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Abstract

Structural re-parameterization (Rep) methods achieve
noticeable improvements on simple VGG-style networks.
Despite the prevalence, current Rep methods simply re-
parameterize all operations into an augmented network, in-
cluding those that rarely contribute to the model’s perfor-
mance. As such, the price to pay is an expensive com-
putational overhead to manipulate these unnecessary be-
haviors. To eliminate the above caveats, we aim to boot-
strap the training with minimal cost by devising a dy-
namic re-parameterization (DyRep) method, which encodes
Rep technique into the training process that dynamically
evolves the network structures. Concretely, our proposal
adaptively finds the operations which contribute most to
the loss in the network, and applies Rep to enhance their
representational capacity. Besides, to suppress the noisy
and redundant operations introduced by Rep, we devise
a de-parameterization technique for a more compact re-
parameterization. With this regard, DyRep is more efficient
than Rep since it smoothly evolves the given network instead
of constructing an over-parameterized network. Experi-
mental results demonstrate our effectiveness, e.g., DyRep
improves the accuracy of ResNet-18 by 2.04% on ImageNet
and reduces 22% runtime over the baseline. Code is avail-
able at: https://github.com/hunto/DyRep.

1. Introduction
The advent of automatic feature engineering fuels deep

convolution neural networks (CNNs) to reach the remark-
able success in a plethora of computer vision tasks, such as
image classification [8,9,29,34], object detection [5,16,19],
and semantic segmentation [7, 33]. In the path of pursu-
ing better performance than that of early prototypes such
as VGG [20] and ResNet [8], current deep learning mod-
els [10, 15, 29] generally are embodied with billions of
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Figure 1. Accuracy and training cost of ResNet on ImageNet
dataset using origin, DBB, and our DyRep models. Our DyRep
obtains the highest accuracies yet has much smaller training cost
compared to DBB.

parameters and paramount well-tailored architectures and
operations (e.g., channel-wise attention in SENet [10] and
branch-concatenation in Inception [23]). From this per-
spective, we may encounter a dilemma in the sense that
a learning model with good performance should be heavy
and computationally intensive, which is extremely hard to
deploy and has a high inference time. To this end, a crit-
ical question is: how to enhance the ability of neural net-
works without incurring expensive computational overhead
and high inference complexity?

Structural re-parameterization technique (Rep) and its
variants [2, 3, 32], which construct an augmented model in
training and transform it back to the original model in in-
ference, have emerged as a leading strategy to address the
above issue. Concretely, these methods enhance the repre-
sentational capacities of models by expanding the original
convolution operations with multiple branches in training,
then fusing them into one convolution for efficient infer-
ence without accuracy drop. Representative examples in-
clude RepVGG [3] and DBB [2]. The former enhances
VGG-style networks by expanding the 3 × 3 Conv to an
accumulation of three branches (i.e., 3 × 3 Conv, 1 × 1
Conv, and residual connection) in the training process and
re-parameterizing it back to the original 3 × 3 Conv in the
inference time. The latter improves CNNs by enriching
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Figure 2. Overview of Dynamic Re-parameterization (DyRep). Train (left panel): Starting from a simple model, DyRep dynamically
adjusts the network structures in training by expanding operations to multi-branch blocks or cutting redundant branches. Inference (right
panel): The trained model is transformed to the original model for inference.

the types of expanding branches (i.e., introducing 6 equiv-
alent transformations of re-parameterization) and unifying
them into a universal building block which applies to vari-
ous CNNs such as ResNet [8] and MobileNet [9]. Never-
theless, a common caveat of current Rep and its variants is
coarsely re-parameterizing all branches into an augmented
network, where a large portion of them may seldom en-
hance the model’s performance. In other words, directly uti-
lizing the same branches in all layers would lead to subop-
timal structures. Furthermore, these redundant operations
would result in an expensive or even unaffordable memory
and computation cost, since the memory consumption in-
creases linearly with the number of branches.

