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Abstract

Training a good supernet in one-shot NAS methods is
difficult since the search space is usually considerably huge
(e.g., 1321). In order to enhance the supernet’s evaluation
ability, one greedy strategy is to sample good paths, and let
the supernet lean towards the good ones and ease its eval-
uation burden as a result. However, in practice the search
can be still quite inefficient since the identification of good
paths is not accurate enough and sampled paths still scatter
around the whole search space. In this paper, we leverage
an explicit path filter to capture the characteristics of paths
and directly filter those weak ones, so that the search can
be thus implemented on the shrunk space more greedily and
efficiently. Concretely, based on the fact that good paths are
much less than the weak ones in the space, we argue that the
label of “weak paths” will be more confident and reliable
than that of “good paths” in multi-path sampling. In this
way, we thus cast the training of path filter in the positive
and unlabeled (PU) learning paradigm, and also encour-
age a path embedding as better path/operation represen-
tation to enhance the identification capacity of the learned
filter. By dint of this embedding, we can further shrink the
search space by aggregating similar operations with similar
embeddings, and the search can be more efficient and ac-
curate. Extensive experiments validate the effectiveness of
the proposed method GreedyNASv2. For example, our ob-
tained GreedyNASv2-L achieves 81.1% Top-1 accuracy on
ImageNet dataset, significantly outperforming the ResNet-
50 strong baselines.

1. Introduction

Neural architecture search (NAS) aims to boost the per-
formance of deep learning by seeking an optimal architec-
ture in the given space, and it has achieved significant im-

*Correspondence to: Shan You <youshan@sensetime.com>.

5The Chinese University of Hong Kong

775k u 4]
| ® u
] B8
770
° 50
S ° S ®
o 7651 O 4sf
9] 9] |
< <
76.0 40
@ uniform sampling B GreedyNASv2
GreedyNAS 351 | @ uniform sampling|
7557 | M GreedyNASv2 ® GreedyNAS °
. . . . . . 30l . T . .
102 10% 10% 0% 107 10% 77 0% 10 10% 10 107 10%
Scale Scale

Figure 1. Performance of searched architectures w.r.t. different
scales of search space. Left: retraining accuracies of models
searched by GreedyNASv2 and baselines. Right: validation ac-
curacies of searched models on supernets.

provements in the sight of applications, such as image clas-
sification [11, 26, 28, 32, 34] and object detection [2, 10].
One-shot NAS [11, 15,23-25, 33, 34] stands out from the
literature of NAS for the sake of its decent searching effi-
ciency. Instead of exhaustively training each possible archi-
tecture, one-shot NAS fulfills the searching in an only one-
shot trial, where a supernet is leveraged to embody all can-
didate architectures (i.e., paths). Each path can be param-
eterized by the corresponding weights within the supernet,
and thus gets trained, evaluated, and ranked. Typical uni-
form sampling (SPOS) [11] is usually adopted to train the
supernet because of the feasible single-path memory con-
sumption and being friendly to large-scale datasets.

The architecture search space in NAS could be consid-
erably huge (e.g., 132!). Equally treating different paths
and uniformly sampling them from the supernet could lead
to inappropriate training of the supernet, as the weak paths
would disturb the highly-shared weights. Various sampling
strategies have thus been proposed to address this issue,
such as fair sampling [3] and Monte-Carlo tree search [23].
We are particularly interested in the strategy of multi-path
sampling with rejection by GreedyNAS [34], which iden-
tifies good paths from weak paths and then only greed-
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Figure 2. Left: the architecture of our path filter. Right: diagram of supernet training in GreedyNASv2. In GreedyNASv2, we adopt a path
filter to filter weak paths from the uniformly-sampled paths, and the remained potentially-good paths are then used for optimization. The
path filter is trained using weak paths identified by a validation set and unlabeled paths.

ily updates those good ones; it is easy to implement and
more suitable for large search spaces among these meth-
ods. Working on the whole search space, GreedyNAS has
to safely allocate only a medium level of partition of good
paths (e.g., only 5 out of 10) to ensure a high probabil-
ity of sampled paths being good. But the search will be-
come infeasible and limited if the search space grows larger
with more operation choices. Besides, GreedyNAS needs
to maintain a candidate pool to recycle paths, which limits
the number of stored paths, and many elite paths could be
missed.

