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Abstract

Instance contrast for unsupervised representation learn-
ing has achieved great success in recent years. In this
work, we explore the idea of instance contrastive learn-
ing in unsupervised domain adaptation (UDA) and pro-
pose a novel Category Contrast technique (CaCo) that in-
troduces semantic priors on top of instance discrimination
for visual UDA tasks. By considering instance contrastive
learning as a dictionary look-up operation, we construct a
semantics-aware dictionary with samples from both source
and target domains where each target sample is assigned
a (pseudo) category label based on the category priors of
source samples. This allows category contrastive learn-
ing (between target queries and the category-level dictio-
nary) for category-discriminative yet domain-invariant fea-
ture representations: samples of the same category (from ei-
ther source or target domain) are pulled closer while those
of different categories are pushed apart simultaneously. Ex-
tensive UDA experiments in multiple visual tasks (e.g., seg-
mentation, classification and detection) show that CaCo
achieves superior performance as compared with state-of-
the-art methods. The experiments also demonstrate that
CaCo is complementary to existing UDA methods and gen-
eralizable to other learning setups such as unsupervised
model adaptation, open-/partial-set adaptation etc.

1. Introduction

Though deep neural networks (DNNs) [20,57] have rev-

olutionized various computer vision tasks [4, 20, 47, 57],

they generally perform not well on new domains due to the

cross-domain mismatch. Unsupervised domain adaptation

(UDA) aims to mitigate the cross-domain mismatch via ex-

ploiting unlabelled target-domain samples. To achieve this

purpose, researchers have designed different unsupervised

training objectives on target-domain samples to train a well-

performed model in target domain [7,30,40,59,62,63,69].

The existing unsupervised losses can be broadly classi-
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fied into three categories: 1) adversarial loss that enforces

source-like target representations [38, 40, 53, 59, 60, 62, 63];

2) image translation loss that translates source images to

have target-like styles and appearance [8,27,36,72,74]; and

3) self-training loss that re-trains networks iteratively with

confidently pseudo-labelled target samples [15, 36, 80, 81].

Unsupervised representation learning [5,19,41,44,58,68,

73, 77, 78] addresses a related problem, i.e., unsupervised

network pre-training which aims to learn discriminative em-

beddings from unlabelled data. In recent years, instance

contrastive learning [5, 19, 42, 58, 68, 73] has led to ma-

jor advances in unsupervised representation learning. De-

spite different motivations, instance contrast methods can

be thought of as a dictionary look-up task [19] that trains

a visual encoder by matching an encoded query q with a

dictionary of encoded keys k: the encoded query should

be similar to the encoded positive keys and dissimilar to en-

coded negative keys. With no labels available for unlabelled

data, the positive keys are often randomly augmented ver-

sions of query samples, and all other samples are considered

as negative keys.

In this work, we explore the idea of instance contrast

in UDA. Considering contrastive learning as a dictionary

look-up task, we hypothesize that a UDA dictionary should

be category-aware and domain-mixed with keys from both

source and target domains. Intuitively, a category-aware

dictionary with category-balanced keys will encourage to

learn category-discriminative yet category-unbiased repre-

sentations, while the keys from both source and target do-

mains will allow to learn invariant representations within

and across the two domains, both being aligned with the

objective of UDA.

With above motivation, this paper presents Category
Contrast (CaCo) as a way of building category-aware and

domain-mixed dictionaries with corresponding contrastive

losses for UDA. As shown in Fig. 1, this dictionary in-

cludes keys that are evenly sampled in both categories

and domains, where each target key comes with a pre-

dicted pseudo category. Take the illustrative dictionary

K = {kcm}1≤c≤C,1≤m≤M as an example. Each category c
will have M keys while each domain has (C ×M)/2 keys.
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Figure 1. The proposed Category Contrast trains an unsupervised domain adaptive encoder by matching a query q (from an unlabelled

target sample xq ∈ Xt) to a dictionary of keys via a category contrastive loss LCatNCE. The dictionary keys are domain-mixed from both

source domain Xs (in red with labels) and target domain Xt (in blue with pseudo labels), which allows to learn invariant representations

within and across the two domains. They are also category-ware and category-balanced allowing to learn category-discriminative yet

category-unbiased representations. Note the category-balanced means that each query q is compared with all the dictionary keys (in loss

computation) that are evenly distributed over all data categories which mitigates data imbalance issue.

The network learning will thus strive to minimize a cate-
gory contrastive loss LCatNCE between target queries and

dictionary keys: samples of the same category are pulled

close while those of different categories are pushed away.

This naturally leads to category-discriminative yet domain-

invariant representations that perfectly match the objective

of UDA.

With the category-aware and domain-mixed dictionary

together with the category contrastive loss, the proposed

Category Contrast tackles the UDA challenges with three

desirable features: 1) It concurrently minimizes the intra-

category variation and maximizes the inter-category dis-

tance with the category-aware dictionary design; 2) It

achieves inter-domain and intra-domain alignment simul-

taneously thanks to the domain-mixed dictionary design by

including both source and target samples; 3) It greatly mit-

igates the data balance issue due to the category-balanced
dictionary design which allows to compute contrast losses

evenly across all categories during learning.