To conquer the aforementioned issues, we propose a
novel re-parameterization method, dubbed as DyRep, to dy-
namically evolve network structures during training and re-
cover to the original network in inference, as illustrated in
Figure 2. In particular, the key concept behind our proposal
is adaptively seeking the operations with the biggest con-
tributions to the performance (or loss as its surrogate) in-
stead of pursuing a universal re-parameterization to all of
them, which ensures both the efficacy and accuracy to aug-
ment the network. In DyRep, the operation with the biggest
contribution amounts to the operation with the most signifi-
cant saliency score. As our first technical contribution, this
measure is partially inspired by the gradient-based pruning
methods, which utilize the gradients w.r.t. the loss to calcu-
late the saliency scores of filters.

Since the existing Rep methods are designed for trans-
forming the model to a narrow one at the end of the training,
there is no plug-and-play technique to expand one convolu-
tion to multiple branches while keeping the training stable.
To achieve a training-aware Rep, we first extend the Rep
technique in such a case, then propose to stabilize the train-
ing by initializing the additional branches with small scale

factors in batch normalization (BN) layers. By doing so,
the additional branches would start with minor importance,
making trivial changes on the original weights, and thus ob-
taining a smooth structure evolution.

Our second key technical contribution is devising a de-
parameterization method to unearth and discard the redun-
dant operations that appeared in Rep. Since we initialize
the BN layer in the newly-added branch with small scale
factor, which can be treated as a relaxed gate to turn on or
cut off one branch. That is, if a branch has a significant
small scale value compared to other branches, it will make
a minor contribution to the outputs. Therefore, we could
discard it and absorb its weights to other branches for better
efficiency. Specifically, if a branch has a zero scale factor,
its operations would not affect the output.

Our main contributions are summarized as follows.

• We propose DyRep, a dynamic re-parameterization
method that applies to training, aiming to enhance the
Rep performance with minimal overhead. By identify-
ing the important operations dynamically during train-
ing, our proposal achieves significant efficiency and
performance improvement.

• Our DyRep is more friendly to downstream tasks such
as object detection. Different from previous Rep and
NAS methods that need to first train a network on im-
age classification task, followed by transferring it to
downstream tasks, DyRep can directly adapt the struc-
tures in downstream tasks. This property dramatically
reduces the computational cost.

• Extensive experiments on image classification and its
downstream tasks demonstrate that DyRep outper-
forms other Rep methods in the measure of both the
accuracy and the runtime cost.
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2. Related Work
2.1. Network Morphism

Network morphism [4, 26, 27] aims to morph one layer
into multiple layers or discard multiple layers into one layer
meanwhile preserving the function of the original network.
These methods dynamically adjust computation workloads
in different training stages, i.e., starting with a shallow net-
work and gradually increasing its depth during training.
However, since the growth of the network would change its
outputs, additional training strategies (e.g., mimic learning)
should be involved to minimize the reconstruction error be-
tween the new and original networks. As a result, various
initialization methods, e.g., identity initialization [27], ran-
dom initialization [28], and initialization with partial train-
ing [13], have been proposed to warrant an effective train-
ing. In this paper, we achieve network morphism with neg-
ligible reconstruction error using Rep; hence the added op-
erations could be randomly initialized without additional
training steps, and the morphed network can be transformed
back to the original network for efficient inference.

2.2. Neural Architecture Search

Neural architecture search (NAS) methods [17,21,22,31,
35] achieve remarkable performance improvements by au-
tomatic architecture designing. However, they are compu-
tationally expensive in training intermediate architectures.
Although some one-shot NAS methods [17, 31] are pro-
posed to reduce the runtime cost by regarding the whole
search space as a supernet and training it once, it still suffers
from a high memory consumption and an additional cost on
supernet training. Recently, RepNAS [32] is proposed to
search better Rep architectures by leveraging the differen-
tiable NAS method [17]. In this way, RepNAS can directly
transform the trained supernet into the final network in in-
ference using Rep, without training the searched network
again. However, RepNAS still suffers from the expensive
computational overhead, as its training interacts with the
whole search space (i.e., networks with all the Rep branches
equipped). In this work, instead of utilizing NAS to pursue a
fixed Rep structure, DyRep assumes that the optimal struc-
tures vary at different training phases (epochs) and aims to
bootstrap the training with minimal cost. As such, DyRep
uses Rep to dynamically evolves the network structures dur-
ing training. Since our method starts training with the orig-
inal networks, it would save much computation cost com-
pared to RepNAS.

