all loss terms to start the second stage training.

Discussion When constructing real pairs in the GAN, we
do not apply the predicted mask to them to avoid degener-
ate solutions, i.e., G simply generates all-zero masks. One
may question that the appearance discrepancy between real
and fake pairs will distract D from discriminating the copla-
narity. However, the GAN is not trained standalone, but as a
regularization of the transformer. If D simply discriminates
by appearance discrepancy, G will output all-one masks,
then it has zero impact on the main objective Lalign. To
reach the global optimum, the optimizer will guide D to
discriminate geometric discrepancy, so that G can output
masks of coplanar regions. To justify it, we visualize the
average mask intensity and the adversarial loss in training
in Fig. 3. We can see that the mask intensity first boosts
to ∼1, and then falls to 0.2-0.4, which means that G is first
biased to all-one masks, but then corrected to output plane
masks. Meanwhile, the adversarial loss keeps declining, in-
dicating the effectiveness of our training strategy.

4. Experiments

Dataset Following [35] and [39], we evaluate our method
on a natural image dataset [39] with 75.8k training pairs
and 4.2k testing pairs of image size 320× 640. In both sub-
sets, the image pairs are roughly evenly categorized into five
types of scenes, respectively are regular (RE), low texture
(LT), low light (LL), small foreground (SF), and large fore-
ground (LF), where the last four are challenging scenes for
homography estimation. For evaluation, 6 pairs of ground-
truth matching points are provided on each testing image.
We employ the average L2 distance from the predicted
points to the ground-truth points on the target image as the
evaluation metric.

Implementation Details In training, we randomly crop
patches of size 384× 512 near the center of the original im-
ages as input to avoid out-of-bound coordinates after warp-
ing. The number of scale levels is set to k = 3. Our network
is implemented with PyTorch, and the training is performed
on four NVIDIA RTX 2080Ti GPUs. We employ the Adam
optimizer [17] with an initial learning rate of 1 × 10−4 for
model optimization, and it decays by a factor of 0.8 every
epoch. The batch size is 8. The two stages of training take
10 and 2 epochs, respectively. We reinitialize the learning
rate to 1× 10−5 in the second stage.

4.1. Comparison with Existing Methods

Comparison methods We compare with three categories
of existing homography estimation methods: 1) Traditional
feature-based methods including SIFT [22], ORB [26] and
BEBLID [29]; 2) Learned feature-based methods includ-
ing LIFT [36], SOSNet [32] and SuperPoint [9]; 3) Deep
learning-based methods including Supervised [8], Unsuper-
vised [25], CA-Unsupervised [39] and BasesHomo [35].
For all traditional and learned feature-based methods, we
test them with two different outlier rejection algorithms
RANSAC [10] and MAGSAC [1], respectively. Besides,
SuperPoint is also tested with two customized rejection al-
gorithms SuperGlue-RANSAC (SG-RAN) and SuperGlue-
MAGSAC (SG-MAG) [27].

Qualitative comparison We first compare the qualitative
results of HomoGAN with other methods. In Fig. 4, we vi-
sualize the results of our method and four most related com-
parison methods, namely the deep learning-based methods,
on three images with challenging scenes. Fig. 4(a) is chal-
lenging because the plane of interest occupies a relatively
small portion of the image, and it contains moving and still
vehicles. In Fig. 4(b), the large fountain results in signifi-
cant depth disparity from the foreground to the background.
And Fig. 4(c) is a scene with low light and buildings in the
distance. As highlighted in the red and yellow boxes, exist-
ing methods cannot align these images as well as ours. The
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(a)

(b)

(c)

Supervised [8] Unsupervised [25] CA-Unsupervised [40] BasesHomo [36] HomoGAN (Ours)

Figure 4. Qualitative results of our method and four other deep learning-based methods. Images are generated by superimposing the
warped source images on the target image. Error-prone regions are highlighted with red and yellow boxes. Best viewed with zooming in.