We summary the contributions of this paper as follows:

(1) we explore instance contrast for UDA, aiming to learn

discriminative representation for unlabelled target-domain

samples. (2) we propose Category Contrast that builds a

category-aware and domain-mixed dictionary with a cat-

egory contrastive loss. It encourages to learn category-

discriminative yet domain-invariant representation that per-

fectly matches the objective of UDA. (3) extensive experi-

ments demonstrate that our CaCo achieves superior UDA

performance consistently as compared with state-of-the-

art. Additionally, CaCo complements previous UDA ap-

proaches and generalizes to other learning setups that in-

volves unlabeled data.

2. Related Works

This work relates to two main fields of research, namely,

unsupervised learning in unsupervised domain adaptation

and instance contrast in unsupervised representation learn-

ing.

Unsupervised domain adaptation aims to leverage un-

labelled target data to improve network performance in tar-

get domain. To learn from unlabelled target data, most

existing works propose various unsupervised losses. We

roughly sort them into three subcategories. The first sub-

category is adversarial loss that enforces source-like target

representation in terms of encoded features [7, 16, 38, 52,

62, 75], generated predictions [28, 40, 51, 53, 59] or con-

verted latent representations [29, 60, 63]. The second cat-

egory is image translation loss that generates source data

with target-like styles and appearance via GANs [8, 10, 36]

and spectrum matching [25, 72]. The third category is

self-training loss that re-trains the network iteratively with

pseudo-labelled target samples [14,24,26,36,64,72,80,81].

We tackle UDA from a new perspective of instance con-

trastive learning, and propose a novel Category Contrast

(CaCo) that introduces a generic category contrastive loss

that can work for various UDA tasks. To the best of our

knowledge, CaCo is the first effort to investigate instance

contrastive learning for UDA.

Instance Contrastive Learning [5, 19, 42, 58, 68, 73]

aims to learn an embedding space where positive sam-

ples are pulled close to an anchor and negative samples

are pushed away. Despite different motivations, instance

contrastive learning can be viewed as a dictionary look-up

task [19] that trains a visual encoder by matching an en-

coded query q with a dictionary of encoded keys k: q should

be similar to positive k and dissimilar to negative k. Three
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typical dictionary creation strategies have been proposed.

The first builds a memory bank [68] that stores the keys of

all samples every training epoch. The second one builds a

momentum-encoded queue [19] that collects encoded sam-

ples online as keys. The third one creates an end-to-end dic-

tionary [5, 58,73] that takes encoded samples of the current

training batch as keys. Instance contrast with various dic-

tionaries helps to learn better unsupervised representations

clearly.

On the other hand, existing instance contrastive learn-

ing methods [5, 19, 42, 58, 68, 73] were designed for unsu-

pervised representation, which has two main limitations in

UDA: 1). With little category priors, existing instance con-

trast techniques learn rich low-level features without cap-

turing much high-level semantic information. This is sub-

optimal to many visual recognition tasks (e.g., segmenta-

tion, detection and classification) that require discrimina-

tive semantic features. Recent studies [56, 61] verify this

issue; 2). Most existing instance contrastive learning meth-

ods [5, 19, 42, 58, 68, 73] employ a super-large/category-

agnostic dictionary that could introduce category colli-

sion [56], where negative pairs share the same semantic cat-

egory but are undesirably pushed away in the feature space.

This impairs most learning setups that require semantic-

level discrimination including various visual UDA tasks.

The proposed CaCo introduces a categorical domain-mixed

dictionary which introduces category priors and addresses

the two problems effectively.

Other recent related contrastive learning works. [35]

explores contrastive learning with semantic distributions

and proposes semantic distribution-aware contrastive adap-

tation that contrasts each sample with estimated category

centroids. [1, 65] explore pixel-level contrast with a mem-

ory bank for supervised and semi-supervised semantic seg-

mentation.

3. Method
3.1. Task Formulation

This work tackles the task of unsupervised domain adap-

tation, where labelled source-domain samples {Xs, Ys} are

accessible while only unlabelled data Xt are available in

the target domain. The learning objective is to train a well-

performing network G for Xt. The baseline performance

is acquired by training network G with annotated source-

domain sample only:

Lsup = l(G(Xs), Ys), (1)

where l(·) denotes an accuracy-related loss.

3.2. Preliminaries of Instance Contrastive Learning

The idea of instance contrastive learning [18] can be

considered as training an encoder (feature extractor) for a

dictionary look-up task. Given a query q and a dictionary

that consists of a number of keys {k0, k1, ..., kN}, instance

discriminative representations are learnt with an instance

contrastive loss [18] (e.g., InfoNCE [42]), minimization of

which will pull q close to its positive key and push it away

from all other keys (considered negative for q):

LInfoNCE =
∑
xq∈X

− log

∑N
i=0 �(ki ∈ q) exp(q·ki/τ)∑N

i=0 exp(q·ki/τ)
(2)

where �(ki ∈ q) = 1 if ki is the positive key of q and

�(ki ∈ q) = 0 otherwise. Parameter τ is a temperature

parameter [68]. In general, the query representation is q =
fq(x

q) where fq is an encoder network and xq is a query

sample (likewise in k = fk(x
k)).

3.3. Category Contrast for Unsupervised Domain
Adaptation

We tackle UDA from a perspective of instance con-

trastive learning. Specifically, we design Category Contrast

that builds a category-aware and domain-mixed dictionary

to learn category-discriminative yet domain-invariant repre-

sentations under the guidance of a category contrastive loss.