In this paper, we propose GreedyNASv2 to power the
multi-path sampler with explicit search space shrinkage for
one-shot NAS, which targets on a greedier search space
with an tiny (e.g., only 1%) proportion of paths treated as
“good paths”. Since good paths are usually much less than
weak paths, the probability of picking out a good path by a
multi-path sampler could be smaller than that of sampling
weak paths. If weak paths can be captured with confidence,
we can easily screen them out from the searching space and
execute a greedier search on the shrunk space. By doing so,
the supernet only needs to focus on evaluating those not too
bad paths (potentially-good paths), which benefits the over-
all searching performance and efficiency simultaneously.

The key is then to learn a path filter to identify those
weak paths from the entire architecture search space.
Though it is hard to find a good path, we can have high con-
fidence about weak paths in the multi-path sampling. These
identified weak paths with confidence can be regarded as
positive examples to be thrown away. As a precaution, the
remaining paths in the search space are taken as unlabeled
examples, as they may contain both weak paths (positive
examples to be thrown away) and good paths (negative ex-
amples not to be thrown away). The learning of this path
filter can thus be formulated as the Positive-Unlabeled (PU)
learning problem [9, | 7]. Once the path filter has been well
trained, a given new path can be efficiently predicted to

specify whether it is weak or not. A path embedding is
also learned with the path filter to encode the path as a bet-
ter path representation. Since the path embedding is learned
in the weak/good sense, if two operations have similar em-
beddings, it means that both operations have similar or even
the same impact on discriminating paths, and they can be
thus merged. This enables a greedy shrinkage of operations,
which is expected to work together with the path shrinkage
to boost the searching performance and efficiency further.

We conduct extensive experiments on ImageNet dataset
to validate the effectiveness of our proposed GreedyNASv2.
Compared to the baseline methods SPOS and GreedyNAS,
our proposed method achieves better performance with less
search cost. To further investigate our superiority, we even
search on a larger space, which has ~ 10%x architectures
compared to the commonly-used MobileNetV2-SE search
space, and the results show that our searched model out-
performs state-of-the-art NAS models. The performance on
different scales of search spaces are illustrated in Figure 1.
Besides, we also compare the searching performance on
a recent benchmark NAS-Bench-Macro [23] for one-shot
NAS. Ablation studies show that our GreedyNASv?2 effec-
tively samples better architectures than uniform sampling
and the multi-path sampler in GreedyNAS.

2. Related Work
2.1. NAS with search space shrinkage

Path-level shrinkage. To obtain a path-level shrink-
age on search space, GreedyNAS [34] proposes a candi-
date pool to store those evaluated good paths and samples
from it using an exploration-exploitation strategy. MCT-
NAS [23] proposes to sample architectures with the guid-
ance of Monte-Carlo tree search; hence the good paths can
be sampled with better exploration and exploitation balance.
However, the limited size (e.g., 1000) of candidate pool in
GreedyNAS is too aggressive to train the elite paths with
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enough diversity, and the exponentially-increased Monte-
Carlo tree makes the MCT-NAS difficult to scale to larger
search spaces.

Operation-level shrinkage. Operation-level shrinkage
is also an effective way to reduce both training parame-
ters and the size of search space. Some methods [14,22]
design importance metrics to identify the good operations
and drop the weak ones. For example, ABS [14] measures
the importance of each operation using the angle between
its trained weights and initialized weights; BS-NAS [22]
proposes a channel-level importance metric by measuring
a number of architectures on the validation dataset. How-
ever, these methods only consider operation-level statistics,
while for each specific architecture, the preferences of op-
erations may be different. On the other hand, NSENet [4]
proposes to learn the importance using additional learnable
indicators after each operation, which is learned by simulat-
ing the gradients of binary-selected architectures. However,
this simulation of gradients introduces approximation errors
and also increases memory consumption.

In this paper, we perform both path-level and operation-
level shrinkage using a path filter. The path filter is con-
structed by a binary classifier, which efficiently filters the
weak paths and generalizes well to the whole search space;
hence we can filter the weak paths more greedily. Further-
more, we can perform operation-level shrinkage without ex-
tra costs by measuring the learned operation embeddings in
the path filter. This operation merging strategy holds nat-
urally since the operations with similar embeddings would
have similar predictions and thus similar performance.

