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Abstract

Unpaired image-to-image (I2I) translation often requires
to maximize the mutual information between the source and
the translated images across different domains, which is
critical for the generator to keep the source content and pre-
vent it from unnecessary modifications. The self-supervised
contrastive learning has already been successfully applied
in the I2I. By constraining features from the same loca-
tion to be closer than those from different ones, it implicitly
ensures the result to take content from the source. How-
ever, previous work uses the features from random loca-
tions to impose the constraint, which may not be appropri-
ate since some locations contain less information of source
domain. Moreover, the feature itself does not reflect the
relation with others. This paper deals with these prob-
lems by intentionally selecting significant anchor points for
contrastive learning. We design a query-selected attention
(QS-Attn) module, which compares feature distances in the
source domain, giving an attention matrix with a prob-
ability distribution in each row. Then we select queries
according to their measurement of significance, computed
from the distribution. The selected ones are regarded as
anchors for contrastive loss. At the same time, the re-
duced attention matrix is employed to route features in both
domains, so that source relations maintain in the synthe-
sis. We validate our proposed method in three different I2I
datasets, showing that it increases the image quality with-
out adding learnable parameters. Codes are available at
https://github.com/sapphire497/query-selected-attention.

1. Introduction
In image-to-image (I2I) translation, an input from the

source domain X is mapped into the target domain Y while

keeping its original content from unnecessary modifica-
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Figure 1. The overall structure of our model. The source domain

image Ix is translated by the generator G into a target domain

image G(Ix). The encoder E extracts features from these two

images, then the QS-Attn module selects significant features to

establish the contrastive loss. We also use a discriminator D to

construct the adversarial loss.

tions. The translation is usually achieved by a generator G
in the structure of auto-encoder with its output constraining

by a discriminator D, so that it fulfills the requirement of

the domain Y . In many I2I tasks, paired data are impossi-

ble to obtain, hence G can not be directly guided by the real

image in Y . Ensuring that the output takes the input content

is important for increasing its quality. Typical methods pro-
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Figure 2. Visualization of feature significance metric from pre-

trained CycleGAN and CUT on three datasets. We show the en-

tropy of attention matrix for each location, the warmer color in-

dicates that the entropy is smaller. For each dataset, on the left

column are the input images, and on the right column are the en-

tropy visualizations of two models.

posed in [25,42,47] translate the result back into domain X
by another generator G′, and set up the cycle consistency

penalty between the input and the final output. Although

improving the quality, they introduce two generators and

discriminators, which greatly increase the training costs.

Recently, CUT [34] incorporates the contrastive learning

between the cross domain features from G’s output and in-

put. The key idea is to constrain the features from encoder

E, requiring those from the same location to be close, com-

pared with those from different locations. Removing the

QS-Attn module, Fig. 1 illustrates the overall structure of

CUT. An anchor point at a random position is selected from

the features of the translated image, then one correspond-

ing positive and many negatives are also sampled from the

features of input. The contrastive loss is computed for the

anchor so that the model maximizes the mutual informa-

tion between the corresponding features. Note that CUT

has only a single direction. Therefore, only one G is needed,

and the training cost is reduced. The image quality is greatly

improved, showing that contrastive loss across domains is

useful in I2I.

However, there are still two issues ignored by CUT,

which can be potentially improved. First, it does not se-

lect the anchors with purpose in the contrastive learning.

Since each of them represents a small patch in the orig-

inal image resolution and many of them may not reflect

any domain characteristics relevant for I2I. We argue that

only those containing significant domain information need

to be edited, and the contrastive loss imposed on them are

more meaningful to guarantee the consistency across do-

mains. Second, each anchor feature has only limited recep-

tive field, and it does not consider its relation with other

locations. This relation provides valuable cues to keep the

source content stable and make the translation relevant.