Overview. For supervised training over a labelled

source domain, we feed source samples {Xs, Ys} to a

model G and optimize G with Eq. 1. In this work, G
consists of an encoder fq and a classifier h that classifies

the encoded embeddings into pre-defined categories, i.e.,
G(·) = h(fq(·)). For unsupervised training over an unla-

belled target domain, the training involves a query encoder
fq and a key momentum encoder fk (the momentum update

of fq , i.e., θfk = bθfk + (1 − b)θfq , and b is a momentum

coefficient) as illustrated in Fig. 1. During the training, we

evenly sample the key xk from both source and target do-

mains (i.e., Xs and Xt) and feed them to the key encoder

fk to build a category-aware dictionary K. We sample query

xq from the target domain (i.e. Xt) only and feed them to

the query encoder fq for category contrastive learning with

the category-aware dictionary K.

Categorical domain-mixed dictionary. One key com-

ponent in the proposed CaCo is a category-aware and

domain-mixed dictionary with keys from both source and

target domains. The dictionary allows to perform category

contrastive learning: the embeddings of the same category
are pulled close together while those of different categories
are pushed apart. The category awareness encourages the

network to learn category-discriminative embeddings. This

feature is critical to various visual tasks (e.g., segmentation,

classification and detection) that require to learn discrimina-

tive features and classify them to pre-defined categories. In

addition, the dictionary is domain-mixed which encourages

to learn invariant representations within and across domains

as category contrast is computed between target queries and

keys from both source and target domains.
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As stated in the Overview, given an encoded key k =
fk(xk) (xk ∈ Xs ∪Xt), the classifier h predicts a category

label ŷk and converts k into a categorical key kc which is

further queued into the categorical dictionary K. These pro-

cesses are carried out in parallel for a mini-batch of inputs,

and the formal definition of the categorical dictionary K is

presented in Definition. 1.

Definition 1 A Categorical Dictionary K with C-category
is defined by:

K = {k1, k2, ..., kC}, (3)

where the categorical key kc ∈ K is defined as the key k that
belongs to the c-th semantic category (c = argmaxi ŷ

(i)
k )

and the predicted category label ŷk of k = fk(xk) is de-
rived by:

argmax
ŷk

C∑
c=1

ŷ
(c)
k log p(c; k, θh), s.t. ŷk ∈ ΔC , ∀k, (4)

where h is the category classifier that predicts C-category
probabilities for each embedding (e.g., k), and ŷ =
(ŷ(1), ŷ(2), ..., ŷ(C)) is the predicted category label. The key
xk is sampled from a training dataset X and encoded by the
momentum encoder fk to get the encoded key k = fk(xk).
ΔC denotes a probability simplex, with which a point can
be represented by C non-negative numbers that add up to 1.

Remark 1 It is worth highlighting that Eq. 3 only shows
one group of categorical keys for the simplicity of illustra-
tion and theoretic proof. In practice, we take the same strat-
egy as [19] and maintain a dynamic categorical dictionary
with M -size queue (i.e., {kcm}1≤c≤C,1≤m≤M ), where the
categorical keys are progressively updated in a category-
wise manner. Specifically, for the queue of each category,
we have {kc1, kc2, ..., kcM}, in which the oldest key is de-
queued and the currently sampled key (belongs to c-th se-
mantic category) is enqueued.

Category contrastive loss. Given the categorical dictio-

nary K = {kcm}1≤c≤C,1≤m≤M defined in Definition. 1, the

proposed CaCo performs contrastive learning on unlabeled

target data Xt via a category contrastive loss CatNCE that

is defined by:

LCatNCE =
∑

xq∈Xt

−
(

1

M

M∑
m=1

log

∑C
c=1 exp(q · kcm/τ cm)(ŷq × ŷkc

m
)∑C

c=1 exp(q · kcm/τ cm)

)
,

(5)

where q = fq(xq), (ŷq × ŷkc
m
) is equal to 1 if both refer

to the same category and 0 otherwise, τ cm is a temperature

hyper-parameter and the · denotes the inner (dot) product.

For each group of categorical keys {k1m, k2m, ..., kCm}, only

one key is positive for the current query q (i.e., (ŷq×ŷkc
m
) =

1) as every sample belongs to a single category. This loss

is thus the log loss of a C-way softmax-based classifier that

strives to classify q as the positive key (of same category).

Remark 2 Note that the CatNCE loss in Eq.5 has a similar
form as the InfoNCE loss in Eq.2. Therefore, InfoNCE can
be interpreted as a special case of CatNCE, where each in-
stance (with its augmentations) itself is a category and the
temperature is fixed (i.e., τ cm = τ, ∀c,m). For CaCo, we
assign different temperatures to different keys as their pre-
dicted labels have different uncertainties, i.e., scaled by the
prediction entropy H(·). The adjustable temperature pa-
rameter has also been explored in [5, 17, 31].

Remark 3 Note that our category contrastive loss serves
as an unsupervised objective function for training the en-
coder networks that represent the queries and keys [18]. In
general, the query representation is q = fq(x

q) where fq

is an encoder network and xq is a query sample (likewise,
k = fk(x

k)). Their instantiations depend on the specific
pretext task. The input xq and xk can be images [18,68,73],
patches [42] or context consisting of a set of patches [42],
etc. The networks fq and fk can be identical [18, 66, 73],
partially shared [2, 42], or different [19, 58].