2.2. Positive-unlabeled learning

Positive-Unlabeled (PU) classification is a problem of
training a binary classifier from only positive and unlabeled
data [9, | 7]. Many effective methods [ 1, &, 16] are proposed
to train a good binary classifier in PU learning. Specifi-
cally, uPU [8] rewrites the classification risk in terms of
the distributions over positive and unlabeled samples, and
obtains an unbiased estimator of the risk without negative
samples. To overcome the overfitting problem in uPU, a
non-negative risk estimator is proposed in nnPU [16]. One
recent approach VPU [1] proposes a variational principle
for PU learning without involving class prior estimation or
any other intermediate estimation problems. In this paper,
we implement VPU to learn our path filter.

3. Revisiting Multi-path Sampler

In single path one-shot NAS [11,23,34], the search space
is treated as an over-parameterized supernet A/, in which
the searching layers are stacked sequentially, and each layer
is required to select one operation from candidate opera-
tions. Assume the supernet has L layers and N candi-
date operations O = {o;},Vi = 1,2,..., N, then each ar-
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Figure 3. Confidence P (Q) of sampling at least k£ good (weak)
paths out of m = 10 paths with proportion p of good paths.

chitecture can be represented by a tuple with size L, i.e.,
a = (oM, 02 .. oF) where o) € O,Vj =1,2,..., L.
As a result, the search space A is of size |A] = NL. With
a pre-defined supernet, the NAS procedure is split into two
stages: supernet training and search. During training, the
supernet is optimized by alternately sampling paths and up-
dating their corresponding weights. Thereafter, the optimal
path can be determined as the one with the highest accuracy
on a hold-out validation set.

Although the supernet shares weights with all architec-
tures, it still has ~ N x parameters than a common path.
For example, the benchmark MobileNetV2-SE search space
has 13 operations and 46M parameters for supernet, while a
path only has ~ 5M parameters. With such a large supernet,
it is harsh to optimize all the architectures well and evaluate
them accurately. Therefore, instead of sampling paths uni-
formly [11], GreedyNAS [34] proposes a multi-path sam-
pling with rejection to greedily sample those potentially-
good paths; hence the training efficiency and performance
can be boosted.

3.1. Frustrating sampling good paths

In the multi-path sampler, m paths are sampled at once,
then evaluated and ranked by a small validation set. Ac-
cording to the Theorem 1 below, we can thus safely treat
the Top-k paths as good ones, and train the supernet greed-
ily by just updating these k paths.

Theorem 1 (multi-path sampling [34]). If m paths are sam-
pled uniformly i.i.d from A, and the proportion of good
paths in the search space is p, then it holds that at least
k(k < m) paths are good paths with confidence

P:=Y Clp(1-p)™7. (1)

=

To ensure a high confidence P of sampling good paths,
GreedyNAS only has to assume a medium level of good
path proportion (i.e., large p). For example, P comes to
83.38% with p = 0.6 when we leave k = 5 paths as good
from the sampled m = 10 paths.
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Figure 4. Overview of the proposed operation shrinkage method. We evaluate the cosine similarities of operation pairs in each layer using
the learned operation embeddings. Then, we merge the similar operation pair to one operation with smaller FLOPs.

However, this is not enough. Since we target at the op-
timal architecture, the candidate elite paths are supposed to
be way less than the weak ones, which means that p < 0.5
holds naturally, and thus we can have an actually shrunk
space to boost the searching. Frustratingly, the confidence
will degrade according; for example, with p = 0.1, the pre-
vious confidence P will be only 0.16%. Though Greedy-
NAS leverages a candidate pool to recycle paths, many elite
paths could be missed since it heavily relies on the limited
number of stored paths (e.g., 1000).

3.2. Turning tables with weak paths

Sampling good paths is frustratingly ineffective in a
more greedy space since the confidence collapses as a fail-
ure. In contrast, since the good prior p is low, the search
space will be glutted with weak paths, and the probabil-
ity of sampling a weak path ¢ := 1 — p is thus large ac-
cordingly. Similarly, based on Theorem 1, in multi-path
sampling the confidence of sampled weak paths goes even
larger, denoted as Q := Z;n:k Cl.¢°(1 — q)™ . For ex-
ample, with ¢ = 0.9 (p = 0.1), the probability of sampling
at least 5 weak paths out of 10 is very high (Q = 99.99%).
See Figure 3 for more details.