3. Revisiting Structural Re-parameterization
Let us first recap the mechanism of the vanilla structural

re-parameterization (Rep) method [2, 3]. The core ingredi-
ents of Rep are the equivalent transformations of operations.
Concretely, these transformations do not only enhance the

representational capacities of neural networks by introduc-
ing diverse branches in the training process, but can also
be equivalently transformed to simpler operations, which
promise a lighten neural networks in inference. These prop-
erties are of great importance in model mining, and enable
to dramatically reduce the computational cost without los-
ing accuracy. In the rest of this section, we revisit such
transformation techniques used in Rep.

Rep engineers with operations that are widely integrated
in networks, such as convolution (Conv), average pooling
and residual connection. For example, Conv functions by
transforming an input feature I ∈ RC×H×W to an output
O, i.e.,

O := o(I) = I ⊛ F + b ∈ RD×H′×W ′
, (1)

where C, H , and W refer to channels, height, and width
of the input, respectively. F ∈ RD×C×K×K and b ∈ RD

are the parameters of the convolution operator ⊛. Note that
H ′ and W ′ are determined by several factors such as kernel
size, padding, stride, etc.

The linearity of the convolution operator ⊛ ensures the
additivity. Specifically, for any two convolutions o(1) and
o(2) with weights F (1) and F (2), if they follow the same
configurations (e.g., the same D, C, and K), we have

I ⊛ F (1) + I ⊛ F (2) = I ⊛ (F (1) + F (2)). (2)

For ease of understanding, the derivation of Eq.(2) omits the
term b, but the above results still hold when b is considered.
Supported by the additivity in Eq.(2), an immediate obser-
vation is that two compatible Conv operations can thus been
merged into a single new Conv operation o(3) with weights
F (3) = (F (1) + F (2)).

Note that the above additivity can be generalized to other
operations once they can be transformed to a convolution
operation. This evidences that multi-branch operations, or
equivalently a sequence of operations, can be transformed
into a single convolution and thus possess the additivity.
Without loss of clarity, we follow the convention in [2] to re-
fer a branch as an operation involved in the transformation.
Some examples satisfying this rule are listed as follows. See
the left panel in Figure 3 for intuition.
• A conv for sequential convolutions. A sequence of

Convs 1× 1-K ×K can be merged into one K ×K Conv.
• A conv for average pooling. A K ×K average pool-

ing is equivalent to a K ×K Conv with the same stride.
• A conv for multi-scale convolutions. KH × KW

(KH ≤ K,KW ≤ K) convolutions (e.g., 1 × 1 Conv and
1 × K Conv) can be transformed into a K × K Conv via
zero-padding on kernel weights.
• A conv for residual connections. A residual connec-

tion can be viewed as a special 1× 1 Conv with value 1 ev-
erywhere, and thus can be transformed into a K ×K Conv.
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Table 1. Operation spaces of RepVGG, DBB, RepNAS, and DyRep. K × K denotes conv operation with the kernel size K × K, and
1× 1-K ×K denotes a branch stacking 1× 1 and K ×K Conv sequentially.

Method #Branches Branches
RepVGG [3] 3 K ×K, 1× 1, residual connection
DBB [2] 4 K ×K, 1× 1-K ×K, 1× 1-AVG, 1× 1

RepNAS [32] 7 K ×K, 1× 1-K ×K, 1× 1-AVG, 1× 1, 1×K, K × 1, residual connection
DyRep (ours) 7 K ×K, 1× 1-K ×K, 1× 1-AVG, 1× 1, 1×K, K × 1, residual connection

By leveraging the above elementary transformations, one
K × K Conv can be augmented by adding more diverse
branches to its output. For example, RepVGG [3] proposes
an extended 3× 3 Conv including 1× 1 Conv and residual
connection; DBB [2] proposes a diverse branch block to re-
place the original K×K Conv, and each branch in the block
can be transformed to a K × K Conv; RepNAS [32] aims
to search DBB branches using neural architecture search
(NAS). Table 1 summarizes the detailed operation spaces.