Relations to existing instance contrast methods. Be-

yond instance-discriminative representations as learnt by in-

stance contrast [5, 19, 42, 58, 68, 73], CaCo learns category-

discriminative yet domain-invariant representation.

3.4. Theoretical Insights

The category contrast (CaCo) is inherently connected

with some probabilistic models. Specifically, CaCo can be

modeled as an example of Expectation Maximization (EM):

Proposition 1 The category contrastive learning can be
modeled as a maximum likelihood (ML) problem optimized
via Expectation Maximization (EM).

Proposition 2 The categorical contrastive learning is con-
vergent under certain conditions.

The proofs of Propositions 1 and 2 are provided in the

Appendix.

4. Experiments
This section presents experimental results. Sections 4.1

and 4.2 describe the dataset and implementation details.

Sections 4.3, 4.4 and 4.5 present the UDA experiments

in segmentation, detection and classification, respectively.

Section 4.6 discusses different features of the proposed

method.
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Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU

Baseline [4] 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

CaCo-S 91.1 54.4 79.6 27.0 22.9 36.9 40.2 33.4 83.7 36.3 65.2 59.7 22.4 83.5 37.5 49.3 10.1 23.3 31.8 46.8

CaCo-T 92.0 53.5 81.6 28.9 26.3 36.5 42.7 36.3 81.8 37.2 75.5 59.8 26.5 84.9 40.0 44.9 11.6 27.0 29.9 48.3

CaCo 91.9 54.3 82.7 31.7 25.0 38.1 46.7 39.2 82.6 39.7 76.2 63.5 23.6 85.1 38.6 47.8 10.3 23.4 35.1 49.2

AdaptSeg [59] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

CBST [81] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

CLAN [40] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

AdvEnt [63] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

IDA [43] 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 46.3

BDL [36] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

CrCDA [29] 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6

SIM [67] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

TIR [32] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2

CRST [80] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

+CaCo 93.0 58.4 83.1 34.0 29.3 37.0 47.1 42.9 84.6 41.5 82.8 61.8 32.2 86.9 39.2 48.0 22.4 31.1 45.7 52.7

FDA [72] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

+CaCo 93.2 54.5 84.6 32.9 29.3 39.7 46.9 42.7 84.4 40.1 83.7 61.1 32.2 85.6 41.7 51.2 19.2 35.6 45.9 52.9

ProDA [76] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

+CaCo 93.8 64.1 85.7 43.7 42.2 46.1 50.1 54.0 88.7 47.0 86.5 68.1 2.9 88.0 43.4 60.1 31.5 46.1 60.9 58.0

Table 1. Results over unsupervised domain adaptive semantic segmentation task GTA5-to-Cityscapes: CaCo-S, CaCo-T and CaCo con-

struct the category-aware dictionary by sampling key samples xk from the source dataset Xs only, the target dataset Xt only, and both

datasets, respectively.

Method Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU mIoU*

Baseline [4] 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6

PatAlign [60] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

AdaptSeg [59] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

CLAN [40] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8

AdvEnt [63] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

IDA [43] 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9

CrCDA [29] 86.2 44.9 79.5 8.3 0.7 27.8 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 42.9 50.0

TIR [32] 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3

SIM [67] 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1

BDL [36] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

CRST [80] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

+CaCo 88.8 48.0 79.5 6.9 0.3 36.9 28.0 22.1 83.5 84.1 63.9 31.0 85.8 38.1 29.4 49.1 48.5 56.2

FDA [72] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.W1 83.9 40.8 38.4 51.1 - 52.5

+CaCo 86.4 43.3 78.7 9.0 0.1 28.5 26.7 29.7 81.7 82.9 59.3 28.1 82.9 38.6 35.7 50.0 47.6 55.7

CaCo 87.4 48.9 79.6 8.8 0.2 30.1 17.4 28.3 79.9 81.2 56.3 24.2 78.6 39.2 28.1 48.3 46.0 53.6

Table 2. Results of unsupervised domain adaptive semantic segmentation task SYNTHIA-to-Cityscapes.

4.1. Datasets

Adaptation for semantic segmentation: It involves

three public datasets over two challenging UDA tasks,

i.e., GTA5 [48]-to-Cityscapes [9] and SYNTHIA [49]-to-

Cityscapes. Specifically, GTA5 is a synthesized dataset

with 24, 966 images and 19 common categories with

Cityscapes. SYNTHIA is a synthesized dataset with

9, 400 images and 16 common categories with Cityscapes.

Cityscapes is a real-image dataset with 2975 training sam-

ples and 500 validation samples.

Adaptation for object detection: It involves three pub-

lic datasets over two adaptation tasks, i.e., Cityscapes-to-

Foggy Cityscapes [54] and Cityscapes-to-BDD [?]. Specif-

ically, Foggy Cityscapes is a synthesized dataset that ap-

plies simulated fog on Cityscapes images. BDD is a real

dataset with 70k samples in training set, 10k samples for

validating and 7 common classes with Cityscapes dataset.

As in [7, 52, 71], only a subset of BDD “daytime set” is

used for experiments.