We consider the above two issues in a simple way, in-

serting the QS-Attn module into the model as Fig. 1 shows,

without bringing in extra model parameters. To evaluate the

feature significance at different locations, we directly utilize

features from E as both queries and keys to calculate the at-

tention matrix in the source domain, then the distribution

entropy is computed as a metric. Intuitive illustrations are

provided in Fig. 2, in which such an entropy metric is vi-

sualized in the form of heat map. Particularly, given input

images that need to be translated, we apply the encoder of

pretrained CycleGAN [47] and CUT [34] models to obtain

the features and calculate the attention matrix, and then the

entropy is computed for each row of it. We sort the entropy

in ascending order and show the smallest N points on the

image. For the Horse and Cat images, the entropy values

on the body of horse and the face of cat are smaller. For

the Label image, the points mainly locate at the edges of

categories. Consequently, the entropy can be a metric to

measure how important the feature is in reflecting domain

characteristics, hence we can impose the contrastive loss on

it, ensuring the accurate translation on the domain-relevant

features.

This paper intends to quantitatively measure the signif-

icance of each anchor feature and select the relevant ones

for the contrastive loss according to the metric. Based on

the previous analysis, we calculate the entropy of each row

in the attention matrix and keep those with smaller entropy

values. The remaining rows form the query-selected atten-

tion (QS-Attn) matrix, which consists of fewer queries, and

they are further employed to route the value feature. Here

the same matrix is multiplied with the values from both

source and target domains, which implicitly keeps the fea-

ture relation in the source domain, avoiding excessive mod-

ifications on the result.

The contributions of this paper lie in following aspects:

• We propose a QS-Attn mechanism in I2I task. Our

scheme is to choose the relevant anchor points, and

use them as queries to attend and absorb features at

other locations, forming better features suitable for

contrastive learning. The QS-Attn keeps the simple

design in CUT, and does not add any model parame-

ters.

• We investigate different ways to quantify the signifi-
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cance of the queries, to perform the attention, and to

route value features in QS-Attn module, and find the

entropy-based measurement and global attention for

the cross domain value routing is the robust one.

• We do intensive experiments on the commonly used

datasets, and show the proposed method achieves

SOTA in most two domains I2I tasks.

2. Related Works
Image-to-image translation. GAN [2, 15, 24, 31] has

the strong ability to describe the high dimensional distribu-

tion, therefore, has been widely used in the tasks of image

synthesis like super-resolution [26], de-noising [4] and I2I.

The I2I is first presented in Pix2Pix [21], and extended to

high-resolution in Pix2PixHD [40], which can be regarded

as a type of conditional GAN. The generator G consists of

a pair of connected encoder-decoder, which translates an

image from the source to the target domain. It is trained

by paired data together with the adversarial loss from a tar-

get domain discriminator. However, unpaired I2I is more

desirable, since the matched data across domains are im-

possible to be collected in most settings. CycleGAN [47]

and DiscoGAN [25] achieve the I2I based on the unpaired

data. They simultaneously train two different G, being re-

sponsible for the two directions of image translation. The

cycle consistency is set up by successively using the two G
for the opposite translation, and requiring the output to re-

construct the input source, which ensures G to employ the

given content during translation, and maximizes the mutual

information between the output and input source. The idea

can be applied to multiple domains defined by several at-

tributes [11], or utilized in the feature space [12, 19] in a

flexible way. Meanwhile, many works [20,27,28] try to give

the diverse translations by mixing the content and style from

different images, or supporting the random sampling in the

latent space. Together with the cycle consistency, translated

images with the same content can appear different styles.