We end this section by showing a common caveat of Rep
and its variants. Concretely, current methods simply re-
parameterize all the candidate branches into an augmented
network at the beginning of training, leading to a signifi-
cant increase in memory and time consumption. For exam-
ple, DBB has ∼ 2.3× FLOPs and parameters on ResNet-
18, which costs ∼ 1.7× GPU days to train on ImageNet.
Moreover, existing Rep and its variants generally involve
redundant operations, which may introduce noise to the out-
puts and degrade the learning performance. A naive ap-
proach to address the above issues is training the augmented
network with the effective operations. However, since re-
parameterization can be nested, the oracle effective opera-
tions may be exhaustive to determine. With this regard, the
desire of this study is developing an effective algorithm that
utilizes the training information to incrementally find suit-
able structures.

4. Dynamic Re-parameterization (DyRep)
Here we propose Dynamic re-parameterization (DyRep)

to seek the optimal structures with minimal cost by con-
servatively re-parameterizing the original network. We
achieve the dynamic structure adaptation by extending the
re-parameterization techniques in training. Supported by
Rep that transforms structures without changing outputs,
DyRep can evolve the structures flexibly during training and
convert them back to the original network in inference.

4.1. Minimizing Loss with Dynamic Structures

We follow Figure. 2 to elaborate on the algorithmic im-
plementation of DyRep. In the training process, DyRep fo-
cuses on those operations in the augmented network that
have more contributions to the decrease of loss. Conse-
quently, instead of naively equipping all operations with di-
verse branches adopted in DBB, DyRep re-parameterizes
the operations that contribute the most to the loss.

In DyRep, the contributions of different operations to-
wards decreasing the loss are measured by the gradient in-
formation. That is, an operation with small gradients con-
tributes less to the decrease of loss, and is hence more likely
to be redundant. Notably, a similar idea has also been
broadly used in network pruning [14,24,25], which endows
an importance score for weights. Nevertheless, in contrast
with network pruning that concentrates on the redundant
(unimportant) weights, DyRep is more interested in iden-
tifying those operations whose weights correspond to larger
gradients.

We next explain the score metric adopted in DyRep to
identify the operations with high contributions to decrease
the loss. Many gradient-based score metrics [14, 24, 25]
have been proposed to measure the saliency of weights. A
recent study [24] proposes a score metric synflow to avoid
layer collapse when performing parameter pruning, i.e.,

Sp(θi) =
∂L
∂θi
⊙ θi, (3)

where L is the loss function of a neural network with pa-
rameters θ, Sp is per-parameter saliency and θi ∈ θ, and ⊙
denotes Hadamard product. We extend Sp to score an entire
operation by summing over all its parameters, i.e,

So(θ(i)) =

n∑
j

Sp(θ(i)j ), (4)

where θ(i) denotes the parameters in operation o(i). By
leveraging Eq.(4), we gradually re-parameterize the oper-
ation with the largest So w.r.t. the accumulated training
loss in every t epochs, as described in Algorithm 1. Note
that DyRep works on all K × K convolutions, including
the newly-added Rep convolutions. This implies that our
method can re-parameterize the operations recursively for
even richer forms.

To re-parameterize those identified operations dynami-
cally, we further extend the Rep technique to transform a
single learned convolution into a DyRep block with ran-
dom initialized weights during training. Our DyRep block
consists of diverse Rep branches and computes the in-
put feature to accumulate all its branches. The DyRep is
equipped with all the candidate operations in Table 1. Its
weights are initialized with the proposed training-aware re-
parameterization rule detailed below, where its illustration
is shown in the left panel of Figure 3.
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Figure 3. Illustration of re-parameterization (left) and de-parameterization (right) methods used in DyRep. Re-parameterization: we first
extend the original K ×K Conv using additional branches with randomly initialized weights, then leverage Rep to modify the weights in
original convolution for a consistent output. De-parameterization: we remove the redundant operation by absorbing its weights into the
original convolution.