Now the tables have been turned. If we can sample weak
paths with high confidence, we can easily rule them out
from the entire search space and implement a more greedily
searching on the shrunk space, thus boosting the searching
performance as well. Then the question goes to: how can
we leverage the sampled weak paths to identify a shrunk
space composed of good paths? Intuitively, we encourage
learning a path filter to encode the characteristics of sam-
pled weak paths and identify the label of a given new path.

Nevertheless, during multi-path sampling, we only have
confidence about weak paths, can we still learn a discrim-
inative path filter as a decent binary classifier to predict
labels of paths? The answer is affirmative; in the sequel,
we will cast the learning as a typical Positive and Unlabeled
(PU) problem.

4. Greedier Sampling with a Path Filter

After multi-path sampling, we now have confident weak
paths; nevertheless, remaining paths are difficult to spec-
ify whether they are weak or good, since the corresponding
confidence will be low. As a precaution, we regard the re-
maining paths (together with unsampled paths) as unlabeled
examples, as they may contain both weak and good paths.

4.1. Learning path filter as PU prediction

Here we want to learn a path filter with the identified
weak paths (positive examples) and remaining paths (un-
labeled examples). Formally, let us first consider a binary
classification problem where the architectures a € 4 and
class labels y € {—1,+1} are distributed according to a
joint distribution D(a,y), and the paths with positive la-
bel 41 denote weak paths to be discarded. In Greedy-
NASv2, we have positive dataset P = {aq,...,ap} and
unlabeled dataset Y = {aps41,...,an} sampled from the
search space. The learning of path filter is thus cast as a Pos-
itive and Unlabeled (PU) learning problem, where a binary
predictor @ is learned based on P and U so that the class
labels of unseen architectures can be accurately predicted.

As an introduction of PU learning, we first investigate
the expected risk (classification loss) on the whole dataset
of the commonly supervised learning (PN learning) as

R(®) = mpEp(l (®(a))] + (1 —7p)Ex (- (D(a))], (2)

where mp = P(y = +1) denotes the class prior of positive
data, A refers to negative dataset, and [, and [_ denote
classification losses with

EplLy (®(a))] = ﬁ S i(@(a), +1),

_ 1
V]

3)
Ex(l-(2(a))] > U2(a),-1),

aeN

which are the expectations of [, (®(a)) on the positive
dataset P and [_ (®(a)) on the negative dataset .
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Nevertheless, the negative dataset A/ is unavailable in
our PU learning setting. To train the model with pos-
itive and unlabeled data, the classical method uPU [§]
encourages an unbiased formulation to the PN learning
by rewriting the expectation of negative classification loss

Exl-(®(a))] to

(1=7p)Ex [l (®(a))] = Ey[l-(2(a))]-mpEp [L(@(t(lii]y
and thus Eq.(2) can be adapted to

R(®) = mpEp ([l (2(a)) — - (2(a))] + Eu[lf(‘?(a))(]é)
However, such a method easily leads to severe over-
fitting, especially on deep neural classifiers. In our paper,
to alleviate the above weakness, we leverage the learning
objective in VPU [1], which proposes a variational loss to
approximate the ideal classifier through an upper-bound of
Eq.(2), i.e.,

R(®) = logEy[®(a)] - Epllogd(a)]  (6)

where mini-batches By, and Bp are sampled from I/ and P
with size B. By minimizing Eq.(6), we can obtain an effec-
tive binary classifier to distinguish good and weak paths.
Train path filter with multi-path sampling. We first
construct a neural network as our path filter (binary clas-
sifier), which will be trained using PU learning. For the
network structure, we follow a simple Embedding-RNN
pipeline as the previous work [35]. Concretely, as illustrated
in Figure 2 left, we use randomly initialized embeddings
E € REXNXH g represent operations in the search space,
where L, N, and H are numbers of layers, candidate op-
erations, and hidden dimensions, respectively, hence each
operation in each layer is associated with an independent
embedding. For example, the embedding of j-th operation

057) in layer ¢ can be represented as E; ; . For an input archi-

tecture a = (01, 0(?), ..., 0o(1)), the predictor first encodes
it through operation embedding E to get the hidden states
A of the selected operations, where A € RX* Then we
use a bi-directional LSTM to get the feature f, € R of the
architecture. Finally, the architecture feature f, is fed into
a binary classifier (two-layer perceptions with intermediate
ReLU activation) to obtain the prediction.