1) RE LT LL SF LF Avg

2) I3×3 7.75(+2572.41%) 7.65(+1316.67%) 7.21(+1009.23%) 7.53(+1134.43%) 3.39(+726.83%) 6.70(+1240.00%)

3) SIFT [22] + RANSAC [10] 0.30(+3.45%) 1.34(+148.15%) 4.03(+520.00%) 0.81(+32.79%) 0.57(+39.02%) 1.41(+182.00%)
4) SIFT [22] + MAGSAC [1] 0.31(+6.90%) 1.72(+218.52%) 3.39(+421.54%) 0.80(+31.15%) 0.47(+14.63%) 1.34(+168.00%)
5) ORB [26] + RANSAC [10] 0.85(+193.10%) 2.59(+379.63%) 1.67(+156.92%) 1.10(+80.33%) 1.24(+202.44%) 1.48(+196.00%)
6) ORB [26] + MAGSAC [1] 0.97(+234.48%) 3.34(+518.52%) 1.58(+143.08%) 1.15(+88.52%) 1.4(+241.46%) 1.69(+238.00%)
7) BEBLID [29] + RANSAC [10] 0.78(+168.97%) 2.83(+424.07%) 1.38(+112.31%) 1.04(+70.49%) 1.33(+224.39%) 1.47(+194.00%)
8) BEBLID [29] + MAGSAC [1] 0.94(+224.14%) 3.73(+590.74%) 3.49(+436.92%) 1.17(+91.80%) 1.25(+204.88%) 2.12(+324.00%)

9) LIFT [36] + RANSAC [10] 0.40(+37.93%) 2.01(+272.22%) 1.14(+75.38%) 0.77(+26.23%) 0.68(+65.85%) 1.00(+100.00%)
10) LIFT [36] + MAGSAC [1] 0.35(+20.69%) 1.85(+242.59%) 0.96(+47.69%) 0.72(+18.03%) 0.50(+21.95%) 0.88(+76.00%)
11) SOSNet [32] + RANSAC [10] 0.29(+0.00%) 2.42(+348.15%) 3.71(+470.77%) 0.77(+26.23%) 0.59(+43.90%) 1.56(+212.00%)
12) SOSNet [32] + MAGSAC [1] 0.30(+3.45%) 3.00(+455.56%) 3.66(+463.08%) 0.87(+42.62%) 0.49(+19.51%) 1.67(+234.00%)
13) SuperPoint [9] + RANSAC [10] 0.43(+48.28%) 0.85(+57.41%) 0.77(+18.46%) 0.84(+37.70%) 0.8(+95.12%) 0.74(+48.00%)
14) SuperPoint [9] + MAGSAC [1] 0.45(+55.17%) 0.90(+66.67%) 0.77(+18.46%) 0.76(+24.59%) 0.67(+63.41%) 0.71(+42.00%)
15) SuperPoint [9]+SG-RAN [27] [10] 0.41(+41.38%) 0.87(+61.11%) 0.72(+10.77%) 0.80(+31.15%) 0.75(+82.93%) 0.71(+42.00%)
16) SuperPoint [9] + SG-MAG [27] [1] 0.36(+24.14%) 0.79(+46.30%) 0.70(+7.69%) 0.71(+16.39%) 0.70(+70.73%) 0.63(+26.00%)

17) Supervised [8] 1.51(+420.69%) 4.48(+729.63%) 2.76(+324.62%) 2.62(+329.51%) 3.00(+631.71%) 2.87(+474.00%)
18) Unsupervised [25] 0.79(+172.41%) 2.45(+353.70%) 1.48(+127.69%) 1.11(+81.97%) 1.10(+168.29%) 1.39(+178.00%)
19) CA-Unsupervised [39] 0.73(+151.72%) 1.01(+87.04%) 1.03(+58.46%) 0.92(+50.82%) 0.70(+70.73%) 0.88(+76.00%)
20) BasesHomo [35] 0.29(+0.00%) 0.54(+0.00%) 0.65(+0.00%) 0.61(+0.00%) 0.41(+0.00%) 0.50(+0.00%)

21) HomoGAN (Ours) 0.22(-24.14%) 0.41(-24.07%) 0.57(-12.31%) 0.44(-27.87%) 0.31(-24.39%) 0.39(-22.00%)

Table 1. The point matching errors of our method and all comparison methods. Red indicates the best result and blue indicates the second
best result. The percentages in the parentheses indicate the relative change in comparison to the second best result.

Supervised [8] method fails because it is trained on syn-
thetic pairs without real depth disparity and dynamic con-
tents, while the Unsupervised [8] method predicts homo-
graphies based on the entire image, thus leading to inferior
accuracy on the dominant plane. CA-Unsupervised [39],
and BasesHomo [35] implicitly suppress undesired regions
in their methods, but their performance is still limited by
the lack of explicit guidance. In contrast, our method could
automatically focus on the dominant plane.