However, the cycle consistency is usually blamed for its

strong constraint directly on the pixel [32, 44], which is not

only unnecessary, but sometimes degrades the image qual-

ity. Except computing it in the feature level, another sim-

ple way is to perform the single direction translation. In

this setting, the key issue becomes to keep the input con-

tent, and the extra loss term needs to be added. Distance-

GAN [1] requires the generator to preserve the pixel level

distance across two domains. GcGAN [13] links the source

and target through a predefined geometry function. On the

other hand, the feature level perceptual loss [22, 30] speci-

fied by a pretrained VGG [38] is widely adopted [5,14,30],

which maintains the high-level semantic of the result. Nev-

ertheless, features from a fixed layer of a pretrained model

may not reflect the content which needs to be kept. At-

tnGAN [10] and GANimation [36] learn a foreground mask

to guide the generator so that it realizes the translation in

the relevant area. But they need extra parameters to es-

timate the foreground which definitely increase the model

complexity. CUT [34] is the first attempt to incorporate

the self-supervised contrastive loss into I2I, which signifi-

cantly increases the translation quality. F-LSeSim [45] ex-

tends CUT by computing the self similarity within a local

region, and imposes contrastive loss on it. However, it relies

on features from VGG to measure the similarities, which re-

duces the training efficiency. We emphasize that both CUT

and F-LSeSim do not intentionally select anchor features

for contrastive loss, and their features still lacks large re-

ceptive field for representing image in source domain.

Self-supervised contrastive learning. Despite the great

success of supervised learning, deep neural network is ac-

cused of its requirement on the large amount of the labeled

training data. Recent studies of the self-supervised learning

show its strong ability to represent an image without labels,

particularly with the help of the contrastive loss [33, 41].

Its idea is to perform the instance level discrimination and

learn the feature embedding, by pulling the features from

the same image together and pushing those from different

ones away. Recently, it has been investigated as a pre-

training technique [3, 6, 8, 9, 16, 17], providing the initial

model or the latent embedding for the down-stream task.

The self-supervised learning has also been applied in im-

age generation [7, 35]. SS-GAN [7] incorporates the rota-

tion degree prediction as an auxiliary task for the discrimi-

nator, preventing the overfitting due to the limited data for

real/fake binary classification. LT-GAN [35] trains an auxil-

iary classifier on top of the embedding in the discriminator,

to classify whether the two pairs of fake images have the

same perturbations on the sampling noise vectors. Besides

CUT [34], the work [23] also adopts the self-contrastive

learning for I2I. It employs non-local attention matrix to

warp target image to the source pose, and requires feature

from warped image to be close to the source through the

constrastive loss. None of them chooses anchors, or utilizes

the relation in the source domain like our method.

3. Methods

3.1. Preliminaries on CUT

In the task of I2I, given an image Ix ∈ R
H×W×3 from

source domain X , the model aims to translate it into G(Ix)
in the target domain Y , having no obvious distinctions with

the real image Iy ∈ R
H×W×3 in that domain. Generally,

there are two auto-encoders, one GX→Y for X to Y and the

other GY→X for the reverse. CUT focuses on the single-

direction translation from X to Y , so it only needs one gen-

erator G and one discriminator D, therefore, the subscript

is omitted. The objective of adversarial loss Ladv can be
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Figure 3. The details of QS-Attn. The encoder E extracts features Fx and Fy from Ix and G(Ix), then Fx is reshaped and computed to

derive the attention matrix Ag . Each row in Ag is sorted by its metric of the significance, and the selected N rows forming the AQS . We

further apply AQS to route both source and target domain value features, and obtain positive, negative and anchor features to construct the

contrastive loss Lcon. Positive and negatives are from the real image Ix, while anchors are from the translated image G(Ix). The patches

in orange, blue and green indicate the positive, negative and anchor, respectively.

computed as follows.

Ladv = EIy∈Y logD(Iy) + EIx∈X log(1− D(G(Ix))
(1)

Besides the Ladv in Eq. (1), CUT takes advantage of the

first half of G as an encoder E to provide the extra con-

straint for the output from G. Basically, E compares the

feature similarities across different domains. This efficient

scheme is slightly different from previous work [48], in

which another encoder E is employed, and is also adopted

in [29]. It extracts features from both Ix and G(Ix), and

establishes the self-supervised contrastive loss in Eq. (2),

Lcon = − log

[
exp(q · k+/τ)

exp(q · k+/τ) +∑N−1
i=1 exp(q · k−/τ)

]
(2)

where q is the anchor feature from G(Ix), k
+ is a single

positive and k− are (N − 1) negatives. Here τ indicates a

temperature hyper-parameter. Note that the anchor q always

locates in the fake image, and its positive k+ is on the same

location in the real image Ix. Besides, (N − 1) negatives

k− are randomly selected in Ix. The gradient of Lcon only

applies on the anchor q to train the parameters in G, while it

is detached on k+ and k−, so that G is guided for the single

direction of domain translation.