Adaptation for classification tasks: It involves two

domain adaptive classification datasets VisDA17 [45] and

Office-31 [50]. The former consists of a source domain with

152, 409 synthesized samples with twelve classes and a tar-

get domain with 55, 400 real samples. The latter consists of

images of 31 categories which were collected from Amazon

(2817 images), Webcam (795 images) and DSLR (498 im-

ages), respectively. The evaluation is on every pair of them

as in [50, 55, 80].

1207



Method person rider car truck bus train mcycle bicycle mAP

Baseline [47] 24.4 30.5 32.6 10.8 25.4 9.1 15.2 28.3 22.0

MAF [21] 28.4 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0

SCDA [79] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8

DA [7] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

MLDA [70] 33.2 44.2 44.8 28.2 41.8 28.7 30.5 36.5 36.0

DMA [33] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6

CAFA [23] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0

SWDA [52] 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3

+CaCo 39.3 46.1 48.0 32.4 45.7 38.7 31.3 35.3 39.6

CRDA [71] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4

+CaCo 39.4 47.4 47.9 32.5 46.4 39.9 32.7 35.4 40.2

CaCo 38.3 46.7 48.1 33.2 45.9 37.6 31.0 33.0 39.2

Table 3. Results over unsupervised domain adaptive object detection task Cityscapes-to-Foggy-Cityscapes.

Method person rider car truck bus mcycle bicycle mAP

Baseline [47] 26.9 22.1 44.7 17.4 16.7 17.1 18.8 23.4

DA [7] 29.4 26.5 44.6 14.3 16.8 15.8 20.6 24.0

SWDA [52] 30.2 29.5 45.7 15.2 18.4 17.1 21.2 25.3

+CaCo 32.1 32.9 51.6 20.5 23.7 20.1 25.6 29.5

CRDA [71] 31.4 31.3 46.3 19.5 18.9 17.3 23.8 26.9

+CaCo 32.5 34.1 51.1 21.6 25.1 20.5 26.5 30.2

CaCo 32.7 32.2 50.6 20.2 23.5 19.4 25.0 29.1

Table 4. Results over unsupervised domain adaptive object detection task Cityscapes-to-BDD.

4.2. Experiment Detail

Segmentation Task: As in [59, 81], DeepLabV2 [4]

is employed as segmentation architecture and ResNet-101

[20] is adopted as the backbone. We employ SGD [3] as the

optimizer with momentum 0.9, weight decay 0.0001 and

learning rate 0.00025. We follow previous works [59,81] to

schedule the learning rate [4].

Detection Task: We follow previous works [7,34,52,71]

to conduct experiments, where VGG16-based [57] Faster

R-CNN [47] is employed base detecting backbone. For

network optimization, Stochastic gradient descent opti-

mizer [3] is adopted with a momentum of 0.9 and a weight

decay of 0.0005. The shorter side of input image is set to

600 and RoIAlign is employed for feature extraction. The

learning rate is set as 0.001 for 50, 000 training iterations

and adjusted as 0.0001 in following 20, 000 training itera-

tions [7, 52, 71].

Classification Task: Following [50,55, 80], we employ

ResNet101 (for VisDA17 dataset) and ResNet50 [20] (for

Office-31 dataset) as the base backbones. For optimization,

Stochastic gradient descent optimizer [3] is employed with

momentum 0.9, weight decay 0.0005, learning rate 0.001
and batch size 32.

We set the length of dictionary queue M at 100 in all ex-

periments except in parameter analysis. In addition, we set

the momentum update coefficient b at 0.999 and the basic

temperature τ at 0.07 as in [19].

4.3. UDA for Semantic Segmentation

Table 1 reports semantic segmentation results on the

task GTA5-to-Cityscapes. It can be seen that the proposed

CaCo achieves comparable performance with state-of-the-

art methods. In addition, CaCo is complementary to ex-

isting UDA approaches that exploit adversarial loss, im-

age translation loss and self-training loss. As shown in Ta-

ble 1, incorporating CaCo as denoted by “+CaCo” boosts

the performance of state-of-the-art methods clearly and con-

sistently. Fig. 2 presents the qualitative comparisons.

Ablation studies. We perform ablation studies over a

widely adopted Baseline [20] as shown on the top of Ta-

ble 1, where CaCo-S, CaCo-T and CaCo mean that the

category-aware dictionary is built with keys from source

domain, target domain and both domains, respectively. We

can observe that CaCo-S and CaCo-T outperform the Base-
line clearly. CaCo-S and CaCo-T provide orthogonal self-

supervision signals, where CaCo-S focuses on inter-domain

category contrastive learning between target samples and

source keys and CaCo-T focuses on intra-domain category

contrastive learning between target samples and target keys.

In addition, CaCo performs clearly the best, showing that

the keys from the source and target domains are comple-

mentary.