Training-aware re-parameterization. Suppose we
have a set of randomly initialized operations {o(1), ..., o(n)}
to be added to the original operation oori with weights
F (ori), then the new output of the expanded block becomes

O′ = I ⊛ F (ori) + I ⊛ F (1) + · · ·+ I ⊛ F (n). (5)

The output of the original operation O = I ⊛F (ori) would
be varied by new additional features. For a consistent out-
put, we adopt Rep to transform the original weights F (ori)

using Eq.(2). The new weights F (ori′) yields

F (ori′) ← F (ori) − (F (1) + · · ·+ F (n)), (6)

where F (n) is the transformed weights of operation o(n).
Stabilizing training with batch normalization. In

Eq.(6), if we initialize the added operations with large
weights, the weights of the original operation will change
a lot and thus its training would be disturbed. Fortunately,
all our branches follow a OP-BN paradigm, in which the
last batch normalization (BN) layer [12] computes the input
x as

BN(x;γ,β) = γ
x− E(x)√

Var(x)
+ β, (7)

where γ and β are learnable weights for scaling and shift-
ing the normalized value. If we set γ to a small value and
make β = 0, the transformed weights F of this branch will
be small and the addition of branches will have a minor im-
pact to the original weights. As a result, the functionality
(representational ability) of the original convolution would
be retained. We set γ = 0.01 in our experiments.

Besides, transforming weights of a branch into the
weights of a single convolution needs to fuse the BN layer
into convolution, which constructs new weight F ′ and bias
b for every channel j as

F ′
j ←

γj
σj

Fj , b′j ←
(bj − µj)γj

σj
+ βj , (8)

where µ and σ denote the accumulated running mean and
variance in BN, respectively. For a randomly initialized
branch, its µ and σ in BN are initialized with 0 and 1, thus

directly fusing the initialized BN into convolution would re-
sult in inaccurate weights. For an exact re-parameterization,
we use 20 batches of training data to calibrate the BN statis-
tics before changing the weights in Eq.(6). Note that the
cost of BN calibration could be negligible since it does not
require gradient computation.

Algorithm 1 Training with DyRep.

Input: Original modelM, total training epochs Etr, total
iterations Niter in each epoch, train dataset Dtr, model
update interval t, de-parameterization threshold λ.

1: for e = 1, ..., Etr do
2: for i = 1, ..., Niter do
3: train(M, Dtr); ▷ train model for one iteration;
4: {S(i)o |o ∈M} = SCORE(M); ▷ scoring

operations according to Eq.(4);
5: end for
6: if e % t = 0 then
7: So = 1

Niter

∑Niter

i=1 S
(i)
o ,∀o ∈M ▷ average over

all iterations;
8: o∗ = argmaxo{So|o ∈M}; ▷ locate the most

important operation;
9: M = REP(M, o∗); ▷ re-parameterize operation

to a DyRep block according to Section 4.1;
10: M = DEP(M, λ); ▷ de-parameterize branches

according to Section 4.2;
11: end if
12: end for
13: deploy modelM back to the original model;
14: return inference modelM.

4.2. De-parameterizing for Better Efficiency

During training, we dynamically locate the most im-
portant operation using Eq.(4) and re-parameterize it to a
DyRep block; as Rep may introduce redundant operations,
we also design a rule to endow the capability of discarding
operations, which we call de-parameterization (Dep). In
the sequel, we will discuss how the Dep works.

As in Section 4.1, we set the γ of BN to a small value
to stabilize training; considering that BN first normalizes
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the input x with the same magnitude, then uses γ and β
to scale and shift the values, which means that the γ and β
control the magnitudes of branches’ outputs. If a branch has
an obviously smaller output values than other branches, we
may think it makes a minor contribution to the final outputs.
Note that setting γ = 0 effectively zeros out the output.

In this way, we now propose an approach to find the re-
dundant operations by comparing the scale factors of BN
layers as [6, 11, 18, 30]. Concretely, we use the L1 norm
of γ of the last BN layer to represent the importance sj of
branch j, i.e.,

sj =
1

C

C∑
k=1

|γk|, (9)

where C denotes the number of channels in BN. Since
the BN layers are initialized with the same weights at
the beginning, we can thus take the branches with sig-
nificantly low weights as the one to cut after a period of
training. In our method, we simply select the one with
sj < Mean({sj}nj=1) when branches evolve to be suf-

ficiently distinguishable satisfying
√

Var({sj}nj=1) > λ,
where λ is a threshold and λ = 0.02 would suffice em-
pirically.