Following the multi-path sampling strategy in Greedy-
NAS, each time we train the path filter, we randomly sam-
ple m paths and evaluate them using the loss on a small
validation set, which contains 1000 images sampled from
the validation set. We sort those sampled paths with their
losses in ascending order, and label the last p percentage
of paths as “weak paths” to build the positive dataset P,
while the unlabeled dataset I/ is constructed by uniformly
sampling 10 X p x m paths from the search space. With
the learning objective in Eq.(6), we train the path filter with

Algorithm 1 Training supernet with a greedy path filter.

Input: Supernet N, path filter 7P, max training iteration
N, train dataset D;,., small validation dataset D,,q;, pre-
dictor update interval ¢, number of evaluation paths m,
weak path prior ¢, merge operation threshold 7.

1: fori=1,...,N do

2 a;~UWN); >

3. while is_weak_arch(P, a;) do

4: a; ~ U(N) )

5:  end while

6:  train(N, a;, Dy,); >

7. if i % t = 0 then

8 sample m paths A = {a;}2; iid wrt a; ~
UWN);

9: s = {evaluate(NV, a;, Dyar) } 72 ;

10: Apear = last(s,q); >

11: train predictor P with Aeqk ;

12: merge operations according to Section 4.2;

13:  endif

14: end for

datasets P and U every t epochs in the training of super-
net to ensure its accuracy. Once the path filter is trained, it
can be used to predict a batch of uniformly-sampled paths,
and filter those paths with positive labels, and the remained
paths are treated as the potentially-good paths and used in
optimization.

Stopping principle via path predictions. In training,
if the supernet is trained well, the rankings of paths tend
to be steady; hence GreedyNAS proposes an early stopping
principle by measuring the steadiness of the candidate pool.
We now propose a more accurate way by predicting more
paths using the learned path filters, i.e.,

Za'eA 1<I>f(a'):<1>f_1(a )
= i€Ar (@i ¢ i 7
u & S8 O

where A, is a set of M randomly sampled paths, ®; de-
notes the learned path filter at iteration ¢. w measures the
proportion of the same predictions in the last two path fil-
ters, if w > (3, we believe the supernet has been trained
enough, and its training can be stopped accordingly. We set
N = 10* and 8 = 0.9 in our experiments.

Evolutionary search with path filter. We adopt evo-
lutionary algorithm (EA) NSGA-II [6] to search architec-
tures. Unlike SPOS [11] generates architectures randomly
and GreedyNAS [34] only specifies an initial population,
we use the learned path filter to filter the weak architectures
generated by EA during the whole search, thus the search
could be more efficient.
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Table 1. Summary of our search spaces. Details can be found in Supplementary Materials.

Search space Size #Layers | #Operations | Operations

MB-SE 1321 =~ 2 x 1023 21 13 {MB3,MB6 } x { K3, K5, K7, K3_SE, KS_SE, K7.SE } + { ID }
MB-SE+MixConv 1721 = 7 x 10%° 21 17 MB-SE U { MB3_MIX, MB6_MIX, MB3_MIX_SE, MB6_MIX SE }
MB-SE+MixConv+Shuffle | 212! ~ 6 x 1027 21 21 MB-SE+MixConv U { Shuffle_3, Shuffle_5, Shuffle_7, Shuffle x }
Res-50-SE 1916 ~ 3 x 1020 16 19 { ResNet, ResNeXt } x { K3,K5, K7} x {0.5%,1x,1.5x }+{ID}

4.2. Shrinking operations with learned embeddings

The PU predictor distinguishes whether a path is good or
bad using learned operation embeddings. If the embeddings
(@) (@)

b

of two operations o, and o, ’ in layer ¢ are totally the same,

it means that for all the architectures, replacing o,gi) by ol(f)
would not affect the classification results and vice versa.
As a result, if two operations act similarly, we can greedily
merge them and keep the less-costly one (e.g., the one with
smaller FLOPSs).