The full objective is expressed as follows.

LG = Ladv + LX
con + LY

con (3)

where LX
con is the contrastive loss defined in Eq. (2), and

LY
con is the identity loss, in which the positive k+ and neg-

atives k− are from a real target domain image Iy , and the

anchor q is from G(Iy). This identity loss guarantees the

features from G(Iy) are similar with features from Iy , pre-

venting G from making changes on the target domain im-

ages.

3.2. QS-Attn for Contrastive Learning

As is shown in Fig. 1, we keep the simple setting like

CUT. E is applied to extract features from Ix and G(Ix).
These features are supposed to establish the contrastive loss

Lcon defined in Eq. (2). The key module QS-Attn, setting

up Lcon across two domains, is illustrated in Fig. 3. Instead

of the simple random strategy, we employ the idea of at-

tention, which first compares a given query with keys, and

then selects the query based on the comparison result. How-

ever, we do not use any separated projection head for query,

key and value like the common attention, therefore, without

adding extra model parameters in both G and D. Details for

QS-Attn are given in the following two sub-sections.
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3.2.1 Attention for query selection.

CUT randomly selects the anchor q, positive k+ and nega-

tives k− to compute the contrastive loss in Eq. (2), which is

potentially inefficient, because their corresponding patches

may not come from the domain-relevant region, e.g. the

horse body in the Horse → Zebra task. Note that some fea-

tures do not reflect the domain characteristics, they tend to

be kept during the translation. Therefore, the Lcon imposed

on them is not vital for G. Our intention is to choose the

anchor q, and compute Lcon on the significant ones which

contains more domain-specific information.

Global attention. Based on the above observation, we

aim to define a quantitative value for each potential location,

which reflects the significance of the feature. The quadratic

attention matrix is adopted, since it exhaustively compares

each feature with all other locations, it accurately reflects

the similarities with others, as is shown in Fig. 3. Partic-

ularly, given a feature Fx ∈ R
H×W×C in the source do-

main, we first reshape it into a 2D matrix Q ∈ R
HW×C , and

then multiply it by its transposed K ∈ R
C×HW . Then we

give each row of the matrix to the softmax function, lead-

ing to a global attention matrix Ag ∈ R
HW×HW . Conse-

quently, significant features can be measured according to

the entropy Hg of each row in Ag , which is computed as in

Eq. (4).

Hg(i) = −
HW∑
j=1

Ag(i, j) logAg(i, j) (4)

Here i and j are the indexes of the query and key, cor-

responding to the row and column in Ag . When Hg(i) ap-

proaches to 0, it means that in the i-th row, only a very

few key locations are similar with the i-th query. Hence we

assume that it is distinct enough and is important to be con-

strained by Lcon. To select all the significant queries, the

rows of Ag are sorted by the entropy Hg in the ascending

order, and the smallest N rows are selected as the QS-Attn

matrix AQS ∈ R
N×HW . Note that AQS is fully determined

by the features in Ix, and has no relation with G(Ix).
Local attention. Though non-local attention can obtain

the global context, it smooths out the detailed context sur-

rounding the queries. Local attention measures the similar-

ity between a query and its neighboring keys within a con-

stant window of w×w and stride of 1, which can capture the

spatial interactions in local regions, and reduce the compu-

tation cost. Given a reshaped query matrix Ql ∈ R
HW×C ,

we multiply it by local key matrix Kl ∈ R
HW×w2×C and

send it to the softmax function, leading to a local attention

matrix Al ∈ R
HW×w2

. The local entropy Hl is computed

in each row as in Eq. (5).