Table 2 reports semantic segmentation results on the
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Method Aero Bike Bus Car Horse Knife Motor Person Plant Skateboard Train Truck Mean

Baseline [20] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

MMD [37] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [11] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

ENT [13] 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0

MCD [53] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

ADR [51] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8

SimNet-Res152 [46] 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9

GTA-Res152 [55] - - - - - - - - - - - - 77.1

CBST [81] 87.2 78.8 56.5 55.4 85.1 79.2 83.8 77.7 82.8 88.8 69.0 72.0 76.4

+CaCo 90.7 80.8 79.4 57.0 89.2 88.6 82.4 79.0 87.9 87.9 87.0 65.9 81.3

CRST [80] 88.0 79.2 61.0 60.0 87.5 81.4 86.3 78.8 85.6 86.6 73.9 68.8 78.1

+CaCo 91.4 80.6 80.0 56.5 89.5 89.4 82.8 79.9 88.8 86.8 87.3 66.0 81.6

CaCo 90.4 80.7 78.8 57.0 88.9 87.0 81.3 79.4 88.7 88.1 86.8 63.9 80.9

Table 5. Results over UDA-based classification benchmark VisDA17.

Method A→W D→W W→D A→D D→A W→A Mean

Baseline [20] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DAN [37] 80.5 97.1 99.6 78.6 63.6 62.8 80.4

RTN [38] 84.5 96.8 99.4 77.5 66.2 64.8 81.6

DANN [11] 82.0 96.9 99.1 79.7 68.2 67.4 82.2

ADDA [62] 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN [39] 85.4 97.4 99.8 84.7 68.6 70.0 84.3

GTA [55] 89.5 97.9 99.8 87.7 72.8 71.4 86.5

CBST [81] 87.8 98.5 100.0 86.5 71.2 70.9 85.8

+CaCo 90.3 98.6 100.0 92.4 73.2 72.8 87.9

CRST [80] 89.4 98.9 100.0 88.7 72.6 70.9 86.8

+CaCo 90.4 98.9 100.0 92.8 73.7 72.5 88.1

CaCo 89.7 98.4 100.0 91.7 73.1 72.8 87.6

Table 6. Results over domain adaptive image classification task

Office-31.

task SYNTHIA-to-Cityscapes. It can be observed that

CaCo achieves comparable performance with the state-of-

the-art methods, and it boosts their performance (denoted

by “+CaCo”) as well.

4.4. UDA for Object Detection

Tables 3 and 4 report object detection experiments on

Cityscapes-to-Foggy Cityscapes and Cityscapes-to-BDD.

They show that CaCo outperforms the state-of-the-art meth-

ods [52, 71] by clear margins. Besides, combining CaCo

with state-of-the-art could boost the detection performance.

4.5. UDA for Image Classification

Tables 5 and 6 report image classification experiments

on VisDA17 and Office-31, respectively. It can be ob-

served that CaCo outperforms state-of-the-art by clear mar-

gins. Additionally, combining CaCo with state-of-the-art

approaches could boost image classification performance.

4.6. Discussion and Analysis

Generalization ability: We investigate the generaliza-

tion of the proposed CaCo via assessing it on several corner-

stone visual UDA applications, i.e., segmentation, detection
and classification. We present the experimental results in

Tables 1- 6, which demonstrate CaCo generates compara-

ble performance consistently.

Complementariness ability: We investigate the syner-

getic benefits of our CaCo by combining it with existing

UDA approaches. We present experimental results in Ta-

bles 1- 6 (the rows with ‘+CaCo’), which show that CaCo

when incorporated improves all existing methods consis-

tently across different visual tasks.

Comparisons with existing unsupervised representa-
tion learning methods: We compared CaCo with unsu-

pervised representation learning methods over the UDA

task. Most existing methods achieve unsupervised repre-

sentation learning through certain pretext tasks, such as in-

stance contrastive learning [2, 5, 6, 18, 19, 22, 42, 68, 73],

patch ordering [41], rotation prediction [12], and denois-

ing/context/colorization auto-encoders [44, 77, 78]. The

experiments (shown in Appendix) over the UDA task

GTA→Cityscapes show that existing unsupervised repre-

sentation learning works not well on UDA tasks. The main

reason lies in that these approaches are designed for learn-

ing instance-discriminative representations without consid-

ering semantic priors and domain gaps. CaCo also per-

forms unsupervised learning but works for UDA effec-

tively, largely because it learns category-discriminative yet

domain-invariant representations which is essential to vari-

ous visual UDA tasks.

Parameter studies: The parameter M (in the proposed

CaCo) controls the length (or size) of the categorical dictio-

nary. We investigate M via varying it from 50 to 150 pro-

gressively. The experiments (shown in Appendix) over the
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Ground Truth ADVENT CRST

Target Image Baseline FDA CaCo(Ours)

Ground Truth ADVENT CRST

Target Image Baseline FDA CaCo(Ours)

Figure 2. Qualitative comparisons over UDA-based semantic segmentation GTA5-to-Cityscapes.

UDA segmentation task GTA-to-Cityscapes demonstrate

that M does not affect UDA clearly while it changes from

50 to 150.

Generalization across different learning setups: We

studied the scalability of the proposed CaCo from the view

of learning setups. Specifically, we evaluated CaCo over a

variety of tasks that involve unlabeled data learning and cer-

tain semantic priors such as unsupervised model adaptation,

and partial-set/open-set UDA. We present the experimental

results in Appendix, which illustrates that CaCo generates

comparable performance robustly.

Category-aware dictionary: We studied three variant

designs of the proposed category-aware dictionary: 1) As-

sign all keys with the same temperature; 2) Using two in-

dividual dictionaries (for source and target data) instead of

a single domain-mixed dictionary; 3) Update the dictionary

by memory bank [68] or current mini-batch [5]. Experi-

ments (in Appendix) verify the superiority of the design as

described in this paper.