Cosine similarity is a commonly-used metric to measure
the similarity of two vectors. Given two vectors « and y,
their cosine similarity S.(x, y) is represented as

Ty

Se(m,y) = = Liy T :
Il -yl /> 22 2

After each time we train the predictor, we will measure
the cosine similarities between different operations in each
layer. If the similarity between two operations is less than
a pre-defined threshold sy4, we then merge these two op-
erations into one operation by keeping the one with smaller
FLOPs and removing another one.

®)

Formally, for operations {ogi),oéi), ...,og\i,)} in layer 1,
it has C?\, combinations of pairs, we compute their cosine
similarity between 057) and o{”
dings, i.e.,

using the learned embed-

SJ(Z;)C = S.(E; ;,E;1). 9

For any layer ¢+ < L and operation pairs ng) and 0,(;)
(j < k < N), we merge them into the one with less FLOPs
when they satisfy Sj(l,)C > Siyd. After merging, the removed
operations would never be sampled in training and search,
thus reducing the training parameters in supernet. We set
Sira = 0.8 in our experiments.

Our operation shrinkage method can significantly reduce
the search space without additional evaluation steps. It can
be naturally combined with the path-level shrinkage to per-
form a greedier search. The overall supernet training strat-
egy is summarized in Algorithm 1.

5. Experiments
5.1. Experimental setup

As summarized in Table 1, for com-
we first search on

Search space.
parisons with baselines [23, 34],

Table 2. Comparisons with our baseline methods on differ-
ent scales of search spaces. Search spaces small, medium,

and large represent MB-SE, MB-SE+MixConv, and MB-
SE+MixConv+Shuffle in Table 1, respectively.
Method ACC.(%) ACC on su;')ernet (%)
small medium large | small medium large
SPOS [11] 768 76,6 755|565 482 334
GreedyNAS [34] | 77.1 76.8 765|576 493 351
GreedyNASv2 | 77.3 774 775 | 581 555 438

MobileNetV2-SE search space, which consists of Identity,
MobileNetV2 block [21], and optional SE modules [13].
To wvalidate our superiority on larger search spaces,
we extend the search space with MixConv [29] block,
namely, MobileNetV2-SE+MixCony. Moreover, we
set up an extremely-large search space MobileNetV2-
SE+MixConv+Shuffle, which adds 4 ShuffleNetV2
blocks [19] following SPOS [11]. In order to validate the
effectiveness of our method on larger networks, we also
introduce a ResNet-like search space, which consists of
the blocks in ResNet [12], ResNeXt [31], and SENet [13].
Details can be found in supplementary materials.

Supernet. We randomly sampled 50k images from
ILSVRC-2012 [7] train set to build our validation set, and
the remains are used as the training set. We train the super-
net with an SGD optimizer and a total batch size of 1024, a
cosine learning rate which decays 120 epochs with an ini-
tial learning rate 0.12 is adopted. In the first 20 epochs of
training, we sample architectures uniformly for warm-up,
then train the path filter every 5 epoch and use it to sample
architectures. The weak path prior ¢ is increased from 0.5
to 0.99 in 90 epochs.

Path filter. The path filter is constructed by an em-
bedding with 128 dimensions, followed by a bidirectional
LSTM and two fully-connected layers with intermediate
ReL.U activation, all the hidden dimensions are set to 128.
We train the path filter for 3000 iterations after every 5
epoch of the supernet training, an Adam optimizer with
batch size 1024 and weight decay 5 x 1072 is adopted, the
learning rate is set to 1073,

Search. We use the learned path filter to help the evo-
lutionary algorithm NSGA-II [6] search architectures. The
search number is set to 500.

Retraining. In retraining, we use the official ILSVRC-
2012 [7] train set and report the accuracy on the original val-
idation set. Following [23,34], we train the searched mobile
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Table 3. Comparisons of searched architectures with state-of-the-art NAS methods and handcraft models. Training epochs and search
number are hyper-parameters in the training of supernet. We measure the training cost of supernet using 8 NVIDIA V100 GPUs. *: trained

with the same strategy as GreedyNASv2-L.