Hl(i) = −
w2∑
j=1

Al(i, j) logAl(i, j) (5)

Here i and j are the indexes of the query and key. We select

the smallest N rows in Al by sorting Hl in the ascending

order to form AQS . For the value routing, We also locate

the N indexes in local value matrix Vl ∈ R
HW×w2×C and

get the selected value matrix Vls ∈ R
N×w2×C .

3.2.2 Cross domain value routing for contrastive learn-
ing.

The reduced AQS is used as the attention matrix to route the

value features from both source and target domains. Here

we emphasize that AQS captures the global or local relation

by comparing the query with keys, and it provides useful

high-order descriptions about the shape and texture of Ix.

Using it to route features helps to enlarge the receptive field

of the selected queries, so that better features, which con-

sider the context of Ix, can be formulated. Moreover, the

relation defined by AQS is also required to be kept during

the image translation. So AQS is imposed on the features

from both Ix and G(Ix), routing the corresponding value to

form the anchor, positive and negatives. One positive and

(N − 1) negative features are located in the real image Ix.

N anchors are from the fake image G(Ix). We establish

the self-supervised contrastive loss as Eq. (2), using these

features to constrain the translation.

4. Experiments

4.1. Implementation Details

Datasets. Our model is trained and evaluated on

Cityscapes, Horse → Zebra, and Cat → Dog datasets.

Cityscapes contains street scenes from German cities, with

2,975 training images. Cat → Dog are from AFHQ Dataset

[12], which consists of 5,153 and 4,739 training images for

cat and dog, respectively. The images for Horse → Zebra
are provided in [47], which contains 1,067 and 1,334 train-

ing images for horse and zebra, respectively. For all ex-

periments, the resolution of input and generated images is

256 × 256. The initial resolution of images in Cityscapes
and Cat → Dog dataset are 2048×1024 and 512×512, and

we resize them to 256× 256 in our experiments.

Training details. We build our model with a ResNet-

based generator and a PatchGAN discriminator [39], and

compare it with CUT in the same setting on three afore-

mentioned datasets. The number of rows in attention ma-

trix is set to 256, and the dimension of anchor, query, key

features for computing contrastive loss is 256. We adopt

the multi-layer feature extraction in CUT, which takes the

features from five layers. Considering the high cost in com-

puting the global attention matrix, we propose to apply the

QS-Attn on the last two layers’ feature in the encoder, but

we still make an extra comparison with the model in which

all layers are applied it. Details can be found in the supple-
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QS-Attn CUT CycleGAN MUNITInput FSeSim CUT CycleGAN MUNITInput FSeSim

CUT CycleGAN MUNITInput FSeSim

QS-Attn

QS-Attn

Figure 4. Visual results comparison with other methods. We compare our model with FSeSim, CUT, CycleGAN and MUNIT on three

benchmark datasets. In the results of QS-Attn, the translated images of Horse → Zebra and Cat → Dog are from QS-Attn(Global), and

the results of Cityscapes are generated using QS-Attn(Global+Local). More results can be found in the supplementary materials.

Method Cityscapes Cat→Dog Horse→Zebra

mAP↑ pixAcc↑ classAcc↑ FID↓ SWD↓ FID↓ SWD↓ FID↓
CycleGAN 20.4 55.9 25.4 76.3 19.5 85.9 39.1 77.2

MUNIT 16.9 56.5 22.5 91.4 24.4 104.4 50.7 133.8

CUT 24.7 68.8 30.7 56.4 12.9 76.2 31.5 45.5

FSeSim 22.1 69.4 27.8 54.3 13.8 87.8 37.2 43.4

QS-Attn(Global) 25.5 79.9 31.2 53.5 12.8 72.8 30.3 41.1

QS-Attn(Local) 26.2 80.5 31.9 48.8 13.3 79.3 31.2 38.6
QS-Attn(Local+Global) 27.9 81.4 32.6 50.2 13.2 80.0 31.9 42.3

Table 1. Quantitative comparison with other methods. The last three rows are our models with different settings, details are illustrated in

Sec. 4.2. The best performance is indicated in bold.

mentary materials.