In Fig. 5, we also compare with feature-based meth-
ods. These feature methods are supposed to be robust to
the plane-induced parallax with the help of outlier rejection
algorithms. However, they still struggle in scenarios with
blurry boundaries or low texture, such as the mountain and
the sea in the 1st and 3rd columns of Fig. 5. Without relying
on keypoints, our method remains robust in these scenes.

Quantitative comparison We report the quantitative re-
sults of all comparison methods in Table 1, where rows 3-8
are traditional feature-based methods, rows 9-16 are learned
feature-based methods, and rows 17-20 are deep learning-
based methods. I3×3 in the 1st row refers to the identity
transformation, of which the error reflects the original dis-
tance between point pairs.

From Table 1, we can see that our method achieves the
state-of-the-art performance on all categories of the dataset
and outperforms the best existing method BasesHomo by
22%, with the matching error reduced from 0.50 to 0.39.
In regular (RE) scenes, feature-based methods usually per-
form well as these images are with high signal-noise ra-
tio and provide sufficient features. But our model still re-
duces the error on this category by 24.14% compared to
SOSNet+RANSAC. In low light (LL) and low texture (LT)
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Figure 5. Qualitative results of feature-based methods and our
method. For each feature-based method, we show its results with
the best performed outlier rejection algorithm.

scenes, most traditional feature-based methods fail to ex-
tract or match sufficient keypoints, resulting in unsatisfac-
tory performance, while our method still has the lowest er-
ror among all. It indicates the strong feature extraction abil-
ity of the proposed multi-scale transformer.

The small foreground (SF) and large foreground (LF)
scenes are often accompanied by dynamic contents and
multiple planes that cause problems for homography esti-
mation. Compared with other deep learning-based meth-
ods with outlier rejection mechanisms, i.e., the implicitly
generated mask in CA-Unsupervised [39] and the low-rank
representation in BasesHomo [35], our method significantly
outperforms them in the LF and SF with errors reduced by
at least 24.39% and 27.87%, respectively. It shows the su-
periority of our coplanarity-aware GAN in outlier rejection.

Robustness evaluation To further investigate the robust-
ness of all methods, we compute the proportion of inlier
predictions with respect to a distance threshold. Specifi-
cally, for each method, we plot a curve where the axis X is
the distance threshold, and the axis Y is the proportion of
points with predictions errors less than the threshold, which
are referred to as inliers. This curve could reflect the robust-
ness of a method on homography estimation. As shown in
Fig. 6, our method significantly surpasses other methods at

Figure 6. The proportion of inliers of all methods under various
thresholds. Inliers indicate points with errors under the threshold.

Level 1 Level 2 Level 3

Figure 7. Results of the multi-scale transformer at each level. It
shows how the homography is predicted from coarse to fine.

most thresholds. With a threshold of 1, our inlier proportion
is 7.5% higher than the second best (93.9% vs. 86.4%).

4.2. Ablation Studies

Homography Estimation Transformer To demonstrate
the ability of the proposed transformer network in homog-
raphy estimation, we change it to the backbone of Base-
sHomo [35], which is a ResNet-34 architecture with cus-
tomized Low Rank Representation blocks, and achieves the
second best result in Table 1. By comparing row 2 with
row 8 in Table 2, we can see that the average error of our
method increases from 0.39 to 0.46 with this change. This
result demonstrates the superiority of the proposed trans-
former over CNNs in homography estimation. Meanwhile,
the numbers of parameters in our transformer (2.045M) is
much lower than it of the BasesHomo backbone (21.296M).

From another perspective, this experiment also demon-
strates that our coplanarity-aware GAN is applicable to
different homography estimators, because the BasesHomo
backbone with our GAN achieves an average error of 0.46,
which is lower than its original error of 0.50.

Weight token In the class-attention decoder of our trans-
former, we employ a weight token to summarize weight-
aware information from the self-attention feature for ho-
mography estimation. In this experiment, we remove this
token from our network and directly fed the self-attention
feature into an MLP to predict the homography. The results
are reported in row 3 of Table 2. Comparing row 3 with row
8, we can see that the error increases by 17.95% from 0.39
to 0.46. It indicates that using an independent learnable to-
ken to summarize global information in the decoding stage
is beneficial for homography estimation.
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1) Modification RE LT LL SF LF Avg