De-parameterization. Similar to the training-aware
Rep technique, for a DyRep block with operations
{o(ori), o(1), ..., oj , ..., on}, if we want to remove operation
oj yet make the outputs consistent, we absorb the weights
of oj into o(ori), i.e.,

F (ori′) ← F (ori) + F (j), (10)

then we can safely cut the operation oj . Since the redundant
operation has a small scale factor γ, its removal would also
have a minor influence on the weights of original convolu-
tion, and the training stability would be retained.

4.3. Progressive Training with Rep and Dep

With the proposed re-parameterization (Rep) and de-
parameterization (Dep) techniques, we can dynamically en-
rich the desired operations and discard some redundant op-
erations simultaneously. Combining both Rep and Dep, the
networks can be enhanced with great efficiency. The over-
all training procedure is summarized in Algorithm 1. More
precisely, DyRep repeatedly proceeds Rep and Dep in ev-
ery t epochs, as shown in Lines 3-7. The Rep procedure
consists of three components, i.e., selecting the operation
with the largest saliency score So, expanding it with ran-
domly initialized operations, and modifying the weights of
the original operation according to Eq.(6) to ensure that the
expanded block has the same output as the original opera-
tion. The Dep procedure also contains three parts, i.e., find-
ing redundant operations using γ of BN for each branch,
removing those redundant operations, and modifying the
weights of original operation according to Eq.(10).

Table 2. Results of base model VGG-16 [20] on CIFAR datasets.
Results are reported based on our implementation with the same
training strategies. The FLOPs and parameters in the table are
average values in training. Training cost is tested on a NVIDIA
Tesla V100 GPU.

Dataset
Rep Cost Avg. FLOPs Avg. params ACC
method (GPU hrs.) (M) (M) (%)

CIFAR-10
Origin 2.4 313 15.0 94.68±0.08
DBB 9.4 728 34.7 94.97±0.06
DyRep 6.9 597 26.4 95.22±0.13

CIFAR-100
Origin 2.4 313 15.0 73.69±0.12
DBB 9.4 728 34.7 74.04±0.08
DyRep 6.7 582 27.1 74.37±0.11

Table 3. Results of MobileNet [9] and ResNet [8] models on Im-
ageNet dataset compared to DBB [2]. Training cost is tested on 8
NVIDIA Tesla V100 GPUs. *: Our implementation.

Model
Rep Cost Avg. FLOPs Avg. params ACC
method (GPU days) (G) (M) (%)

MobileNet
Origin 2.3 0.57 4.2 71.89
DBB 4.2 0.61 4.3 72.88
DyRep 2.4 0.58 4.3 72.96

ResNet-18
Origin 4.8 1.81 11.7 69.54
DBB 8.1 4.13 26.3 70.99
DyRep 6.3 2.42 16.9 71.58

ResNet-34
Origin 5.3 3.66 21.8 73.31
DBB∗ 12.8 8.44 49.9 74.33
DyRep 7.7 4.72 33.1 74.68

ResNet-50
Origin 7.5 4.09 25.6 76.14
DBB 13.7 6.79 40.7 76.71
DyRep 8.5 5.05 31.5 77.08

5. Experiments

5.1. Training Strategies

CIFAR. Following DBB [2], we train VGG-16 models
with batch size 128, a cosine learning rate which decays
600 epochs is adopted with initial value 0.1, and use SGD
optimizer with momentum 0.9 and weight decay 1× 10−4.
We set structure update interval t = 15 in our method.

ImageNet. In Table 3, we train models with the same
strategies as DBB [2]. Concretely, we train ResNet-18 and
ResNet-50 for 120 epochs with a total batch size 256 and
color jitter data augmentation, a cosine learning rate strat-
egy with initial value 0.1 is adopted, and the optimizer is
SGD with momentum 0.9 and weight decay 1× 10−4. For
MobileNet, we train the model with weight decay 4× 10−5

for 90 epochs. While for VGG-style models, following
RepVGG [3], we train the models for 200 epochs with
a strong data augmentation (Autoaugment [1] and label
smooting), except for DyRep-A2 we use a simple data aug-
mentation and train it for 120 epochs. In our method, we
set structure update interval t = 5 for 120-epoch and 200-
epoch training; for 300 epoch training, we set t = 10.