Evaluation metrics. We use Fréchet Inception Distance

(FID) [18] and Sliced Wasserstein Distance (SWD) [37] to

evaluate the quality of translated images. FID and SWD

both measure the distance between two distributions of real

and generated images, and lower indicate the generated im-

age is similar to the real one. For Cityscapes dataset, fol-

lowing [34], we apply semantic segmentation to the gener-

ated images using DRN [43], and compute mean average

precision (mAP), pixel-wise accuracy (pixAcc), and aver-
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Input A B C D E F G H

Figure 5. Qualitative ablation results. The leftmost column are input images, the remaining columns are translated images using model

A-H. Details are illustrated in Tab. 3 and Sec. 4.3.

age class accuracy (classAcc), showing the semantic inter-

pretability of the generated images. We calculate the met-

rics in the whole test set, in which Cityscapes contains 500

label images, Cat → Dog includes 500 cat images, and

Horse → Zebra comprises 120 horse images.

4.2. Results

Quantitative and qualitative results. Tab. 1 compares

our model with FSeSim [45], CUT, CycleGAN [47] and

MUNIT [20]. There are three settings in our model, Global,
Local and Local+Global. Global means sorting the global

attention matrix Ag by entropy to form the QS-Attn matrix

AQS , and Local means sorting the local attention matrix Al

to form AQS . Furthermore, in order to utilize both local and

global context, Local+Global applies Al for query selection

and Ag in value routing. The rows of Ag are sorted by the

local entropy H l in the ascending order, and the smallest N
rows are selected as AQS . The ablation study of the three

models is illustrated in Sec. 4.3 and the code is provided

in the supplementary materials. For the metric of FID, the

translated results of our model are more realistic than other

methods on three datasets. Our model also performs bet-

ter on mAP, pixAcc and classAcc on Cityscapes dataset.

Moreover, our method does not add extra model parame-

ters in both G and D, and uses the same architecture of G
as CycleGAN.

Visual results are shown in Figure 4. Compared to other

methods, our QS-Attn model has the ability to translate

the domain-relevant features accurately. Besides, QS-Attn

achieves the background consistency in the tasks of Horse
→ Zebra and Cat → Dog.

QS-Attn FSeSim CUT CycleGAN

Q(%) 45.0 28.3 13.3 13.3

T(%) 40.0 30.0 11.7 18.3

C(%) 58.3 11.7 8.3 21.7

Table 2. User study statistics. The methods are compared in

three aspects: image quality (Q), target domain conformity (T)

and domain-irrelevant consistency (C).

User Study. To further evaluate the quality of translated

images, we conduct a user study under human perception.

so a user study reflecting human perception is important for

evaluating visual quality. We compare our Global model

with CUT, FSeSim, and CycleGAN on Horse → Zebra
dataset. 60 participants are asked to compare the methods

in three aspects: image quality (Q), target domain confor-

mity (T) and domain-irrelevant consistency (C). Q means

the reality and perception of images. T indicates whether

the translated images have the features of the target domain.

C refers to the domain-irrelevant pixels should remains the

same compared to the source images, e.g., the background

in the Horse image. Statistical results are shown in Tab. 2.

4.3. Ablation Study

Attention and selection. In QS-Attn module, we apply

attention, query selection and cross domain value routing.