2) Change to BasesHomo backbone 0.29(+31.82%) 0.50(+21.95%) 0.63(+10.53%) 0.54(+22.73%) 0.36(+16.13%) 0.46(+17.95%)
3) w/o weight token 0.23(+4.55%) 0.47(+14.63%) 0.66(+15.79%) 0.56(+27.27%) 0.37(+19.35%) 0.46(+17.95%)
4) w/o multi-scale 0.43(+95.45%) 1.01(+146.34%) 1.25(+119.30%) 1.13(+156.82%) 0.61(+96.77%) 0.89(+128.21%)
5) w/o plane mask 0.26(+18.18%) 0.59(+43.90%) 0.59(+3.51%) 0.63(+43.18%) 0.40(+29.03%) 0.49(+25.64%)
6) w/o coplanarity constraint 0.24(+9.09%) 0.50(+21.95%) 0.64(+12.28%) 0.59(+34.09%) 0.36(+16.13%) 0.44(+12.82%)
7) Change to CA mask 0.25(+13.64%) 0.66(+60.98%) 0.57(+0.00%) 0.54(+22.73%) 0.38(+22.58%) 0.48(+23.08%)

8) Ours 0.22(+0.00%) 0.41(+0.00%) 0.57(+0.00%) 0.44(+0.00%) 0.31(+0.00%) 0.39(+0.00%)

Table 2. Results of ablation studies. Each row is the result of our method with a specific modification. Please refer to the text for details.

Input images CA masks Our masks

Figure 8. Masks predicted by CA-Unsupervised [39] and our
method. With the coplanarity constraint, our masks are able to
focus on a dominant plane. Best viewed in color.

Multi-scale architecture In the transformer network, we
use three consecutive transformer modules to predict the
homography from coarse to fine. In this experiment, we
change to using only one module to directly predict the final
homography to validate the effectiveness of the multi-scale
architecture. From row 4 of Table 2, we find that when
using only one transformer module, the average error in-
creases to 0.89, which is significantly higher than the error
of 0.39 when using three modules. This result shows that
bridging the rich-semantic features at the high level with
high-resolution features at the low level in a coarse-to-fine
fashion is beneficial for homography estimation. Besides,
we visualize the alignment results after each transformer
module in Fig. 7. It illustrates how the predicted homo-
graphies at different levels progressively align two images.

Plane mask To validate the usefulness of the generated
plane mask, we remove all mask related operations from
our network and check the performance, which is exactly
the result of the first stage of training. With only the first
stage training, the average error of our network is 0.49, as
reported in row 5 of Table 2, which is already better than the
previous SOTA, but can still be reduced. After adding the
mask related operations back to the network and fine-tuning
for 2 more epochs, we further reduce the average error to
0.39. It clearly shows the usefulness of our plane mask.

Coplanarity constraint Mask prediction for unsuper-
vised homography estimation has been introduced by [39].
But in this work, we propose to impose the coplanarity
constraint to the mask to make it focus on the dominant

plane, which is realized by the coplanarity-aware GAN. In
this experiment, we try to use different methods to gener-
ate the mask to validate the necessity of coplanarity con-
straint. First, we remove the discriminator and the adver-
sarial loss from our network training, such that the mask
is generated without coplanarity constraint. Second, we
change the mask generation method to be the same as [39],
in which the masks are generated from the output of the fea-
ture projector and then applied to the extracted features and
the triplet loss. It also lacks the coplanarity constraint. The
results of our method with these two mask generation ap-
proaches are reported in row 6 and row 7 of Table 2. Com-
paring rows 6, 7, and 8, we can see that the mask gener-
ated by our coplanarity-aware GAN achieves the best per-
formance among the three. It indicates that imposing an ex-
plicit coplanarity constraint is more effective than implicit
mask generation in homography estimation. Moreover, we
display the masks generated by [39] and our method on
three representative images in Fig. 8. The visualizations
show that our method could generate masks that focus on
the dominant plane without interferences from foreground
objects in various scenes.

5. Conclusion
We have presented HomoGAN for unsupervised homog-

raphy estimation. We noticed the problem of plane-induced
parallax when learning homography without constraints,
and proposed a coplanarity-aware GAN to solve it. Com-
pared to previous methods, our method could generate a
dominant plane mask with explicit coplanarity constraint,
thus guiding the homography estimator to focus on the dom-
inant plane. Besides, a multi-scale transformer network has
been proposed to estimate the homography from coarse to
fine, which has gained improvement over previous CNN-
based estimators. With these two designs, we have achieved
the SOTA performance on the standard benchmark.
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