Methods Top-1 Top-5 FLOPs Params Training Training cost Search
(%) (%) (M) (M) epochs (GPU days) number
mobile search space
MobileNetV2 [21] 72.0 91.0 300 3.4 - - -
EfficientNet-BO [28] 76.3 93.2 390 53 - - -
SPOS [11] 74.7 - 328 34 120 12 1000
MCT-NAS-B [23] 76.9 93.4 327 6.3 120 12 100
K-shot-NAS-B [27] 77.2 93.3 332 6.2 120 12 1000
NSENet [4] 71.3 - 333 7.6 100 166.7 2100
GreedyNAS-B [34] 76.8 93.0 324 52 46 7 1000
GreedyNASv2-S 71.5 93.5 324 5.7 65 7 500
ResNet search space
ResNeXt-50 [31] 77.8 - 4230 25.0 - - -
RegNetX-4.0GF [20] 78.6 - 3964 22.1 - - -
ResNet-50* [12] 78.8 94.6 4089 25.6 - - -
SE-ResNeXt-50 [13] 78.9 94.5 4233 27.6 - - -
SKNet-50 [ 18] 79.2 - 4470 27.5 - - -
SE-ResNet-50* [13] 80.5 94.8 4094 30.6 - -
GreedyNASv2-L 81.1 95.4 4098 26.9 57 9 500

architectures using a RMSProp optimizer with a batch size
96 on each of 8 GPU, a step learning rate scheduler which
warmups for 3 epochs then decays 0.97 every 2.4 epochs
is adopted with initial value 0.048. While for ResNet-like
model, we train it using SGD optimizer with weight decay
10~* and batch size 1536, the initial learning rate is set to
0.6 and decays for 240 epochs with a cosine scheduler. We
use a data augmentation pipeline of Autoaugment [5], ran-
dom cropping, and clipping. We use a train and test image
size of 224 x 224. Besides, an exponential moving average
on weights is also adopted with a decay 0.9999.

5.2. Results on ImageNet

Comparisons with NAS methods. We first compare
our GreedyNASv2 with the baseline methods SPOS [11]
and GreedyNAS [34] on MB-SE, MB-SE+MixConv, and
MB-SE+MixConv+Shuffle search spaces based on our im-
plementations. We use a constraint of 330M FLOPs and
report the evaluation accuracies of the searched architec-
tures on retraining and supernet in Table 2. We can see
that, on all sizes of search spaces, our GreedyNASv2 can
obtain higher ACCs than the other two methods. More-
over, the performance of SPOS on medium and large
spaces drops significantly, showing that it would be diffi-
cult for SPOS to train promising supernets on such huge
spaces. While our GreedyNASv2 obtains similar perfor-
mance, and even achieves the best performance on large
space. We compare our obtained model GreedyNASv2-S on
MB-SE+MixConv+Shuffle search space with state-of-the-
art NAS methods in Table 3.

Search for larger networks. To evaluate our general-

ization, we conduct search on a ResNet-style search space
Res-50-SE. As the results shown in Table 3, our Greedy-
NASV2 achieves significant improvement compared to the
baseline ResNet, ResNeXt, and SENet models. Note that
we train our GreedyNASv2-L with simple SGD optimizer
and an additional Autoaugment [5] data pipeline. How-
ever, its performance still outperforms the state-of-the-art
training strategies with more sophisticated optimization and
strong data augmentation in TIMM [30], which achieves
80.4% ACC on ResNet-50.

5.3. Results on NAS-Bench-Macro

MCT-NAS [23] proposes a NAS benchmark named
NAS-Bench-Macro for single path one-shot NAS meth-
ods, which consists of 6561 architectures and their isolated
evaluation results on CIFAR-10 dataset. We leverage this
benchmark to validate the effectiveness of GreedyNASv2.

Performance of path filter with ground-truth training
data. To validate the pure performance of our PU learning
method, we conduct experiments to train the path filter with
the ground-truth labels in the benchmark. Concretely, we
split the architectures to 10% of good paths and 90% of
weak paths according to their evaluation accuracies, then
samples 1%, 10%, 50%, and 100% data as a train set. We
use the whole set to validate the classification performance
of the learned path filter. We use precision and recall as
evaluation metrics. We first train the path filter with our
PU learning settings using only weak paths and randomly
sampled unlabeled paths. For comparisons, we also adopt
the PN learning (traditional supervised learning) by using
both weak labels and good labels. As the results reported in
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Table 4. Performance of our PU learning method compared with
PN learning on NAS-Bench-Macro [23].