5. Conclusion
This paper presents CaCo, a category contrast technique

that introduces a generic category contrastive loss that can

work for various visual UDA tasks effectively. We con-

struct a semantics-aware dictionary with samples from both

source and target domains where each target sample is as-

signed a (pseudo) category label based on the category pri-

ors of source samples. This allows category contrastive

learning (between target queries and the category-level dic-

tionary) for category-discriminative yet domain-invariant

feature representations: samples of the same category (from

either source or target domain) are pulled close together

while those of different categories are pushed away simul-

taneously. Extensive experiments over multiple visual tasks

(e.g., segmentation, classification and detection) show that

the simple implementation of CaCo achieves superior per-

formance as compared with state-of-the-art methods. In ad-

dition, we demonstrate that CaCo is also complementary

to existing UDA methods and generalizable to other learn-

ing setups such as unsupervised model adaptation, open-

/partial-set adaptation etc.
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[3] Léon Bottou. Large-scale machine learning with stochastic

gradient descent. In Proceedings of COMPSTAT’2010, pages

177–186. Springer, 2010. 6

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017. 1,

5, 6

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 1, 2, 3, 4,

7, 8

[6] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv preprint arXiv:2003.04297, 2020. 7

[7] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and

Luc Van Gool. Domain adaptive faster r-cnn for object de-

tection in the wild. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3339–3348,

2018. 1, 2, 5, 6

[8] Yun-Chun Chen, Yen-Yu Lin, Ming-Hsuan Yang, and Jia-

Bin Huang. Crdoco: Pixel-level domain transfer with cross-

domain consistency. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1791–

1800, 2019. 1, 2

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 5

[10] Kaiwen Cui, Jiaxing Huang, Zhipeng Luo, Gongjie Zhang,

Fangneng Zhan, and Shijian Lu. Genco: Generative co-

training for generative adversarial networks with limited

data. arXiv preprint arXiv:2110.01254, 2021. 2

[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-

cal Germain, Hugo Larochelle, François Laviolette, Mario

Marchand, and Victor Lempitsky. Domain-adversarial train-

ing of neural networks. The Journal of Machine Learning
Research, 17(1):2096–2030, 2016. 7

[12] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. arXiv preprint arXiv:1803.07728, 2018. 7

[13] Yves Grandvalet and Yoshua Bengio. Semi-supervised

learning by entropy minimization. In Advances in neural
information processing systems, pages 529–536, 2005. 7

[14] Dayan Guan, Jiaxing Huang, Shijian Lu, and Aoran

Xiao. Scale variance minimization for unsupervised do-

main adaptation in image segmentation. Pattern Recogni-
tion, 112:107764, 2021. 2

[15] Dayan Guan, Jiaxing Huang, Aoran Xiao, and Shijian Lu.

Domain adaptive video segmentation via temporal consis-

tency regularization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 8053–8064,

2021. 1

[16] Dayan Guan, Jiaxing Huang, Aoran Xiao, Shijian Lu, and

Yanpeng Cao. Uncertainty-aware unsupervised domain

adaptation in object detection. IEEE Transactions on Mul-
timedia, 2021. 2

[17] Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoy-

anov. Supervised contrastive learning for pre-trained lan-

guage model fine-tuning. arXiv preprint arXiv:2011.01403,

2020. 4

[18] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-

ity reduction by learning an invariant mapping. In 2006 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’06), volume 2, pages 1735–1742.

IEEE, 2006. 3, 4, 7

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020. 1, 2, 3, 4, 6, 7

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 6, 7

[21] Zhenwei He and Lei Zhang. Multi-adversarial faster-rcnn

for unrestricted object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,

pages 6668–6677, 2019. 6

[22] Olivier Henaff. Data-efficient image recognition with con-

trastive predictive coding. In International Conference on
Machine Learning, pages 4182–4192. PMLR, 2020. 7

[23] Cheng-Chun Hsu, Yi-Hsuan Tsai, Yen-Yu Lin, and Ming-

Hsuan Yang. Every pixel matters: Center-aware feature

alignment for domain adaptive object detector. In European
Conference on Computer Vision, pages 733–748. Springer,

2020. 6

[24] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.

Cross-view regularization for domain adaptive panoptic seg-

mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10133–

10144, 2021. 2

[25] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.

Fsdr: Frequency space domain randomization for domain

generalization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6891–

6902, 2021. 2

1211



[26] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.

Model adaptation: Historical contrastive learning for unsu-

pervised domain adaptation without source data. Advances
in Neural Information Processing Systems, 34, 2021. 2

[27] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.

Rda: Robust domain adaptation via fourier adversarial at-

tacking. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 8988–8999, 2021. 1

[28] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.

Multi-level adversarial network for domain adaptive seman-

tic segmentation. Pattern Recognition, 123:108384, 2022.