593



Table 4. Results on ImageNet. The FLOPs and parameters
are measured on inference models. Training cost is tested on 8
NVIDIA Tesla V100 GPUs. The baseline ACCs and speeds are
reported by RepVGG [3].

Model
Speed FLOPs params ACC

(examples/second) (G) (M) (%)
ResNet-34 1419 3.7 21.78 74.17
RepVGG-A2 1322 5.1 25.49 76.48
ODBB(A2) 1322 5.1 25.49 76.86
DyRep-A2 1322 5.1 25.49 76.91
ResNet-50 719 3.9 25.53 76.31
RepVGG-B2g4 581 11.3 55.77 79.38
DyRep-B2g4 581 11.3 55.77 80.12
ResNeXt-50 484 4.2 24.99 77.46
ResNet-101 430 7.6 44.49 77.21
RepVGG-B3 363 26.2 110.96 80.52
ODBB(B3) 363 26.2 110.96 80.97
DyRep-B3 363 26.2 110.96 81.12
ResNeXt-101 295 8.0 44.10 78.42

5.2. Compare with DBB

We first compare our method with the baseline method
DBB [2] on CIFAR and ImageNet datasets. For fair com-
parisons, we conduct experiments using the same models
and training strategies as DBB, and the results are summa-
rized in Table 2 and Table 3. The FLOPs and params in
the tables are averaged values in training. The results on
both CIFAR and ImageNet datasets show that, our method
enjoys significant performance improvements compared to
the original and DBB models. Meanwhile, the training cost
of our DyRep is obviously lower than DBB. For example,
DBB costs 13.7 GPU days to train ResNet-50 on ImageNet,
while our DyRep costs 8.5 GPU days (∼ 38% less) and gets
0.37% improvement on accuracy.

5.3. Better Performance with RepVGG

RepVGG [3] proposes a series of VGG-style networks
and achieves competitive performance to current state-of-
the-art models. We adopt our DyRep on these VGG net-
works for better performance on ImageNet. Results are
summarized in Table 4. Our DyRep obtains higher ac-
curacies with the same transformed models compared to
RepVGG since it only adopts two branches 1 × 1 Conv
and residual connection. Meanwhile, compared to the re-
sults (ODDB) obtained by RepNAS [32], our method also
achieves higher performance. For example, our DyRep-B3
achieves 81.12% accuracy, outperforms RepVGG-B3 and
ODBB(B3) by 0.6% and 0.15%, respectively.

5.4. Results on Downstream Tasks

We transfer our ImageNet-pretrained ResNet-50 model
to downstream tasks object detection and semantic segmen-
tation to validate our generalization. Concretely, we use

Table 5. Results on object detection and semantic segmentation
tasks. Rep stage C+D denotes the Rep method is adopted on both
ImageNet training and downstream tasks.

Backbone
Rep Rep ImageNet COCO Cityscapes

method stage top-1 mAP mIOU
ResNet-50 - - 76.13 37.4 77.85
ResNet-50 DBB C 76.78 37.8 78.18
ResNet-50 DyRep C 77.08 38.0 78.32
ResNet-50 DyRep D 76.13 37.7 78.09
ResNet-50 DyRep C+D 77.08 38.1 78.49

the pretrained model as the backbone of the downstream
algorithms FPN [16] and PSPNets [33] on COCO and
Cityscapes datasets, respectively, then report their evalua-
tion results on validation sets. Moreover, since our DyRep
can evolve structures during training, we can directly load
the plain weights of ResNet-50 and augment its structure in
the training of downstream tasks, without training on Ima-
geNet. Therefore, we conduct experiments to adopt DyRep
in the training of downstream tasks. The results on Ta-
ble 5 show that, by directly transferring the trained model to
downstream tasks (refers C in the table), our DyRep can ob-
tain better performance compared to original ResNet-50 and
DBB. When we adopt DyRep to update structures in down-
stream tasks, the performance can be further improved.