1% data 10% data 50% data 100% data
Pre. Recall| Pre. Recall | Pre. Recall| Pre. Recall
PU |97.21 97.08 |98.37 98.34 |98.30 98.19 |98.81 98.62
PN |[79.52 85.82|78.74 93.14 | 88.45 85.21 |85.55 90.24

Method

0.5

T T
[Juniform sampling
[ GreedyNAS

[ GreedyNASv2

I
-
T

14

Frequency
=
©
:

fan
T

0 20 40 60 80 100
Percentile rank (%)

Figure 5. Histogram of percentile rank of sampled paths on NAS-
Bench-Macro search space. The average percentile rank of uni-
form sampling, GreedyNAS, and GreedyNASv2 are 50.6%, 18.1%,
and 6.4%, respectively.

Table 4, the PU learning even achieves better performance
than PN learning. This might be because paths are densely
distributed in the space, an absolute threshold for partition-
ing “P” and “N” data might involve many uncertain paths,
while the PU learning could handle this uncertainty well by
treating unlabeled data more safely.

Performance of path filter on supernet. We also val-
idate the performance of the path filter learned in supernet
training. Unlike the previous experiment using the ground-
truth labels, the labels in supernet training are generated
by evaluating sampled architectures with a validation set;
hence, they could have some noises. The learned path
filter obtains 93.74% precision and 98.21% recall on the
whole search space, comparing to the best performance of
using ground-truth labels (98.81% precision and 98.62%
recall), the small decrease in precision is acceptable since
our method only needs to greedily focus on a proportion of
potentially-good paths instead of locating all the good ones.

Average percentile ranks of the sampled architec-
tures during training. We collect the percentile ranks of
the sampled architectures during training. As shown in Fig-
ure 5, our method samples more paths with smaller per-
centile ranks compared to baselines, which means that our
trained supernet is greedier towards those good paths.

Correlation between validation and retraining accu-
racies. Since GreedyNASv2 greedily filters out weak paths
and focuses on the potential good paths, the correlation be-
tween validation accuracies on supernet and their retrain-
ing accuracies will be boosted in terms of those good paths
identified by the path filter. We measure the rank corre-
lations on those paths within top 10% percentile ranks on
NAS-Bench-Macro, and the Kendall’s Tau of SPOS, Gree-
dyNAS, and GreedyNASvV2 are 23.9%, 41.5%, and 50.3%,
respectively. This indicates our effectiveness since discrim-

12 3 4 5 6 7 8_9 10 11 1213

MB6_ MB6_ MB6_ MBS,

K7 K3.SE K5SE K7.5E 0

Figure 6. Visualization of learned operation similarities at the 1st
searching layer of MB-SE supernet.

Table 5. Summary of merged operations (partial) w.r.t. Figure 6.

Operation pair Similarity | Retained operation
MB3_K7.SE  MB6.K7 0.95 MB3_K7_SE
MB3_K7 MB3_K7_SE 0.89 MB3_K7
MB3_K3.SE MB6._K5_SE 0.89 MB3_K3_SE
MB3_K7 MB6_K7_SE 0.88 MB3_K7
MB3_K7 MB6.K7 0.87 MB3_K7

inating among good paths are fairly challenging.

5.4. Ablation studies

Visualization of learned operation similarities. As
summarized in Figure 6 and Table 5, we visualize the
learned operation similarities at the first searching layer of
MB-SE supernet. It shows that the operations with the same
kernel size are more likely to have similar embeddings. For
ID operation, it has negative similarities to all the other op-
erations since it performs poorly on down-sampling layers.
For the whole supernet, there are a total of 35 (~ 13%) out
of 13 x 21 = 273 operations merged.

6. Conclusion

We propose GreedyNASv2, a NAS method with greedy
path-level and operation-level shrinkage of search space.
Unlike the previous works, our method achieves a greed-
ier search with a greedy path filter, which is trained with
highly-confident “weak” paths and unlabeled paths using
positive-unlabeled (PU) learning. By dint of the learned
embeddings in our path filter, we can further perform
operation-level shrinkage by aggregating similar operations
with similar embeddings, and the search can be more ef-
ficient and accurate. Extensive experiments show that our
GreedyNASv2 achieves better performance compared to
our baselines in various scales of search spaces.
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