2

[29] Jiaxing Huang, Shijian Lu, Dayan Guan, and Xiaobing

Zhang. Contextual-relation consistent domain adaptation for

semantic segmentation. In European Conference on Com-
puter Vision, pages 705–722. Springer, 2020. 2, 5

[30] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Haupt-

mann. Contrastive adaptation network for unsupervised do-

main adaptation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4893–

4902, 2019. 1

[31] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,

Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and

Dilip Krishnan. Supervised contrastive learning. arXiv
preprint arXiv:2004.11362, 2020. 4

[32] Myeongjin Kim and Hyeran Byun. Learning texture invari-

ant representation for domain adaptation of semantic seg-

mentation. arXiv preprint arXiv:2003.00867, 2020. 5

[33] Taekyung Kim, Minki Jeong, Seunghyeon Kim, Seokeon

Choi, and Changick Kim. Diversify and match: A domain

adaptive representation learning paradigm for object detec-

tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12456–12465,

2019. 6

[34] Congcong Li, Dawei Du, Libo Zhang, Longyin Wen, Tiejian

Luo, Yanjun Wu, and Pengfei Zhu. Spatial attention pyramid

network for unsupervised domain adaptation. In European
Conference on Computer Vision, pages 481–497. Springer,

2020. 6

[35] Shuang Li, Binhui Xie, Bin Zang, Chi Harold Liu, Xin-

jing Cheng, Ruigang Yang, and Guoren Wang. Semantic

distribution-aware contrastive adaptation for semantic seg-

mentation. arXiv preprint arXiv:2105.05013, 2021. 3

[36] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional

learning for domain adaptation of semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6936–6945, 2019. 1, 2, 5

[37] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-

dan. Learning transferable features with deep adaptation net-

works. In International Conference on Machine Learning,

pages 97–105, 2015. 7

[38] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I

Jordan. Unsupervised domain adaptation with residual trans-

fer networks. In Advances in Neural Information Processing
Systems, pages 136–144, 2016. 1, 2, 7

[39] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I

Jordan. Deep transfer learning with joint adaptation net-

works. In International conference on machine learning,

pages 2208–2217. PMLR, 2017. 7

[40] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi

Yang. Taking a closer look at domain shift: Category-level

adversaries for semantics consistent domain adaptation. In

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2507–2516, 2019. 1, 2, 5

[41] Mehdi Noroozi and Paolo Favaro. Unsupervised learning

of visual representations by solving jigsaw puzzles. In

European Conference on Computer Vision, pages 69–84.

Springer, 2016. 1, 7

[42] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 1, 2, 3, 4, 7

[43] Fei Pan, Inkyu Shin, Francois Rameau, Seokju Lee, and

In So Kweon. Unsupervised intra-domain adaptation for

semantic segmentation through self-supervision. arXiv
preprint arXiv:2004.07703, 2020. 5

[44] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

2536–2544, 2016. 1, 7

[45] Xingchao Peng, Ben Usman, Neela Kaushik, Dequan Wang,

Judy Hoffman, and Kate Saenko. Visda: A synthetic-to-

real benchmark for visual domain adaptation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 2021–2026, 2018. 5

[46] Pedro O Pinheiro. Unsupervised domain adaptation with

similarity learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8004–

8013, 2018. 7

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1, 6

[48] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for data: Ground truth from computer

games. In European conference on computer vision, pages

102–118. Springer, 2016. 5

[49] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M Lopez. The synthia dataset: A large

collection of synthetic images for semantic segmentation of

urban scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3234–3243,

2016. 5

[50] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-

rell. Adapting visual category models to new domains. In

European conference on computer vision, pages 213–226.

Springer, 2010. 5, 6

[51] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate

Saenko. Adversarial dropout regularization. International
Conference on Learning Representations, 2017. 2, 7

[52] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate

Saenko. Strong-weak distribution alignment for adaptive ob-

ject detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6956–

6965, 2019. 2, 5, 6, 7

1212



[53] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-

suya Harada. Maximum classifier discrepancy for unsuper-

vised domain adaptation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages

3723–3732, 2018. 1, 2, 7

[54] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Seman-

tic foggy scene understanding with synthetic data. Interna-
tional Journal of Computer Vision, 126(9):973–992, 2018.

5

[55] Swami Sankaranarayanan, Yogesh Balaji, Carlos D Castillo,

and Rama Chellappa. Generate to adapt: Aligning domains

using generative adversarial networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 8503–8512, 2018. 5, 6, 7

[56] Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail

Khodak, and Hrishikesh Khandeparkar. A theoretical analy-

sis of contrastive unsupervised representation learning. In In-
ternational Conference on Machine Learning, pages 5628–

5637. PMLR, 2019. 3

[57] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1, 6

[58] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. arXiv preprint arXiv:1906.05849,

2019. 1, 2, 3, 4

[59] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-

hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.

Learning to adapt structured output space for semantic seg-

mentation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 7472–7481,

2018. 1, 2, 5, 6

[60] Yi-Hsuan Tsai, Kihyuk Sohn, Samuel Schulter, and Manmo-

han Chandraker. Domain adaptation for structured output via

discriminative patch representations. In Proceedings of the
IEEE International Conference on Computer Vision, pages

1456–1465, 2019. 1, 2, 5

[61] Michael Tschannen, Josip Djolonga, Paul K Rubenstein,

Sylvain Gelly, and Mario Lucic. On mutual information

maximization for representation learning. arXiv preprint
arXiv:1907.13625, 2019. 3

[62] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-

rell. Adversarial discriminative domain adaptation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7167–7176, 2017. 1, 2, 7

[63] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
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