To evaluate their effects separately, we conduct the abla-

tion study on Horse → Zebra dataset. Metrics are listed in

Tab. 3 and qualitative results are shown in Fig. 5. A is our

complete global model, including aforementioned three op-

erations. In model B, queries are selected randomly and the
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Method
Configuration

FID ↓ SWD ↓Attention Selection Cross Domain
global local global local

A � � � 41.1 30.3
B � × � 52.1 34.4

C × � × 61.1 37.7

D � � × 43.3 32.1

E � × × 53.4 34.9

F: info � � � 43.9 33.3

G � � � 38.6 31.2

H � � � 42.3 31.9

Table 3. Quantitative results for ablation study. In configuration, Attention means computing the QS-Attn matrix AQS and adopting

it to route the value feature; Selection denotes selecting queries by entropy in attention matrix; CrossDomain indicates that AQS in

the source domain is applied to route the value features from both source and target domains; global and local refer to using Ag and Al,

respectively. Model A, G and H are the 3 settings corresponding to the last 3 rows in Table 1.

corresponding QS-Attn matrix AQS is applied to route the

source and target values. Model C only computes the global

attention matrix Ag to select queries, while it does not fur-

ther use AQS to route values. Model A outperforms model

B, reflecting the effectiveness of entropy-sorted selection.

The metric of C is worse than model A and B, indicating

that only when the selected AQS routes the values to es-

tablish the contrastive loss Lcon, then the encoder learns to

extract the significant features from images.

Self domain value routing. Model D and E in Tab. 3

route value features in self domain, i.e. there are two global

attention matrices Ax
g and Ay

g , from source domain and tar-

get domain, respectively. Then, after the query selection,

the source domain QS-Attn matrix Ax
QS and the target do-

main QS-Attn matrix Ay
QS route the value features from

their own domain. In model D, queries are selected by sort-

ing the entropy of Ax
g to form Ax

QS , and Ay
QS is composed

of the selected queries in Ay
g , which has the same row in-

dex as Ax
g . Different from D, model E selects queries ran-

domly. The two models both route the values separately by

the corresponding Ax
QS and Ay

QS . Model D is not good as

A. It demonstrates that compared with self domain rout-

ing, cross domain routing can establish closer correlation

between source and target domain, for Ax
QS captures the

global relation of Ix and imposes it on the features from

G(Ix).
Informer. We also investigate other query selection

strategies. Recently, Informer [46] proposes an efficient

self-attention mechanism. It introduces a max-mean mea-

surement for each query, which is expressed as:

M(qi;K) = max
j

(
qik

T
j√
C

)
− 1

HW

HW∑
j=1

(
qik

T
j√
C

)
(6)

where qi ∈ R
C is the i-th query in the matrix Q ∈ R

HW×C ,

kj ∈ R
C is the j-th key in the matrix K ∈ R

C×HW . Each

query measures the similarity with all keys, and obtains a

score M(qi;K). Then Top-N queries are selected by sort-

ing M(qi;K) in descending order, which are relatively dis-

tinct. Model F in Tab. 3 selects Top-N queries adopting the

above approach, and uses the corresponding AQS to route

both source and target domain value features. It achieves

good results and metric, showing that the max-mean mea-

surement is also effective for query selection.

Local and global attention. Model G and H applies

local attention for Al, and computes Hl for query selection.

Differently, G employs selected rows in Al to form AQS in

value routing, but H uses global attention matrix Ag . Al-

though G achieves the best performance in FID, the visual

quality is worse than H and A, suggesting that global value

routing helps to reconstruct the texture of images.

5. Conclusion
This paper proposes a QS-Attn module for cross domain

contrastive learning in the task of I2I. Instead of randomly

selecting the anchor, positive and negatives to compute the

contrastive loss, we measure the significance of source do-

main features and select them based on a metric so that the

constraint becomes more relevant for the domain transla-

tion. We first compute an attention matrix using the features

from real images in the source domain, and then measure

the entropy of every query in it. Those with smaller values

are considered to be distinct, therefore being selected. The

remaining significant queries are kept, resulting in a row re-

duced attention matrix, which is further employed to route

features in both the source and target domains. The cross

domain routing strategy not only enlarges the receptive field

of the selected features, but also helps the output to retain

the relation in the input image. We show the effectiveness

of QS-Attn module on popular domain translation datasets

and perform intensive ablation studies.
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