5.5. Ablation Studies

Effect of de-parameterization. We propose de-
parameterization (Dep) to discard those redundant Rep
branches. Now we conduct experiments to validate its ef-
fectiveness. As summarized in Table 6, combining Rep
and Dep achieves the best performance, while using DyRep
without Dep can also boost the performance, but the train-
ing efficiency and accuracy will drop.

Table 6. Results of DyRep on CIFAR-10 dataset w/ or w/o Dep.

Method FLOPs (M) Params (M) ACC (%)
Origin 313 15.0 94.68±0.08
DyRep w/ Dep 597 26.4 95.22±0.13
DyRep w/o Dep 658 29.3 95.03±0.15

Effects of different initial scale factors. To stabilize the
training, we initialize the last BN layer in each newly-added
branch with a small scale factor. Here we conduct experi-
ments to show the effects of different initial values of scale
factors. As shown in Figure 4, the performance of different
scale factors varies a lot. For a large initial value of 10, the
original weights would be changed dramatically; therefore,
its accuracy is far below the others. While for a tiny initial
value, the performance decreases since the added operations
contribute trivially to the outputs. According to the results,
we initialize γ with 0.01 in our main experiments.
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Figure 4. Evaluation results on CIFAR-10 with different initial
values of γ in BN.

Retraining obtained structures from scratch. To val-
idate the effect of our dynamic structure adaptation, we re-
train the intermediate structures obtained in DyRep training
on CIFAR-10. As shown in Table 7, training with DyRep
obtains better accuracy compared to training fixed interme-
diate structures. A possible reason is that the best struc-
tures are different at different training phases (epochs). Our
DyRep can dynamically adapt the structures to boost the
performance in the whole training, thus getting better per-
formance, while the obtained structures at different epochs
might not best suit the other epochs.

Table 7. Retraining results of intermediate structures on CIFAR-
10. We fix the structures and retrain them with the same strategy.
DyRep denotes training with DyRep, and DyRep-N denotes the
structure of DyRep at N th epoch.

Model FLOPs (M) Params (M) ACC (%)
Origin 313 15.0 94.68±0.08
DyRep-200 466 18.2 94.83±0.06
DyRep-400 587 20.3 95.04±0.07
DyRep-600 766 24.4 94.93±0.05
DyRep 597 26.4 95.22±0.13

Visualization of convergence curves. We visualize the
convergence curves of our method with comparisons of the
original ResNet-34 model and DBB. As shown in Figure 5,
our DyRep enjoys better convergence during the whole
training. It might be because our method efficiently involves
effective operations without additional training overhead to
the redundant operations.

Visualization of augmented structures. We visualize
the first convolution layer in our trained ResNet-18 network
in Figure 6. We can see that the original 7 × 7 Conv has
the largest weight, and all the convolutions with kernel size
K > 1 are equipped since they help extract information in
the previous stages of the network. While on the 1 × 1-
7 × 7 branch, it expands recursively and leverages average
pooling to enrich the features.

5.6. Limitations

DyRep can efficiently enhance the performance of var-
ious CNNs, which could be treated as a universal mecha-

Figure 5. Evaluation curves (smoothed) of ResNet-34 models in
training using DyRep, DBB, and original models.
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Figure 6. Visualization of the final augmented structures of the fist
convolution layer in ResNet-18. The weight below each branch
denotes its importance factor s.

nism to boost the training without changing the inference
structures. However, its operation space is restricted by the
requirements of equivalence in re-parameterization.

6. Conclusion

We propose DyRep, a novel method to bootstrap training
with dynamic re-parameterization (Rep). Concretely, to en-
hance the representational capacity of the operation, which
contributes most to the performance, we extend the existing
Rep technique to dynamically re-parameterize it and pro-
pose an initialization strategy of BN to stabilize the training.
Moreover, with the help of the scale factors in BN layers,
we propose a mechanism to discard those redundant oper-
ations. As a result, the training efficiency and performance
can be further improved. Extensive experiments show that
our DyRep enjoys significant efficiency and performance
improvements compared to existing Rep methods.
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